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Abstract. In a dilatation-invariant theory it is shown that there is a unique locally
normal dilatation-invariant state. Furthermore a gauge transformation of a local algebra
cannot be implemented by a unitary operator from the local algebra. If the local field
algebras are factors then so are the local observable algebras. The superselection structure
of the theory can be determined locally.

1. Introduction

Various structural features of the algebra of local observables depend
on the short-distance behaviour of the theory. Our aim is to study
certain of these features by looking at what has become known as the
Gell-Mann Low limit of the theory in hommage to the work of Gell-
Mann and Low on the high-energy behaviour of quantum electro-
dynamics [1]. Roughly speaking the Gell-Mann Low limit of a theory
is a dilatationally invariant theory with the same short-distance behaviour
as the original theory.

In this paper we shall simplify matters by discussing dilatationally
invariant theories; such theories are, so to speak, their own Gell-Mann
Low limits. This enables the reader to focus his attention on the way the
singular short-distance behaviour shapes the theory without being
distracted by the technical assumptions on how the theory attains its
Gell-Mann Low limits.

As an example of how structural features of the algebra of local
observables can depend on the short-distance behaviour of the theory,
consider the problem of whether one can measure the total electric
charge contained within a sphere of radius R by means of an observation
inside the sphere. Formally the operator

QR= ί 7o(0,x)d3*, (1.1)
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where j 0 denotes the time-component of the electric current, should do
the trick for us. Experience shows that only expressions of the form
j jo(t, x) f(t, x) dtd3x where / is a suitably smooth function can be
expected to exist as an operator. In (1.1) we are trying to take /(ί, x)
= δ(t)χR(x) where χR{x) denotes the characteristic function of the
sphere \x\ ^ R. The problem here is not the <5-function in the time because
this is taken care of by the current conservation law but rather the
discontinuity of χR at the boundary of the sphere. In this sense the
question of whether QR is well defined depends on the short-distance
behaviour of the theory. We expect that all reasonable theories are so
singular at short distances that operators like QR are not well defined.

In the algebraic framework where physics is described in terms of
the net1 0->9I(0) of local observables it is natural to reformulate the
above question in terms of two related questions which are of interest
in their own right. The first question is whether a local observable
algebra 21(0) is a factor, i.e. whether the centre of 21 (0) consists of mul-
tiples of the identity. The only physically motivated candidates for
elements of the centre of 21 (0R) known to the author are bounded
functions of the QR or related objects associated with other charge
quantum numbers. The second question arises when we consider j 0

as the generator of gauge transformations of the first kind. Here it is
natural to look at the net 0->2I(0) as the gauge-invariant part of the net
&-+<&(@) of local fields and to ask whether the gauge transformations
3r(0) can be implemented by a unitary operator from g(0) itself. Here
again there is a natural condidate, namely an operator of the form
expiλQR.

The first question is not answered here completely, but it is shown
that 91(0) is a factor whenever g(0) is (Theorem 3.6). The second question
is answered negatively: local gauge transformations cannot be locally
implemented (Theorem 3.2). For the case of free fields this second
result has been obtained by DelΓ Antonio [2]. To illustrate the influence
of short distance behaviour at its simplest, we show that if &1 and 0 2

are spacelike separated double cones with a boundary point in common
then there is no locally normal state ω of 91 which factorizes over Θ1

and 0 2 , i.e. such that

ω(Aί A2) = ω{A,) ω(A2), A, e 21(0^, A2 e 2I(02). (1.2)

It follows in particular that 2t(0) cannot be Type I.
1 This is an inclusion-preserving mapping #—>5I(0) between finite regions in space-

time and C*-algebras. For the purposes of this paper it will suffice to take & to be a double
cone (the intersection of a forward light cone with a backward light cone) and to suppose
that tyί(Θ) is actually a von Neumann algebra. ΘR denotes the double cone based on a
sphere of radius R centred at the origin. 51 denotes the global C*-algebra which is the
inductive limit of the local algebras 51 (Θ).
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We also examine the consequences of dilatation invariance for the
superselection structure of the theory and show that this structure is
determined by the local algebras SΆ{&) and g(0) for some fixed 0 without
reference to the corresponding nets.

