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Abstract. Let ¢ be a faithful normal semi-finite weight on a von Neumann algebra ./.
Normal states on .# almost majorised by this weight are defined. For this class of states
on ./ a theorem is proved. Using this result we define entropy of normal states on .#
and we show that this entropy function generalises the entropy both of classical and of
quantum statistical mechanics.

1. Introduction

Let ¢ and y be two normal states on a von Neumann algebra ./Z.
Suppose v is faithful. In Ref.[1] Dixmier introduces the notion of the
state ¢ being almost majorised by the state y. He remarks that to any
state ¢ almost majorised by y corresponds a closable operator affiliated
with 7, (/4), where n, is the *-representation of ./ associated with y
by the G.N.S.-construction.

We define when a normal state ¢ on ./ is almost majorised by a
faithful normal semi-finite weight y on /.

Using some results of Perdrizet [2], we show that with any state ¢
almost majorised by the weight 1 can be associated in a unique way a
positive self-adjoint operator affiliated with 7,(/#).

This result is used to define a generalised entropy function. The phase
space of a system in classical statistical mechanics is a measure space
M, v. The measure v gives the a priori probability of the points of M.
The macroscopic states of the system are described by positive normalised
measures ¢ on M which are absolutely continuous with respect to the
measure v. To each such measure p corresponds a positive integrable
function f on M which satisfies | f dv=1 and du= f dv. These functions
f are called density functions and the entropy of the measure y is given
by the expression

S()=— [ flogf dv.

Let # be the Hilbert space of wave functions of a quantum mechanical
system. In many cases the statistical states of the system are described
by the normal states on the space %(#°) of all bounded linear operators
on #. To each normal state yp on %(#) corresponds a unique density
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matrix on S, i.e.: a positive trace class operator ¢ on # which satisfies
Tro=1 and p(4)=TreoA for all Ae B(#). The entropy ‘S(y) of the
normal state p on #(#) is defined by:

S(p)= —Trgloge.

This entropy function is the quantum analogue of the classical entropy
function defined above. However it should be pointed out how restrictive
this quantum mechanical definition is. For classical systems we have
free choice of the a priori probability measure with respect to which
entropy is calculated. In the definition of entropy for quantum systems
the trace plays the role of the a priori probability measure and no choice
is made.

Let .# be a von Neumann algebra with a faithful normal semi-
finite weight ¢ on it. In analogy with the density functions f on the
phase space M, v of a classical system and with the density matrices g
on the Hilbert-space s# of wave functions of a quantum system we call
density operators the positive self-adjoint operators T associated with the
normal states on .# which are almost majorised by ¢.

If 4 is the W*-algebra (M, v) of all essentially bounded measurable
functions on the measure space M, v, a weight ¢ on .# is defined by the

relation
@(A*A)= [ A*Adv forall A in .4 .

Then we may show that there is a one-to-one correspondence between
density functions on M, v and density operators affiliated with 7, (.Z)'.

If # equals the space #(s) of all bounded linear operators on a
Hilbert space /# one weight ¢ on . is e.g. the trace. Then there is a
one-to-one correspondence between density matrices on # and density
operators affiliated with 7, (.Z)'.

In both cases A4 = L (M, v) and 4 = B () we express the entropy
S(u) of a measure u on M resp. the entropy S(y) of a normal state p on
AB(A) in terms of density operators and twice we find the same expression.
This justifies the general definition of entropy we introduce at the end
of Chapter 3.

We now give a short mathematical introduction (see [5]). A weight
on a C*-algebra .o/ is a function ¢ : o/ * — [0, + 00] satisfying:

o(A+B)=¢(A)+¢(B) forall 4,B in &/
o(ad)=op(A) forall =0 and for all 4
in o/ " (with the convention 0, co = 0).
Define: N,={Aeod|p(A*A) < +n}.
Then N, is a left ideal in .o7.
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Theorem. With any weight ¢ on a C*-algebra o is associated a
Hilbert space #,, and two mappings A, and m,, where A, is linear from
N, into H, and m, is a =-representation of < into RB(H,) such that
(n,(4) A,B, A,C)=@(C*AB) for all Ain o and B,C inR,,.

A weight ¢ on a von Neumann algebra .# is normal if for any increas-
ing net (4,), in 4% with Lub. 4 in 4" we have ¢(4)=Llub.¢(4,)
(see [6]).

Theorem. If ¢ is a faithful normal semi-finite weight on a von Neumann
algebra M then the set o/, =N, N% is a full left Hilbert algebra with .4
as its left von Neumann algebra.

I'm indebted to Prof. H. Araki and Prof. A. Van Daele for simplifications in the proof
of Theorem 2.3.

2. Density Operators

Definition 2.1. Let ¢ be a normal weight on a von Neumann algebra
M. A positive selfadjoint operator T affiliated with 7,(.#) is a density
operator with respect to ¢ if 4,9, is a core of T* (i.e. the closure of the
restriction of T? to A,M, again is T%) and if there exists a normal state
y on ./ such that p(B* 4) = (T* 4,4, T* A,B) for all A, Bin R,,.

