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Abstract. The unnormalized doubly cutoff Schwinger functions converge as the
ultraviolet cutoff is removed. The limits, the finite volume unnormalized Schwinger
functions, are tempered distributions and are C00 in the coupling constant. They have
asymptotic expansions given by perturbation theory. For λ sufficiently small they can be
normalized and then they are the moments of a measure on ^(IR 3 ) .

The P(φ)2 models are the best behaved models studied in con-
structive field theory. The Wightman axioms have been verified for
these theories (for weak coupling), firmly establishing their existence,
and work related to P(φ)2 is now largely aimed at determining physical
properties and simplifying earlier proofs. The λφ% model, which we
are considering in this paper, is the next best behaved boson model.
It differs from P(φ)2 by having ultraviolet divergences and by requiring
ultraviolet divergent mass and wave function as well as vacuum energy
renormalizations. Work on λφ% is still aimed at establishing its existence.
The principal progress in this direction has been the proof of the exis-
tence [2] and semiboundedness [3] of the spatially cutoff Hamiltonian.
In this paper we use the methods of [3] to show that the (unnormalized)
spatially cutoff Schwinger functions exist, are tempered distributions,
and are C00 in the coupling constant. If λ is small we can normalize
the Schwinger functions and then they are the moments of a probability
measure on <9^(IR3). The next step in the program might involve the
use of methods developed for P(φ)2 (see [4, 5]) to take the infinite
volume limit and verify the Wightman axioms. Another open problem
is that of determining if, as conjectured, the free and (spatially cutoff)
interacting measures are mutually singular.

Readers are referred to [3] and [5] for further background material,
notation and references and for details related to the inductive expansion.

We will be concerned solely with the Euclidean approach to φ%.
The free theory is given on the path space L2(<S^(IR3), dq0) where dq0

is the Gaussian measure with mean zero and covariance μ~ 2 = (— Δ + 1) ~ \
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The Euclidean fields are the linear coordinate functions on 5^(

for all qeS?ή(β.3) and /e^(IR 3). The partition function Z and unnor-
malized Schwinger functions ZSn of the doubly cutoff interacting
theory are just the mass and moments of the unnormalized doubly
cutoff interacting measure dq(κ, λg).

The measure is given by

V(κ,λg)=VI(κ,λg)+Vc(κ,λg)

-ϊ<Vf{κ,λg)yiqo

" 9
<5m2(κ)=-42x6x(2π)

4

ί = 2

Here : : means Wick ordering with respect to dqo,μ(k) =
and ||fc||2 = k(0)2 + /c(1)2 + fc(2)2. We assume that the space cut
is the product of a function in Co (1R3) and the characteristic function
of a union of unit lattice cubes. We also assume that the momentum
cutoff K is of the form

α
(i) β ( ί ), β(ί) e {Mo = 0, M, = v ) J " ' if ^ 1}
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where Mx > 1 and v > 0 are constants given in [3] and η is a fixed
function satisfying

η(x)=i |χ|^i

0<η(x)<ί i<|x|<2

η(x) = 0 \χ\>2.

= η(-x)

By convention η(k/O) = 0.
Note that the scalar counterterms in Vc are those suggested by the

perturbation theory of the Euclidean Green's functions (i.e. Schwinger
functions) and hence have a built-in wave function renormalization.
See [3].

Theorem 1. a) There exists a constant K2(λ) and a Schwartz space
norm \ |, such that

where A(g) is the volume of the set of points within a distance one of
the support of g.

b) Z(ί9λg) = lim Z(κ, λg) and
κ-> l

Z(ί,λg)Sn(ί,λg;f1,...,fn) = \imZ(κ,λg)Sn(κ,λg;f1,...,fn)
κ-»l

exist and obey the above bounds. By κ^> 1 we mean

glb{||fc|||ιc(fc)Φl}->oo.

c) Z(t,λg) and Z(ί,λg)Sn(ί,λg;fu...Jn) are C00 in λ. They have
asymptotic expansions given by perturbation theory. Z(ί,λg) + 0 if

{)
d) // 0^λ<λo there exists a unique measure dq{ί,λg) on ^ (

such that

Theorems 1 a)-d) are corollaries of Theorems 2-5 respectively.
These results are very much in the spirit of Symanzik's program to
formulate field theory in terms of moments of probability measures [6].

We will also be dealing with expectation values of somewhat more
complicated objects than the product of fields Φ(/i) . . . Φ(/n). These
will be products of Wick monomials that have some contractions
between different monomials. Each monomial of order n is repre-
sented in graph notation by a vertex with n legs. A contraction joins
two legs, one from each vertex involved, to form a line. In general a
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graph G and its kernels wv are used to represent the function G(q) on
^ ( I R 3 ) given by

teU(v) J

Π

V = set of all vertices in G

L(v) = set of all legs of the vertex v;

U(v) = set of all uncontracted legs of υ;

%?GC (J L(v1)xL(v2) is the set of all contractions;

Φ(k) = Φ({2πy312 μ(k) eίkx) formally

= A*(k) + A( — k) in Fock space language

wv, the kernel of the vertex v, is a function of ke for all i e L(v). The
kernel of :Φ"(g): is given by

φ1,...,kn)f[μ(KΓ1

e-1

where g is the Fourier transform of a space-time cutoff and K is a
momentum cutoff.