The results which are deduced here for dilatationally invariant
theories can also be proved for theories which possess a Gell-Mann
Low limit in a sense which will be made precise in a sequel.

As a by-product of the study of dilatationally invariant theories we
show that there is a unique locally normal dilatationally invariant
vacuum. Consequently a symmetry commuting with dilatations can
only be spontaneously broken if the dilatation invariance is itself
spontaneously broken2.

In a sense the short-distance behaviour of every local relativistic
quantum field theory is singular because it is impossible to define the
value of a field at a point as an operator in Hubert space. In fact the whole
of our analysis hinges on a result of Wightman [3] which is the algebraic
expression of this fact:

Π 31(0) = <C/. (1.3)

The intersection in (1.3) is taken over all double cones containing the
origin as an (interior) point, so (1.3) expresses the fact that there are no
bounded local operators based on the origin.

2. Dilatation Invariance

The assumptions we make in this paper are, with the exception of
dilatation invariance, standard assumptions of algebraic quantum
theory for treating the observable algebra as the gauge-invariant part
of a field algebra. We list them here briefly and refer the reader for
example to the introduction of [4] for a more leisurely treatment of
similar assumptions.

The field algebra g is assumed to be the global algebra of a net
G-*%(Θ) of von Neumann algebras and to act irreducibly on a Hubert
space Jf. There is a continuous unitary representation L-»^(L) of the
covering group of the Poincare group ^ on Jf which induces auto-
morphisms αL of the field algebra: αL(3r(0)) = %(LΘ). There is a unit
vector Ωe Jf, the vacuum vector, invariant under the %{L\ LeSP and
inducing the vacuum state ω0 of g.

ωo(F) = (Ω,FΩ). (2.1)

2 In this case the invariant vacuum state is not a pure state and its pure components
are not dilatation invariant.
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The energy-momentum spectrum is contained in the forward light
cone and Ω is supposed to be a cyclic and separating vector for each
g(0) (the Reeh-Schlieder property).

There is a faithful, strongly continuous unitary representation
g-t'fig) of a compact group 9, the gauge group, which commutes
with the °U{V), leaves Ω invariant and induces automorphisms βg of
each local field algebra:

(2.2)

(2.3)

The net of local observables 0->5I(0) is just the gauge-invariant part of

0->3r(0),i.e.
(2.4)

To avoid irrelevant complications, we shall assume the simple
commutation relations in the field algebra at spacelike separations
which would follow if $(&) were generated in the usual way by Bose and
Fermi fields. The simplest way of expressing this mathematically is to
suppose that there is an element k e & with k2 = e so that if we set

F+ = i ( F + βk(F)) and F_ = \(F - βk(F)) then

F + F ; - F ; F + = O

F+FL - FLF+ = 0 F e S ( ^ ) , F e 3r(02), ^ C 0 i , (2.5)

Of course F+ and F_ are just the Bose and Fermi parts of F respectively
and βk is the gauge automorphism leaving Bose fields invariant but
changing the sign of Fermi fields. As would be expected from this, we
have

2.1 Lemma, k is in the centre of <3.

Proof. Suppose βk(F) = Fe%(Θ) and let ge% then

F* oίx(F) = ax(F) F * , Θ + x C 0 ' .

Hence if G = jS^(F) we have

This implies that

But x-^Gία x(G_)ί2 is the boundary value of a function analytic
in the forward tube, so Gΐ αx(G_) ί2 = 0 for all x. Setting x = 0we have
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by the Reeh-Schlieder property, Gί G_ = 0 which implies G_ = 0.
Hence G = G+ί i.e. βkβg(F) = βg(F). Thus if E denotes the projection
onto the closure of {F+Ω: F e $(Θ)} we have

Replacing g by g'1 and taking adjoints we get ir(g)E = Ei^(g). But
IT(k) = IE-1 so i^igk) = i^{kg). As Y is faithful, gk=kg completing
the proof.

The starting point of this work is the following:

2.2 Theorem (Wightman [3c) f]

Actually Wightman only considers the Bose case but that is quite
sufficient because for the Fermi part of f] $(&) we could for example

apply his argument to the square of the two-point function.