The following definition generalises a definition of Dixmier ([1],
1, 4, Exercise 8):

Definition 2.2. Let ¢ be a normal weight on a von Neumann algebra
. A normal state p on ./ is almost majorised by ¢ if for any net (4,),
of elements in N, such that ¢ (4} A4,) =0, w((4,— Ap), (A, — Ap)) Py EwdU
implies p(A¥ 4,) — 0.

The following theorem generalises Dixmier [1], 1,4, Exercise 8§,
and Perdrizet [2], p. 45, Proposition 6.4:

Theorem 2.3. Let ¢ be a faithful normal semi-finite weight on a von
Neumann algebra # and y a normal state on M. Then the following con-
ditions are equivalent :

a)  is almost majorised by .

b) There exists a vector & in K, such that p(A)=(n4(A) &, &) for all
Ae .l and for all such & the operator ¢'(): A,A—n,(A) & with domain
A,M, is closable.

c) There exists a density operator T with respect to ¢ such that
W(B* A)=(T* A, A, T* A, B) for all A, BinN,.

This density operator T is uniquely determined by the state .

Proof. a)=-b).
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The existence of a vector ¢ in #, such that y(A4) = (n,(4) &, &) for all
A e M follows from [2], p. 44, Proposition 6.2.

Let (4,), be a net of elements in N, such that 4,4,—0 and (,(4,) &),
is convergent. This means that ¢(A4FA4,)—0 and that y((4,— A4p*
(A, — A4p)) 5=z 0. Using condition a) there follows that y(43 4,)—0
or that 7,(4,) £ —0. This shows that the operator ¢'({) : 4,4—>m,(4)  is
closable.

b)=>¢).

Let & € #, be such that ¥(4) = (n,(A) ¢, &) for any Ae 4.

By b) the operator ¢’(¢) is closable.

Let T=¢'(¢)*0(&). Let ¢'(§)=UT?* be the polar decomposition of
0'(6). Then U*U T* = T#, which implies

Y(B*A)=(T*A,A,T*A,B) forany 4 and B in N,,.

For any Ae.# and Be N, one has ¢'(¢) n,(4) A4,B= w) Q') 4,B.
Hence ¢'(¢) m,,(A) D 7, (4) ¢'(§). This implies the operator ¢'(¢) is affiliated
with 7,(4) ([11, 1, §3 Exercise 7a). Hence T is affiliated with nq,(,/%)

Since any core of ¢'(§) is a core of T?, A,M, is a core of T* We
conclude T is a density operator correspondmg to the state ¥.

c)=a).

Let (4,), be a net of elements in 9%, for which (p(A* A)—0 and

¥((A,— Ap)y (A, — Ap)) 57552 0. Then A A,—0 and (T*4,4,), con-

verges. Because the operator T# is closed T* A, A, converges to zero.
Hence p (4} A4,)— 0.

Let S and T be density operators corresponding to the state V.

Then for any AeN,:

1S A, 4> =¥(A4* A) = |T*4,4|*.

Hence there exists a partical isometry U from the closed range of S* onto
the closed range of 7% such that for any Ae %,

UStA,A=T*A,A.

Because 4,9, is a core of S* and of T* one obtains US*> T* and
S*c U*TZ ie. USZ =TH%.

Now S?* and T* both are positive selfadjoint operators. Because of
the uniqueness of the polar decomposition one has U =1 and §* = T*,

Q.ED.

This theorem characterises the states on the von Neumann algebra .#
for which a density operator exists. It has been shown that not all normal
states on .# are almost majorised by a given faithfull normal weight
¢ ([2], p. 45, Remark 6.5, (1)).
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Corollary 2.4. Let T be a density operator with respect to the normal
weight ¢@. There exists a unique vector £ in H#,, for which ¢'(¢) is closable
and the closure 7' () of o' (&) equals T*.

Proof. Let ¥ be a normal state on ./ satisfying
¥Y(B*A4)=(T*A,A4,T*A,B) forall 4,B in N,,.

From the proof of foregoing theorem follows there exists a { € #,, such
that ¢’({) has a polar decomposition of the form ¢'({)= U T%. Now one
has: o'(U*{) = U*g'({).

Hence: ¢'(§) = T* with ¢ = U*{.

Suppose ¢, and &, € #, satisfy n'(E;) = 7'(£,).

Then ¢'(¢,) = ¢'(£,) which implies &, =¢,.

3. Entropy

Let M,v be a localisable measure space ([3]). Then the predual of
the W*-algebra ¥ (M, v) of all essentially bounded measurable func-
tions on M, v is the space £1(M, v) of all integrable functions ([4], p. 45,
1.18). Hence there is a one-to-one correspondence between the positive
normalised measures u on M absolutely continuous with respect to v
and the normal states v, on ¥%(M, v). The measure v defines a weight
@ on ¥*°(M, v) which is faithful, normal and semi-finite.