The notation G may refer, depending on context, to the topological
graph G, the function G(q) or the kernel G(A )̂. The last is the function
of the momenta of G's external legs given by

f Γ K Π a(3)(*Λ + *, 2)d 3*,Λ
veV (<?ί,έ2)e<£

By choosing / of the external legs to be initial legs and the remainder
to be final legs we can view G(fĉ ) as the kernel of an integral operator
from L2(lR3ί) to L2(1R3/). | |G | | i f / is the norm of this operator. ||G||H.s.
is the Hilbert-Schmidt norm of the kernel.

We will be interested in two different estimates on ζGydqiKtλg).
The first emphasizes the kernel of G while the second emphasizes the
space-time density (as opposed to the total number) of external G
legs. There is a norm on the kernel of G appropriate to each.

Given δ > 2α > 0 we define

\\G\\2,i,a = SUP sup sup \\0>^Mδ\D«rG\ ||H.S.
0>% <e D
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^α

e, #, D, 5 ; M5, and | | are "operators" that modify the graph G and
its kernel.

(1) Mδ multiplies each external leg / by K1μ(kϊf)
δ. K1 is a constant

to be chosen later.
(2) ^ is any contraction scheme on G's external legs. Ή need not

contract up all the legs. We identify the contraction scheme ^ with the
operator Ή that applies it.

(3) I I takes the absolute value of the kernel to which it is applied.
- α -^ot

(4) 0>l takes a collection of identical vertices ^><ί (the — α
— α - α

means multiply that leg by μ~a) and connects each to the graph G
on which it is operating. Each vertex may contract only to external G
legs but may have from one to four such contractions. They may not
contract to any subgraph of G that looks like — . X has the kernel

F(/c1 + + /c4)x/i" 1(/ί 1)...μ(/c4Γ 1 where F(k)= f ] μi^)'1 and is

effectively just a Pe vertex from the inductive expansion. In fact we
include the ^ operator in our norm so that we can handle the anomalous
case in which a Pe vertex, instead of contracting to at least one P, C,
or W vertex, contracts entirely to G legs. See Section 5 of [3].

(5) D is a monomial differential operator in the variables
\J U(v) 1 that is at most fourth order in {kf\ k{/\kf]} for each

J
1

veV J

fixed (.
(6) <T is a "translation" operator. Each vertex is thought of as having

a space-time localization in some cube Ave<3 centered at rv. Q) is a
cover of space-time by disjoint unit cubes. SΓ multiplies the kernel by
Yl Y\ eik('Yv in effect translating the external legs to the origin1.

The norms || \\i>δi(χ are very complicated and the role of each operator
can really only be understood in the context of the proof of Theorem 2.
Roughly speaking the Ώ^Γ operation will be used in the inductive
expansion to provide distance convergence factors

f p j r p r

dkψ V

The Mδ operation will be used to provide energy convergence factors.
# and 0>l appear because contractions and Pe vertices arise in the
expansion.

See Appendix 1 for another possible «
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In practice we estimate the norms by using methods of [3] to
decompose big graphs into little graphs. For example if a graph H is the
union of subgraphs h}

j

This implies

l | G l b , « ^ Γ Ί ll»llί.ί,«
υeV

where v is the graph of the vertex υ. If v has just a single leg

HΦ(/)lliΛ«=lr

= \f\»-

Theorem 2. Suppose Gί is a graph having N external legs and G2

is a graph having N(A) external legs in A. Then there is a constant
K2(λ, δ1;δ2,oc) such that

ΔeS)

The proof is a modification of the estimate of [3] and is delayed to
later in the paper.

Corollary 2.1.

Proof. This is a direct application of Theorem 2. We have only
used nn^nl Kn

3 and redefined Kί to absorb K3.
Remark 1. There is a class L 2(1R 2)C^C#~ 1 / 2(1R 2) of distributions

on 1R2 for which fe Hδ implies |/(JC) δ(t - to)\δ < oo.

Corollary 2.2.

= K5(\f\'δ,λ,δ,δha)

This is proven by modifying Theorem 2. We also leave this to later
in the paper.
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Theorem 3. Let | | G | | M , α and | / | 5 l < o o for some 0 < α < α 0 (<*o t o

be chosen later). Then lim (GeΦ(f)}dqiKfλg) exists and obeys the bounds

of Theorem 2 and its corollaries.

Proof. Let κa and κb be two momentum cutoffs of our standard
form. Without loss of generality we can assume that κb ̂  κa and that
neither κa nor κb has a lower cutoff. We construct a sequence
κa = κ0 < κγ ... <κM = κb of such momentum cutoffs. To get κ{_ γ from
Kι we lower the highest cutoff in κt (that has not yet reached its level in κa)
one notch.