2.3 Corollary. Let ω0 be the vacuum state and ω any locally normal
state of 5 then

UK-ω)Γ 5(0)11-0

as Θ shrinks to {0}.

Proof. This is standard: suppose not then there is a sequence Fn e %(&„)
where f]&n={0} with | | F Λ | | ^ 1 and ωo(Fn)-ω(Fn)>δ>O. However

n

any weak limit point F of Fn — ωo(Fn) I must be a multiple of the identity
by Theorem2.2 and trivially ωo(F) = O. Hence Fn-ω0{Fn)I tends
weakly to zero. Since ω is locally normal, ω(Fn) — ωo(Fn)-+0 giving a
contradiction.

The specific assumption of this paper concerns dilatation invariance.
We suppose we have a strongly continuous unitary representation

of the multiplicative group of the positive real line IR+ satisfying

Ω, (2.6)

%(λ) <%{a, A) = %{λa, A) %(λ), {a, A}e0>, (2.7)

%{λ) r(g) = r(g)W(λ), ge<$, (2.8)

and inducing automorphisms δλ of the field algebra with

2.4 Theorem, a) ω 0 is the only dilatationally invariant locally normal
state.

b) // ω is a locally normal state then

as
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Proof. If ω φ ω 0 then we can find a double cone & such that
| | ( ω - ω o ) ϊ g(0) | | φO so a) will follow from b). However, by (2.6) and
(2.9) we have ||(ω ° δλ - ω0) \ g ( 0 ) | = ||(ω - ω0) \ ^{λΘ)\\ and the result
follows from Corollary 2.3, since it is clearly no loss of generality to
suppose that 0 contains the origin.

This result has some relevance to questions of spontaneously broken
symmetries. If ω 0 were not a pure state we would have a case where
dilatation invariance was spontaneously broken. If ω 0 is a pure state
and we have an internal symmetry of the system represented by an auto-
morphism α commuting with dilatations, α°δ λ = δλ°α, α(g(0)) = g(0)
then ω0 ° α is locally normal and dilatation invariant so ω0 ° α = ω 0

and α is not spontaneously broken.
Another useful corollary of the basic theorem of Wightman in the

case of dilatation-invariant theories is

2.5 Corollary. If Fe% then δλ{F) tends weakly to ωo(F)I as λ^O.

Proof It suffices to suppose that F is strictly local then any weak
limit point of δλ(F) is a multiple of the identity by Theorem 2.2. Since
ω 0 is dilatation invariant, this limit point can only be ωo(F)L

3. Applications to the Structure of Local Nets

Our first result is elementary and uses nothing more than the
dilatation invariance of the observable net.

3.1 Proposition. Let (9γ and Θ2 be two double cones with a boundary
point in common. Then there is no locally normal state ω of 21 such that

ω(AB) = ω(A)ω{B), A e S l ^ ) , Bε<Ά{Θ2). (3.1)

Proof By translation invariance we may suppose the origin is a
common boundary point of &x and Θ2 then for λ ^ 1 we have <
C«((Pi) and (5λ(9t(02))c2I(02). Hence

Proceeding to the limit as λ->0 we deduce from Theorem 2.4 that

= ωo(A)ωo(B).

Pick BΦO with ωo(B) = 0; since Ω is cyclic for 21(0!) in the vacuum
sector, we may pick A such that ω o (4B) + 0 giving a contradiction.

This tells us in particular that 2Ϊ(0) is not a Type I factor. The
negative result of Proposition 3.1 is not surprising: however iϊ (9X and &2

are spacelike separated double cones without a boundary point in
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common then Buchholz [5] has shown for the free massive neutral
scalar field that one can find locally normal states satisfying (3.1).

In the sequel we have occasion to use spacelike separated double
cones Θ1 and Θ2 with a common boundary point and we abbreviate
this by saying that Θ2 is a spacelike tangent to &x.

3.2 Theorem. βg is an outer automorphism of %{Θ) if gή=e.

Proof In fact we prove that if Ve g(0) and if

VF = βg(F)V, Fe%(&) (3.2)

then either V= 0 or g = e. If $((9) is not a factor this is a more general
result, although we choose this form for technical convenience. Now
(3.2) and Lemma 2.1 imply

βk(V)F = β,(F)βk(V), Fe%(Θ).