If T is a density operator with respect to ¢ and £ is the unique vector
in #,, for which T = 7'(€)* then we introduce following notation:

logTyr= }im (log TF,) &, &) whenever this limit converges. The F,

are determined by:

T= j AdE; is the spectral decomposition of T and F; = j dE,.
12

Proposmon 3.1. Let p be a positive normalised measure on the localisable
measure space M, v. Suppose u is absolutely continuous with respect to v.
Then the normal state p, on £*(M, v) is almost majorised by the weight ¢.
Let T, be the unique density operator associated with v,. Then the entropy
S(u) is defined if and only if {log T, >, exists and in that case:

S(p)=—<logT,>r,
Proof. Identify #* (M, v) with its representation (£ (M, v)).

Let f be the positive integrable function for which dy = f dv. Denote
by N,, for A >0, the set
N,={xe M| f(x)S1}.

Then the sets N, are measurable and the characteristic functions
E, = y(N,) are projections in ¥*(M, v).
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The (E,), form a spectral family, i.e. they satisfy:
a) E;SE, if A<y,
b) E;= s-lim E, forall 120,
noAu> A
c) 1= ls;h:g E,.
Let T be the selfadjoint operator defined by this family:

+ 00
T= j },dEl.

0

For any 4 and B in 9t, one has:
A
(TE A, A, A,B)= [ X d(E; A, A, A,B)
0

y

= [ ¥ dp(B*E, A)
0

= @(B* fE,A)

= (fE;A,A,4,B).

Hence TE,=fE, for all 1 0.
Forall 4AinN,:
ITHE,—E) A, Al* = || f*(E;— E) 4, Al

=¢(4*f(E,~E,) A)
=y, (4*(E,— E,) 4)

which tends to zero if A, u— + 0.
Hence A, A is in the domain of T* and for all 4, Bin 9,

(T* A, A, T* A, B)=1,(B* 4).

Therefore T is the unique density operator T, with respect to ¢ associated
with the state y,,.
We now have:

S(w=—fflogfdv
= — lim y,(log f (E; — Ey ,))
= — lim (log f(E; — E1) £, &)
=~ lim (log T,(E; ~ E1) £, £,)
— — (logT,>s,. Q.ED.

Let M,v and M, v' be two localisable measure spaces. Suppose there is a
*-isomorphism y between the W*-algebras ¥*(M,v) and L°(M',V)
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which carries the weight ¢ on ¥ *(M, v) defined by the measure v into
the weight ¢’ on £®(M’,v') defined by v'. For any normal state ¢’ on
F*(M',v') the entropy S(y’) with respect to v equals the entropy
S(y'oy) of the state ' °y on FL*(M,v) with respect to v. This means
that the entropy S is invariant under this kind of isomorphisms of
measure spaces (called strong isomorphisms in [3]).

Consider now a Hilbert space . A faithful normal semifinite weight
@ on the space #(#) of all bounded linear operators on S is defined by:
@(A* A)=Tr A* A for all A€ B(H).

Proposition 3.2. Let ¢ be the trace on B(#). Any normal state p on
B(H) is almost majorised by . Let T, be the density operator associated
with . The entropy S(p) of the state y is finite if and only if {logT, >,
exists and in that case: '

S(w)= — Clog T, >, .

Proof. Let ¢ be the density matrix on 4 for which y(A4)= TrgA for
all 4 e B(A). Because

A4, Ag*|>=TroA* A< TrA* A= |4,4]?,

the mapping A(/,A—>A¢AQ% defines a bounded operator h. This operator
h is positive, belongs to 7,(#(#)) and satisfies for any 4 and B in 9,

w(B*A)=(hA,A,hA,B).

Hence h? is the density operator T, associated with y and A,0* is the
unique vector ¢ in i, for which T, = n'(£)%.

Let ¢=Z1,G, be the spectral decomposition of ¢. Define bounded
operators E, by: E,4,4=A,AG, for all AeMN,. The operators E, are
mutually-orthogonal projections in 7,(%(#)) with sum 1. One has
h=3X)E,.

Now:

(logT,>r,= lim ((log T, Y Ep) A,0%, AQ,Q%>
p=1

n— o

Ap*0

(log4,) (E, 4,0*, 4,0%)

1

= lim

n—oo

= lim

n— o

) (log1,)(4,0*G,, 4,0*G))

B ﬁtvjz ﬁrvja

=lim Y A,logi,

n—> oo p=1
= Trologo
=—S(y). Q.E.D.
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Propositions 3.1 and 3.2 give the same expression for the entropy of a
system of classical statistical mechanics described by a measure space and
for the entropy of a quantum mechanical system described by a Hilbert
space of wave functions. This justifies the following definition:

Definition 3.3. Let ¢ be a faithful normal semi-finite weight on a
von Neumann algebra .#. Let y be a normal state on .4 almost majorised
by ¢. Let T, be the density operator associated with y. The entropy
S(y) of the state p with respect to the weight ¢ is given by:

S(y)=—<logT,)r,
if {log T,, > 1, exists. In the other case S(y) is not defined.
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