If Ki(s) = sκi+1 + (1 - s) κt

/dq(κb,λg) \ v e /dq(Ka,λg)\

ί ds (Geφ^ 14- V(Ki(s), λg)\ e-"<«<«-*A
o \ [ds J I άqa

= Σ
ί = 0

--— V(κ{{s\ λg) is the sum of a finite number of P vertices. In addition
ds

we write g= ^ gχΔ so that each vertex is localized on a cube of
unit

cubes Δ

unit volume. Each P vertex has the property that its maximum lower
cutoff λι is related to the minimum upper cutoff u{ OΪK^S) by u{ ̂  0(1) λ\+v.
We recall that for any given leg t (vertex v)

where

is the momentum cutoff function in the P t h space-time direction for
the/ t hlegofι;.

Now that each term contains a P vertex we perform a single C step
of the P — C expansion precisely as prescribed by rules (A) and (B) of [3]
Section 2. (G vertices are considered old vertices, while Φ(f) vertices
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are considered C vertices.) This renormalizes the P vertex.

M - l

Σ
i = 0 σ e G 0

Each graph GσΛ contains one G graph, one P vertex, at most 16 C
vertices and at most 12 Φ(f) vertices. The only dependence oϊ_ Gσi

on i is in the momentum cutoffs appearing in its kernel. Hence G is a
finite index set and \G\ depends on G and Λ(g) but not on κa or κb.

The estimate leading to convergence is completed by first using
the method of combinatoric factors to bound the number of terms in
the above sum and then bounding the size of each term. λh the maximum
lower cutoff of the P vertex in Gσ h is either 2 or M, where My is the
upper cutoff of that one component of κt different from the corresponding
component in κi+1. This implies that λi is independent of σ and is
monotone non-decreasing in i. Furthermore λt can take on any given
value at most three times. Then

j=ί

so that

S sup|G| K6logλι{
ι,σ 0

where the constant KΊ depends on almost everything except the KS.
(The fact that K^S) is not quite in the standard form for a momentum
cutoff is irrelevant as can be seen from the proof of Theorem 2.) We will
choose γ later in the proof.

\\0>e%My\GσJ HH.S. and hence \\Gσ>i\\Uγ}0[ may now be estimated
by the methods of [3] Section 5. We divide '0>^My\GσΛ\ into two sub-
graphs &tΛG and ^f2R where 0>lΛ includes those Pe vertices that
contract to G only and ^>2 includes the rest. (We suppress the μ rs, σ's,
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etc. in our notation except when they are needed.) R is the graph
containing the P, C, and Φ(f) vertices.

If P has four legs contracting to G legs (other than —) then choosing
γ = δ/S

ω—ω

α-

α-

α-

H.S.

— α

— α

— α J

— α H.S.

(2y) + 3α/2 α
3α/2 α •

3α/2 α j

3α/2 α H.S.

-α/2

• — α

— α

• — α J

— α H.S.

T h e μ2y appears only if that leg is an external leg of Gσί that is contracted

by <β. 0*1^ conta ins all the Pe vertices in &lΛ plus P viewed as a Pe

vertex (which of course it really is).

If P has three legs contract ing t o G t h e n 2 choosing y ^ m a x ( c ) , 1/16)

— α

— α

— α

— α-

— α

— α H.S.

or
3,1

Most of our estimates on small graphs are either proven in [3] Section 6, or are

simple extensions of those that are. The estimate on y —\-y ΐis proven in Appendix 2.
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— yP*——α

H.S.

where we have used — α-
— or

^ 0(1) A"ζ (provided 3α - ζ > 0,

3,1

+ y<i>α<2") a n d a similar estimate for
— or

—α H.S.

This method is also used to bound P when it has four legs contracting
to G but one of the G legs is —.

>— <

II H . S .

IIH.S. α-
or

•P —

3,1

If P has two or fewer legs contracting to G then ^ 2 K is precisely a
Pc graph (in the notation of [3]) with a few factors of μy thrown in. We
write

and we estimate the second factor by the same algorithm as used in [3].
We use Pc to refer to R with the ^ α

e

2 vertices, the μγ factors and the
contractions in <€ added in.

1) Define a "core" subgraph for Pc. If P is a cancelled mass diagram
this is the core. If P contracts twice to a single C vertex then P and this C
vertex form the core. If this is not the case P must contract to four
different C vertices. Then P plus two of the C vertices form the core.
We choose the C vertices to maximize first the number of Φ 4 vertices
in the core, and then number of internal legs in the core.

2) Are there any non-core vertices with external legs left in Pc?
If not, go to step 3. Otherwise remove one (giving Pe's first, outer C's
second and inner C's third priority) using

where i is the number of H2 legs that are internal to H1H2 and / is the
number of H2 legs external to HίH2. In our case 3 ^ / , / § ; ! unless
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H2 = Φ(f). If we have removed a P* vertex we use

103

— α

— α

— α

— α

— α

/ — α

3,1

2,2— α — α

If we have removed a C vertex we use

I I 7 — M — v | | H c :

3,1

7 2,2

If we have removed a Φ(f) vertex we use H | H i S i ^ O ( l ) . Now return
to the beginning of Step 2.