Hence it suffices to consider the two special cases, V=βk(V) and
V=- βk{V). Suppose V= βk{V) and let #ibe a spacelike tangent double
cone to 0 then

ωo(VFFV*) = ωo(F'βg(F)VV*), F'eg(^), Fe%(Θ). (3.3)

Without loss of generality we may take the origin as the point of contact
of & and Θ1. Then (3.3) remains valid if F and F' are replaced by δλ(F)
and δλ(F');λ ^ 1. Taking the limit as λ->0 we get by Corollary 2.5 and
(2.8)

So either ω o ( F F * ) = 0 which implies V=0 by the Reeh-Schlieder
property or ωo(F'F) = ωo(F'βg(F)) which again by the Reeh-Schlieder
property implies Ϋ~(g) = L However Ψ" is faithful so g — e, or V=0.
If v= - βk(V) then we would get in place of (3.3)

ωo{VF'FF*) = ωo{βk{F') βg(F) VV*).

If V ή= 0 the same argument as above would allow us to conclude that

ωo(F>F) = ωo(βk(F') βg{F)) = ωo(F βkg(F))

and hence that g = k Thus VV* = βg(V*) V = βk{V*) V = - V* V so
V= 0, and this contradiction completes the proof.

We come now to the result on the factoriality of the local observable
algebra. We may decompose the representation Ψ* of ^ into its irreducible
components and let Σ denote the set of equivalence classes of continuous
irreducible representations of ^ occurring in V. In fact, as shown in [4],
every such equivalence class occurs in the decomposition but this is
irrelevant to our present discussion.
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3.3 Lemma. If E is a non-zero projection of %(Θ) and if σeΣ then
there is Fe%(&) which transforms under gauge transformations like an
irreducible tensor of type σ and satisfies EFE Φ 0.

Proof Since σ e Σ, Ω is cyclic for g(0) and g(0) is weakly closed we
can pick a non-zero tensor F of type σ from g(0) (see the discussion
preceding Lemma 3.4 below). Let G1 be a spacelike tangent double
cone to G and pick F e g ^ ) such that ω o ( F F ) φ 0 . By Corollary 2.5
if λ is sufficiently small ωo{Eδλ(F'F) E) Φ 0. Taking the origin to be the
point of contact of G and Gx,

, so ωo(δλ(

Hence E ^ F ) £ φ 0. Also δλ(F) e g (0) and by (2.8) δλ(F) is an irreducible
tensor of type σ under 0.

It now follows from a result of Connes [6; Theoreme 2.4.1] that if
%(Θ) is a factor and ^ is Abelian then 21(0) is a factor. What follows is
an extension of this result to the case where ^ is not Abelian; here
Lemma 3.3 is not adequate and the appropriate generalization requires
a little preliminary work.

Given σ e Σ let Hσ be a Hubert space carrying an irreducible unitary
representation uσ of ^ of class σ. Consider the space ^(Θ)®Hσ as a space
of row matrices with entries in ^(G) by picking a basis b1,b2, ...bd,
d = dimσ, of Hσ and expressing F =ΣFi(g)bie%(G)®Hσ as (Fί,

F2, ...,Fd). We may define an action β of ^ and <5 of 1R+ on 3r(0)(g)i/σ

by acting with βg and δλ respectively on the components of F. Set

SU0) = ^ e δ ( ^ ) ® H σ : βg(F) = Fuσ{g\ ge<$}, (3.4)

where Fuσ(g) denotes the matrix multiplication of F on the right by
uσ(g). Given beHσ define

mbub(F) = f <Mff(ff) fe, fc4> /?f(f) ^μfe) (3.5)

An elementary computation shows that if F e %(G) and F = (Ff) where
Fι = mbub(F) then F e%σ(G). This construction and the cyclicity of Ω
for ${&) can be used to produce non-zero elements of ^σ(G), (compare
[4; Lemma 3.4] and [7; Theorem 4]).

3.4 Lemma. Given F, F' e %σ{G) then

Proof.

ωo(FtF}*) = .(" ωoί^W) ^ ( ^ ; * ) ) dμig)

= f Σ «σte)«
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The orthogonality relations for the irreducible representation uσ now
give the required result.

We also consider the algebra g(0)(g)^(Hσ) as the algebra of dxd-
matrices with entries in g(0) and define an action β of ̂ -on %{β)®08(H^
by letting βg act on each component of the matrix. The basic technical
difference between the Abelian and the non-Abelian case is that in the
former case the support projections of irreducible tensors are in 91(0)
whereas in the latter case they must be considered as elements of 5(0)

We now state the appropriate generalization of Lemma 3.3.

3.5 Lemma. Let σeΣ andOφF e%σ(0). Let E e%(Θ)(g)&(Hσ)bethe
support projection of F and E ^E®Iσ where E is a projection from 91(0)
then there exists a Ge3rσ(0) such that EGE'ΦO.

Proof. Since F is an irreducible tensor and k is in the center of ̂  by
Lemma 2.1, we must have βk{F) = Fuσ(k) = ± F. But βk{E') is the support
projection of βk(F) so βk{E') = E'. Having established this, we may
forget about F. Let Θγ be a spacelike tangent double cone to 0. By the
Reeh-Schlieder property and Lemma 3.4 we may pick Ge%σ{Θ) and
G'e3rσ(0i) s u c h t h a t ^o(GjG'k*) = δjk. Taking the origin to be the
point of contact of Θ1 and 0 we have for

λ^ί, δλ(G)e%σ(&) and <
Now

ωo(Eδλ{G) E'δλ{Gγ) Ξ Σ ^o(Eδλ(Gk) E'kJδλ(GJ)*)
Kj

and by Corollary 2.5 as λ-+0

ωQ(Eδλ(G) Eδλ(G')*)-> Σ MoiGkG'j*) ωo{EE'kS) = •£ ωQ(EE'kk).
k,l k

Since E' ̂  jE(χ)/σ, EkjE = Ekj so Σ ωo{EEkk) = Σ ωo(E'kk). But E is a
k k

non-zero projection and ω0 is faithful on $((9), so Σ ωo(Ekk)>^' Hence
k

for sufficiently small λ, Eδλ{G) E Φ 0.

3.6 Theorem. // g(0) is a factor then S&ψ) is a factor.

Proof. It suffices to show that if Ex and E2 are non-zero projections
in 91(0) then we can find Aeϊ&ψ) with E1ΛE2ή=0. Since g(0) is a
factor there is an F' e 5(0) with E1FΈ2 Φ 0. Without loss of generality
we may suppose that F' is an irreducible tensor of type σ say. Hence there
is an F e g t f(0) such that F = ExF

fE2®Iσ + 0. Let F denote the support
of F. By Lemma 3.5 there is a G e 5 σ(0) such that E2GEΦ0. Since F
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is the support of F this implies that F G * £ 2 + 0. Hence EXFG*E2

= F G * £ 2 φ 0 . However FG*e3ί(0), since F, Ge5 σ (0) so we have
proved our result.

We may in fact generalize the above result somewhat: let £ be a
central projection of 31(0) so that EA(I-E) = 0 for all ,4 e 31(0). The
argument in the proof of Theorem 3.6 shows that EF(I — E) = 0 for all
F e 5(0). Hence £ is in the centre of 5(0). Conversely if E e 91(0) and E
is in the centre of 5(0) then £ is a fortiori in the centre of 31(0). Thus

centre (31(0)) = 3ί(0)ncentre (5(0)) (3.6)

which is the appropriate generalization of Theorem 3.6 if 5(0) is not a
factor.

In view of the classification of factors it is natural to ask whether
5(0) and 31(0) must necessarily be factors of the same type. While there
are at least partial answers one can give to this question they fall outside
the scope of this paper because dilatation invariance plays no further
role in the reasoning.

4. Superselection Structure

Dilatation invariance also has certain consequences for the super-
selection structure of the theory. The analysis in this section makes use of
results obtained in [8] on the relationship between the observable net
and the field net. These results depend, at least in the case of non-Abelian
gauge groups, on a certain "duality" relation

5 ( 0 ) ' n Ή ^ ) ' = 3I(0'Γ (4.1)

which is known to be valid in the usual free field models. In particular
we shall use the following notation and results taken from [8].