3) Are there two non-core Φ 4 vertices that are connected together?
If not, go to Step 4. If there are, call these two vertices plus any vertices
that contract only to them H2. Remove from H2 any Φ(f) and — M —
vertices using the method of Step 2. This leaves at most three Φ 4 vertices
each of which is connected to the other(s). If there are three at least
one must have external legs. It is removed as in Step 2. Remove a Pe

vertex if there is a choice. The remaining cases are bounded by

\

7

27

s ^ 2 y ^

2y

[ 2y 1

r7

7

y<τβ

U.S.

H.S.

H.S.
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The diagram ^ C — P e ^ does not arise since this Pe had to have legs
external to H2. Return to Step 2.

4) Are there two non-core vertices that are connected together?
If not, go to Step 5. Otherwise define H2 as in Step 3. Again remove any
Φ(f) and — M — vertices, other than the original two vertices. The
latter are bounded by

IIH.S. I 11,3

VI

H.S.

H.S. y—c—y
\y 1,3

H.S. 2,2

Now return to Step 2.
5) This leaves only the core, plus some vertices that are fully con-

tracted to the core. Note that since all the legs left were internal to Gσ t

there are no factors of μy involved. We remove all the extra Φ(f) and
— M — vertices. This leaves the following cases:

a) one or two vertex core:

II—M—|| H . S . ^ O(ί) λf ^ some ε3

I I = P = M | | H . S . ^ | | = P = | | 2 i 2 II—M—||H.s.
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b) three vertex core:

| | = / — M or Φ(J) M or Φ(/)||H.S.

2

H.S.

—p—c
II-IIH.S. II=P=P=IIH. S . I I - C = C - | | H . S .

All the other three vertex cores are treated in [3] and yield the same
results.

Combining all these results together gives us

s.upX7logA ί | |Gσ<i |[1
1 ( 7 ' "

0(1) λ~a/2} with mί9 m2 fixed integers .

^ max {0(1) log/lί[logAJmi λ\1 + v)m2y

xAΓm i n ( ε 3 '1 / 6 4 ),O(l)A~α / 2}
~ 1/2 min(ε3,1/64,α)

if we choose y sufficiently small depending on ε3, v, and m2. Note that
since α < y/2 this places a restriction on α. α0 < y/2.

Convergence now follows immediately from the facts that
λi^λ0 and λ0-+oo as glb{||/c|| |/cα(fe)φ l}-^oo. Q.E.D.

In view of Theorem 3 we define

Theorem4. Let λ^O, | / | a , < o o and | |G | | 1 > i > β <oo for all α > 0 .
Then (using a right derivative at λ = 0)

d"
a) *Φ(/)N

dλn X ^ " /dq(κ,λg)

bounded on compact subsets of [0, oo).

b) \im-£f<Gέ*Wydqlκ.iβ) exists.

The Fn are independent of K and
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c) <GeΦif)}λg is C0 0 in λ and

<~ Γ
= Km

d) (Geφ(f)yλg has an asymptotic expansion at each β e [0, oo).//

dn

(κ,λg)

then for each r > 0 there exists a constant R(n, /?, r) such that

<G^(/)> - f G ( β ) { λ ~ β T

λg

 m=0

 m ™f

for all max (0, β - r) ̂  λ ̂  β + r.

^R^^^μ-iSr-1

Proof. Let κa ̂  κb be two momentum cutoffs. (For the proof of a)
we choose κa = 0.) We construct a sequence of momentum cutoffs

as in Theorem 3. We again have

}dq(κb,λg)~<\G^

M-ί 1 /

~ι?oo \
M - l 1

= - Σ Σ
ί = O (76G°O

/dq(κa,λg)

dq(κi(s),λg)

),Ag)

where we have renormalized the P vertex. Note that each P vertex
has a maximum lower cutoff λt ̂  λa and that the graphs Gσi depend
on i only through the momentum cutoffs. Now

κue

i,

I,

1

σO

1

σ 0

\dλ

1

\ σ ' Γ

α

φ(/)

\\Jt

,Φ(/)

,φ(/)\
/dg(κα,λgf)

/dβ(κί(s),λfli)

\

/ dq(Ki{s),λQ) '
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— - Gσ i differs from Gσ t only in its dependence on λ. The second set
dλ
of terms above come from differentiating e~

V(Kiis)'λ9\ These terms
have a second P vertex which, unlike the first, has no lower momentum
cutoff. We use another C step to perform the renormalization cancella-
tions for the second P vertex. We now have

^ < G e > d q ( K b , λ β ) - -L-

M-ί 1

= Σ Σ \ Λ
i = 0 τeG1 0

Continuing in this manner

dn dn

Due to our renormalization procedure each graph Gρi contains at
most logarithmic divergences and it contains one renormalized P
vertex with maximum lower cutoff at λf. We can bound the sum using
precisely the same argument as in Theorem 3. The only difference
is that we now have (at most) n P subgraphs instead of one. The fact
that none of the P vertices, except the first, have lower cutoffs and hence
do not contribute further convergence factors is irrelevant. All we do is
choose y sufficiently small (depending on n) that the first P vertex provides
enough convergence for all the P subgraphs. (Since α < γ/2 we need to be
able to make α small as well.)

This gives

~- <GeΦif)}dqiKb>λg) - — <GeΦif))dq(Kaίλg)

for some ξ>0 and some ultraviolet cutoff independent function Fn(λ).
Parts a)-c) of our theorem follow. Part d) follows from Part a) and
Taylor's theorem:

n f^(β) 1 λ

f(λ)~ Σ ——(λ-β)m=—\(λ-tff { n + 1\t)dt. Q.E.D.
m=0 m n- β

Corollary 4.1. The results of Theorem 4 apply to Z(ί,λg) and
ZSn{Uλg;fl9...9fJ.



108 J. Feldman

Corollary 4.2. The results of Theorem 4 apply to Sn(ί,λg;fu...,fn)
provided we restrict λ to the interval [0, λ0 (A (g))) (i.e. to the interval on
which Z(l, λg) is known to be nonzero).

C(κ, λg;f) = Z~\κ9 λg) (eiφ^\q{κ,λg).

(/e<^(IR3)) is the characteristic function of the doubly cutoff measure.
If λ is small the ultraviolet limit

C(ί9λg;f) = ]χmC(κ9λg;f)
κ-*l

is well-defined and we have:

Theorem 5. I/O ^ λ ^ λo(A(g)), C(ί9λg;f) is the characteristic function
of a unique measure dq(ί, λg) on 5^(1R3). Furthermore

g) (

for any F in the sub C*-algebra of C(5^(R3)) generated by
i Φ { f ) ^

Proof. C(l, λg;-)is the limit of a sequence of characteristic functions
so that it is normalized, C(ί,λg;0)= 1, and positive,

C(l, λg f) is also continuous in / :

|C(l,λ»;/2)-C(l,λflf;/i)l

= lim Z~γ{\

= lim Z~x(κ, λg)
d

f Λ<? /JΦ(fs)\

J US j 5 \ e /dq(κ,

= lim Z~1(κ9λg)

λg)

<iκ,λg:

[κ->l
HKλg)}\f2-fi\s sup K9(λ9g9\f8\'δ9δ)

as in

By the Minlos theorem there is a unique measure dq(ί,λg) on ^ 0 R 3 )
such that
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Now by linearity and the definition of C(l, λg f)

g)

for any H in the *-algebra generated by {eiΦ(f)}. However

\lFdq(ί,λg)-Z-1lFdq{κ9λg)\

and for any ε > 0 we can find an H with | |F — H| | 0 0 <f. Then we can
choose K close enough to 1 that the second term is bounded by ε/3.
This completes the proof of the second statement of the theorem.

The final statement of the theorem follows from the fact that both
C(ί,λg;μf) and {eιμφ{f)}dqiίλg) are analytic in μ. See Frόhlich [1]
for arguments along these lines.

Remark2. From Remark 1 we see that for/e^(IR 2 ) Φ(fδ{--t0)) is
defined almost everywhere on 5^(IR3) with respect to the measure
dq(\, λg). These functions generate a sharp time t0 subspace of L2(5^(IR3),
dq(ί,λg)). Alternatively, applying the argument of Theorem 5 to the
functional

ft->C(i9λg;fδ(-t0))

on SfR(R2) shows that

Sn(Uλg;f1δ( -t0%...Jnδ( -t0))

is given by a measure dq'{tθ9 λg) on 5^(IR2). Then L 2(^(IR 2), dq'(tθ9 λg))
is isomorphic to the sharp time t0 subspace in the natural way.

Proof of Theorem 2. Theorem 2 is proven in the same manner as the
estimate Ke~ViKtλβ)}dqo\ <^e°Ui9)) was proven in [3]. We will just give
the modifications that must be made.

First we write

<G'i G ' 2 } d q i κ , λ g ) = NN Π NVΓ* II G\ || 1>4l>β || G'21| 2 Λ > β

A

X \G1G2)dq(κ,λg)

where now | | G 1 | | l i ί l i β = N - J V and | | G 2 | | 2 ; , 2 j e t = n i V ( ^ ) " N ( / 1 ) - We will
A

show that for this new GUG2

When the inductive expansion is applied to (G1G2e~V{κ'λ9)y the
Gx and G2 vertices are, to as large an extent as possible, ignored. They
are not included in any vertex count (such as that used to terminate
the Pr — Cr expansion or to determine the cube size in the low momentum



110 J. Feldman

expansion). With one exception they remain completely passive (initiate
no action). The exception is the low momentum contraction operation.
We perform this on the Gx and G2 vertices after all Px — Cx vertices
have had all their low momentum legs contracted. In the rth inductive
step we use Mr_ί as the boundary momentum for G2 legs and
M f._2(M_1 = M0 = 0) for the Gx legs. This means that when a G^G^
leg initiates a contraction it can only contract to G1(G1 or G2) legs.

We must now make the two estimates that yield Theorem 2. The
first, Lemma 4.1 (replacing Theorem 4.1 of [3]) estimates the number
of terms in the expansion. The second, Lemma 5.1 (replacing [3]
Theorem 5.1) bounds the size of each term.