Consider finite-dimensional subspaces He (J 5(0) satisfying
Φ

a) if ψ1,ψ2£ H, ψf ψ2 is a multiple of the identity,
b) iίge&ihenβg(H) = H
c) if £ is a projection in <St(2tf) and Eψ = ψ for all ψ e H then E = L
In virtue of a) and b) H is a Hubert space with respect to the operator

norm and ψ->βg(ψ) is a continuous unitary representation of ^ on H.
Further if {φj is an orthonormal basis of H, £ ψiψf = / by c) and if we
set '

then ρ(9l) C 31 and ρ : 3ί-»3I is a localized morphism in the terminology
of [9]. H is entirely determined by ρ and we write H = H(ρ); in fact
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(43)

In the first result we also need the concept of a twisted field algebra
introduced in [4; Section 3]. We set

(4.4)

is just the transform of gr(0) under the unitary operator W where

4.1 Proposition. Let &x and & be two spacelike tangent double cones
to Θ2 with Θ1 C Θ. Then

Proof. Since 2l(01)C 3f(0i) it is enough to show that

By [8; Theorem 2.3 and Proposition 3.4] it suffices to show that if
l / e 2 l ( 0 1 ) ' n g ( 0 ) and QeΔ'ψύ then U commutes with WH(ρ)W~K
We may also suppose that ρ is irreducible or equivalently that H(ρ)
consists of irreducible tensors and that U is unitary. As usual we take
the origin to be the point of contact of Θ9 &1, and Θ2. If ψ\,..., Ψa is an
orthonormal basis for H(ρ) and ψeH(ρ\ δλ(ψ)==VλΨ where

d

Vλ=Σ δλ(Ψi)ψf vλ is gauge invariant by (2.8) so Vλe21(0!), λ^ 1. By
/=i

Lemma 3.4 and the Reeh-Schlieder property we may pick Fje
($(Θ2)

with ωoiFjψi) — δij. Since ψt is an irreducible tensor, βk(ψi) = ±ψi.
If βk{ψi) = φ f then we may suppose βk{Fj) = Fj. Hence

ωoiU-'δ^Fjψd U) = ωo(δλ(Fj) Vλ V^ψ, U)

r = ί

Proceeding to the limit /l->0 using Corollary 2.5 we get

δij = ω0(ψJU-ί

ΨiU).

If i=j we are in a case where equality holds in the Cauchy-Schwarz
inequality. Hence UψiΩ = ψiUΩ and by the separating property of the
vacuum, U\pi = xpt U. If βk(ψi) = — ψt then we may suppose βk{F3) = —Fj
and the same argument leads to βk(U)φ. = φ. [7 or Ui^(k)ψt = Ψ°(k)xpt U.
Hence in either case U commutes with WH(ρ)W~x as required.

In the case of free Bose fields it is possible to describe ^(&ι)fn%(Θ)
= S(0iyπ3r(0) as the algebra of some local region [10; (1.13) and
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(1.18)]. Hence 91 (ΘJn 91 (0) which is just the gauge-invariant part of
ey(0i)'ne5(0) is the observable algebra of the same local region. Pre-
sumably the analogous results hold for free Fermi fields.

4.2 Corollary. «l(0)'ng(0) = S(0)'n5(0).

Proof. Setting Θ = Θ1 in Proposition 4.1 we get 2I(0)'r>5(0)
= &(O)'n%(Θ). Since 81(0)C 5(0) we deduce that 5 W n 5 ( 0 ) 1)5(0)'
ng(0). However the Bose parts of 5'(0)' and 5(0)', i.e. the parts which
commute with Ψ~ (k), are identical. We complete the proof by showing
that 5t(0)'ngf(0) contains no Fermi part. Suppose Feff(Θ)'r\%(0)
and βk(F)=-F then F = r{k)G with Ge3r(0)'. Hence F*F = F*r(k)G
= -iT(k) GF* = - FF* so F = 0 as required.

Note that in the course of the above proof we have shown that the
centre of g(0) is invariant under βk, i.e. is purely Bose. Theorems 3.6
and (3.2) are immediate consequences of this corollary. We will now
show that if 5(0) is a factor, Corollary 4.2 without further use of dilata-
tion in variance implies that the superselection structure may be described
in terms of 5(0) and 91(0) without reference to the observable and field
nets.