Lemma 4.1. The combinatoric bounds given in [3] Theorem 4.1
apply equally well to our case provided we include in addition a factor of

i) Kί0N(A)de(A,Afλ6ε for each external G2 leg localized in A'
that contracts to a vertex localized in A

ii) Ki0Nλ8ε for each (external) G1 leg.
Here de(A,A') = max (1, Euclidean distance between A and A').

G1 vertices are not considered to have a localization so that a line joining
a Gx and a G2 vertex does not have any distance factor de(A, A') associated
with it. Also since only external Gt legs enter we will use the expression
Gt leg to apply only to external legs.

Proof. There are two operations in the inductive expansion in
which the presence of Gt legs leads to an increased number of terms.
The first occurs when a Pr, Cr or W vertex initiates a contraction. The
second is the application of the low momentum contraction scheme to the
Gt vertices.

(a) Suppose that at some stage of the expansion we have a term T.
Suppose a leg in A introduced in the Vth inductive step initiates a contrac-
tion. By the nature of the expansion it can contract only to the exponent
or to a free leg in its own level or in a lower level. (We organize the vertices
into levels by the ordering Gγ vertices, G2 vertices, Pγ — C1 vertices,
W1 vertices, P2 — C2 vertices ....) Hence

τ= Σ U°)+ Σ Σ Σ τ,A°)
σeAe 1 £r'^r Δ" eΘr, σeA(r',Δ")

+ Σ Σ Σ τ 2 f J .»
Δ'e2) n σeG2(Δ',n)

+ Σ Σ ϊ \ » .
G(

The Te(σ) are terms arising from contractions to the exponent. The
Tr,Δ'(σ)are terms arising from contractions to vertices of the r/th inductive
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step that are localized in the cube A" of the rnh step's space-time cover
@>r>. (Actually the situation is somewhat more complicated for Wr>
vertices but that does not concern us here.) The 7\,n(σ)(T2%Δ. n(σ)) arise
from contractions to nth generation Gx legs (G2 legs localized in A'\
By nih generation we mean the following. We call the original Gt legs
that appear in {G1G2}dqiKtλg)0th generation legs. Just before the first low
momentum expansion there is a squaring operation which replaces
the 0 th generation graph by itself plus a duplicate image, which we call
the 1st generation graph. G^n) (G2(A\ n)) is the set of free nth generation
Gi legs (G2 legs in A').

The Te(σ) and Tr.Δ»(σ) appear independently of Gγ and G2 and in
[3] Glimm and Jaffe found ce(σ) and cr,Δ»(σ) satisfying

r' A" σ

f 2 n + ' \If we set c 2 t J > ( σ ) = 4Dde(A, A'f 2n+' \G2(Δ'9 ή)\

and

cUn(σ) = 4 2" + 1 |G 1(n)

where

we get

r',A",σ

+ Σ Σ Σ
A' e@ n = 0 σeG2(A',n)

+ Σ Σ cΓ,i(σ)Uup|c(σ)T((τ)|
n = 0 σeGί(n) J

χ Σ 2-("+1>}sup|C(σ)Γ(σ)|
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(The extra 1/4 will be used for the Φ(f) legs in the proof of Corollary 1.2.)
Now

\c2,Δ'Aσ)\ ^ 4 D de(A> ΔT 2n+ * 2 m a x ( 0 ' w ~

since \G2(A\ n)\ ̂  N(Af) 2maxi°>n-1}

(A, A'Y 22n + ί N(A')

n>2

(cf.[3],Eq.4.9)

YlηDde{A,A'fN{Af) n^2.

Any leg in G2(A\n) was free at the time of its introduction in the nth

inductive step. This implies that it must have been the image of a high
momentum leg from the (n— l) s t inductive step. This means that its
low momentum cutoff λσ is at least Mn_2 (or Mn_3 for Gx legs). Hence

(n>2)

implies
\c2,A',n(°)\ S 2ΊDde{A, A'f N{A') λ2/.

Similarly
\cUn(σ)\S29Nλ4

σ

ε.

To keep track of these factors we assign them to the leg to which the
contraction was made.

(b) Our first task in the low momentum contraction operation
is to split each uncontracted leg into high and low momentum parts.

= K^K^K^ (low momentum part)

+ 7 other terms (high momentum part).

Hence we require a combinatoric factor of 8 and we assign it to the leg
we split. If a leg goes through j such splittings it acquires a total factor
of 8J. Since the leg was still uncontracted when it underwent its last
splitting in the j t h inductive step it must have been a high momentum
leg of the low momentum contraction operation of the (j— l) s t inductive
step. Then its low momentum cutoff must be at least Mj_3 so that

;_ J ̂  M/_ε

3 ^ λ
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After splitting the legs into high and low momentum parts, we
contract up all the low momentum legs. Since low momentum G2 (Gx)
legs can only contract to G2 or G1 (Gx) legs the analysis of (a) part shows
that assigning 27Dde(A, A'f N(Δ') λ2ε (29Nλ4ε) to contractee G2 (GJ legs
is sufficient.

Combining the results of (a) and (b) completes the proof of the lemma.
Q.E.D.

Lemma 5.1. \T(σ)\ is bounded above by a product of factors given by
those of [3] and

l | G i l | M l , α per Gί graph

l|G2|l2fa2,α per G2 graph

de(A,A')~4 per line joining a A' G2 vertex and
a A G2, P, C or W vertex

KuK^λ-'*1* per Gt leg.

Proof. We will focus our attention on the Gt vertices and legs.
In fact we will ignore almost everything else. This is done solely to
bring the notation within the realm of the imaginable.

T(σ) is a vacuum graph so that it can be evaluated directly. After
integrating out the delta functions arising from contractions we arrive at

lines Gi
<C graphs

P

Π G2((k)q)κq((k)q) Π ••••
G2 graphs P,C,W

q vertices

Here the κ(k) are momentum cutoffs that were introduced into the G{

graphs during the low momentum contraction operation. They were
not in the original Gt graphs. (k)p and (k)q are the sets of momenta
appropriate to the Gt graphs involved. In particular a contraction
within a Gt graph (these may have been introduced in the inductive
expansion) is manifest by two of the momenta in (k)p (or (k)q) being
negatives of each other.

In order to get a handle on the distance factors we translate each G2

vertex to the origin:

Π
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77 = rVί — rV2 is the contraction vector for £ i.e. the vector between the
centres of the cubes on which v1 and v2 are located. We define rv = 0
for Gx vertices.

Writing Y\2 for a product over all lines involving G2 legs but not
G1 legs and f ] 2 1 for a product over all lines that in addition satisfy
de(A,A')> 1 we have

Π Π Π
Gί G2

V} = Σ S2/dk{p2. If we now expand the differential operators and apply
ί = 0

them via the product rule we get a sum of at most Π 2 > 1 (3 2 4 4 ) terms.
[(F7/)2 is a sum of 3 2 fourth order monomial differential operators
and each d/dk{^ can find a kf1 to act on at most in two 53

rG2's (or twice
in the same 3~G2) and at most in two K 'S (or twice in the same K).]
Furthermore because η was chosen to be a CQ function there is a constant
η such that for any differential operator arising as above

where \q\ is the number of legs in (k)q and κq is the characteristic function
of the support of κq. (This follows from [3] Eq. 5.2.9 because \n2\ 5^4.)
Thus far we have

Π 2 dteT S sup J Π dke Π I
t iDq) ί P

x\Dq2ΓG2\Il...

(3244»?)141 κq

where Dq is a monomial differential operator that is at most fourth
order in each ke of Π 2 ' 1 .
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We now use the method of decomposing big graphs to estimate
the above mess. To start we use subgraphs that consist of

1) a single G{ graph,
2) a single W vertex,
3) a P vertex and the C vertices it generated.
With this decomposition there are only two types of subgraphs that

contain ultraviolet divergences:

Pe(=P) and PD(=P— or =P-=Pe).

(The second type of PD subgraph appears in later decompositions.)
If the leading vertex in a Pe or PD subgraph has an initial leg that con-
tracts to a P or C vertex the divergent subgraph may be treated as in
[3]. In particular we hook any such Pe subgraph onto the nearest P
or W subgraph to which it contracts. However if all the initial legs
contract to Gf subgraphs we must get the compensating convergence
from the Gt subgraph.

a) Pe: If one of the G legs involved is of the form — we treat it as a C
vertex thus converting our Pe subgraph into a PD subgraph

i.e. >)-• ) •). Otherwise we first transfer an energy factor μ~α to

each of the Pe legs from the Gt leg to which it contracts. In addition we
take a factor of ;rm i n ( < 5 l '< 5 2 ) / 4 for each Pe leg. In diagrams

α o( iμ~ m i n < V 4 p e | .

This X~mindi/4 provides the λ~εi (if Pe is PJ or the 0Lx\A\ei (if P6 is Pr9r> 1)
for [3] Theorem 5.1. The latter case follows from

([3] Eq. 3.2.1).

We append the Pe vertex to one of the Gt subgraphs to which it contracts,
b) PD: We transfer μ~α from the Gt vertices to the initial legs of the

leading vertex of the PD subgraph and use

3,1

This gives all the convergence we need.
We now have

Π ^ J ^ H . s . Π
{Dq} q P,C,W
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where (€v and ^q give the contractions introduced into the Gt by the
expansion. Finally, since λδ

p

ί/4'SKί2μδ

p

il4 on the support of κp

legs

1 1 l l^α vP

1V1 l ^ l ^ p l IIH.S.
P

- [ [ sup \\^qM"2'—\Dqy U2\ κq\\HmSm

where Kxl = K123
244η,δJ2 + α<<5f. Note that since we want the

factors of ΛΓδi/4 even on legs contracted by c€vq we must operate with
Mδi before applying (€VΛ. ' Q.E.D.

Theorem 2 follows directly from Lemmas 4.1 and 5.1 simply by
choosing K1>K10K11 and ε < δβ2. Q.E.D.

Proof of Corollary 2.2. We expand e φ ( Λ in a power series and improve
the estimates in Theorem 2 sufficiently to give the convergence of

Σ~<G1
n n '

We first write

associating with each Φ(f) leg a factor of (n\f\^)~ι. Now go through
the inductive expansion with the following modifications.