4.3 Theorem. Let 5(0) be a factor. Suppose ρ, ρ' e Δ'(Θ\ S e 91(0) and

Sρ(A) = ρ'(A)S, A e 21(0).

Then S intertwines ρ and ρ' globally, i.e.

Sρ(A) = ρ'{A)S, A 621.

Proof Let ψ e H{ρ), \pf e H(ρ') then

Aψ'*Sψ9 A e 21(0).

Hence ip/*SφG9ί(0)/n5(0) = C/ by Corollary4.2 since 5(0) is a
factor. Consequently S = ]jΓ Cijψjψf where {φj and {φ}} are ortho-

Uj

normal bases for H(ρ) and H(ρf) respectively and c^I = ψ^Sψi. Thus S
may be identified with a gauge-invariant linear mapping from H (ρ)
to H(ρ') and [8; Proposition 3.5] shows that S intertwines from ρ to ρ'
as required.

In particular this Theorem shows that if ρ and ρ' are inequivalent
irreducible morphisms they remain inequivalent and irreducible when
restricted to 91(0); i.e.

ρ(9I(0))'n9l(0) = CJ and Sρ(A) = ρ'(A)S, ,4 e 91(0)

implies S = 0. In other words, the charge quantum numbers in <#
can be identified with the local equivalence classes of irreducible localized
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morphisms. Bearing in mind the results of [9], Theorem 4.3 not only
shows that we may describe charge quantum numbers but also charge
conjugation, the "addition law" for charges and the statistics parameter
by looking at the localized morphisms over a single local algebra 9I((9).

One point remains to be checked to substantiate our claim that the
superselection structure can be determined in terms of a single local
algebra rather than the whole net: we must show that the concept of
localized morphism itself can be expressed in local terms. However in
the framework of this paper, we have no input which could tell us that ffl
contains all charge quantum numbers or, in other words, that g is a
maximal field net. Hence we shall have to be content with a purely
local criterion for identifying morphisms of Δ'(0).

4.4 Theorem. Let %{&) be a factor and let ρ map 21(0) into 91(0) then ρ
is the restriction to 91(0) of an element of Δ {&) if and only if there is a
finite-dimensional subspace H C 5(0) satisfying a) and c) above such that

= ρ(A)ψ, 4 e 21(0), ψeH. (4.5)

Proof Suppose we can find H with the stated properties and let
d

ψl9...9ψd be an orthonormal basis for H then ρ(A) = £ ψiAψf,
ί = l

A ε 91(0). We use this equation to define ρ(A) for A e 91 and ρ will then
be a localized morphism provided ρ(9l)c2l. Now if ψ9 ψ'eH and
,4 ε 21(0)

Hence ψ'βg{ψ) ε2l(0) 'ng(0) and must be a multiple of the identity by
d

Corollary 4.2. Thus βg(ψ) = £ ψf βg{ψ)ψίeH. Consequently /^induces
ί = l

a unitary representation of ^ on H. Hence

ββ(Q(A))=ίββ(ψdAβg(Ψir = Q(A) for AsSBl,
ί = l

so ρ(9ϊ)c9l and ρeΔ'(&). The converse is just the definition of Δ'{G).
Note that the essential step in the proof is to show that βg(H) = H.

If we had postulated this we would not have been able to claim a purely
local criterion for identifying the elements of Δ'{0) without first giving a
local characterization of gauge transformations.

In conclusion, it should be stressed that we have never made essential
use of the fact that δλ is an automorphism. The effect of δλ on the net
structure [Eq. (2.9)], the commutativity of δλ and gauge automorphisms
and the fact that certain limits as λ->0 give non-vanishing multiples of
the identity are the important ingredients of the proofs. For this reason
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the validity of the results presented here is not limited to dilatation-
invariant theories but apply to all theories having a well-behaved Gell-
Mann Low limit.

Acknowledgement. The author wishes to thank H. Araki for posing the question of
whether localized automorphisms localized in Θ give rise to outer automorphisms of
(see Theorem 4.3).
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