1) Treat the Φ(f) vertices on a level between the G2 vertices and the
Pγ — Cγ vertices. In other words in the low momentum contraction
operation use M r _ 1 ( M r _ 2 , M r _ 3 ) as the boundary momentum for
Φ{f)(G2,G1) legs. This means K 1 0 will be larger and λ8ε(λ6ε) will be
replaced by λ16ε(λί2ε) in Lemma 4.1 but this is of no consequence.

2) Suppose two Φ(f) vertices contract together. As in Lemma 4.1
this requires a combinatoric factor of 2Ίnλ2ε. Instead of assigning
this all to the contractee we assign 2ΊI2nll2λε to each Φ(f) vertex
involved.

3) Suppose a Φ(f) and a Gf vertex contract. Since the Φ(/) vertices are
in a higher level than the Gt vertices the Φ(f) vertex must have initiated
the contraction. Hence the Φ(f) vertex does not have any combinatoric
factor associated with it.

4) Finally suppose a Φ(f) and a P, C or W vertex contract. We then
assign a factor of (4iC 3 |/ |^)" 1 (as well as the usual combinatoric factor)
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to the Φ(f) vertex and a compensating factor of (4K3\f\'δ) to the P, C
or W vertex. As far as the P9 C, and W vertex is concerned 4K3\f\f

δ

is just another factor of 0(1) and its only effect is to introduce a dependence
on|/ |J intoK 5 .

5) Consider the squaring operation

This takes a term T with M Φ{f) vertices into a sum of two terms 7\
and T2. Tγ has no Φ(f) vertices but is multiplied by ζ~ \ T2 has 2M Φ(f)
vertices and is multiplied by ζ. Since we are using the Φ(f) vertices to
carry our convergence factors, 7\ appears to have inadequate con-
vergence while T2 has more than we need. We use ζ to even things up.
If M = 0 we use ζ = its value in [3] = Co (they call it δ). If M Φ 0 we use

We keep track of the product of ζ/s accumulated by each term separately
and do not assign it to any vertex. We will show by induction on the
number of squarings that the accumulated product is ζ~M+n, This
is certainly true if the term has gone through no squarings since then
M = n. Suppose we have term T with M = Mτ and accumulated product
£-M T +« χ h e n t h e a c c u m u i a t e ( j p r o duct for 7\ is ζ-Mτ

= CΓMτ>+" while that for T2 is

ζ1

MT+nζ1

MT = ζ

With all the above modifications

\c(σ) T(σ)\ ^ contributions from Gh P, C, and W vertices

φ(f)
vertices

u
2ε

Γ *

Therefore
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and since nn < K\ n!

J. Feldman

«=o

The sum over n converges to some function of \f\δ which we again
Q.E.D.absorb in K5.

Appendix 1

An alternative, more natural translation operator 2Γ1 would multiply

wv
by Y[ eikt' thereby translating Δυ to Av — rv, i.e. the origin.

SeL(v)

However to use SΓγ in || | |2 we must also replace | | by H 1 . H 1 takes the
absolute value of the wr's. In other words, it takes the absolute value of
the kernel before rather than after the internal contractions are made.
If we use || \\tδA to represent the norms using H 1 and S'1 we have

The || II1 norms are the norms that are generally used in practice.

Appendix 2

We have used many estimates on one and two vertex graphs in
the proofs of theorems two, three and four. They are mostly simple
extensions of the estimates of [3] Section 6. One, however, is slightly
more difficult than usual and we give its proof here.

Theorem 6.
H.S. = tf 7< 1/40 where u is the smallest

upper cutoff of any of the three internal lines.

Proof

where μi = μ(ki).



The λφ* Field Theory in a Finite Volume 119

If we use k2,k3 and P = k2 + k3 + /c4 as integration variables then

-k2) if y< 1/4.

We split the k2 integration into three regions:

HΊ/2
j
o

= O(i)μ6y(P).

II: i |P | ^ |fc2| ^ 2|P| | P - /c2| ^ |P| + |/c2| ^ 3 | P |

) J μ-1+4y(P-k2)dk2

| | | |

\P-k\^\k2\/2

I
III

^ O ( 1 ) H 6 Ϊ if 6 y < l .

Performing the P integration gives (for some εx > 0)

IO-I ^ 0(1) u6yF{k, + k,)1-^ (μiμ5y
1 + y

+ O(i)(μ1μ5Γ
1 + y\dPF(k1+P)F(k5-P)μ(P)6y

where we have used [3] Proposition 6.1.5 a) to bound the first integral.
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Using a simple extension of [3] Corollary 6.1.7 with a,1 = α2 = — 3y and

since
2(/c) = (1 + fc(0)2) (1 + fe(1)2) (1 + /c ( 2 ) 2)

Ξ§ 0(1) M6

2

H.S.

if y<l/40. Q.E.D.

Corollary 6.1.

3,1

I would like to thank Professor Arthur M. Jaffe for suggesting this problem and
Professors Jaffe and Konrad Osterwalder for the many discussions I have had with them.
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