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Abstract. In the P(φ)2 model it is proved that the perturbation series for the infinite
volume Schwinger functions S(λ) are asymptotic in the limit as the coupling constant λ
goes to zero. We also give conditions which imply smoothness of S{λ) at arbitrary λ.

In formal quantum field theory the low order coefficients of the
perturbation series can be calculated exactly, and for quantum electro-
dynamics one obtains results which are in excellent agreement with
experiment. It is therefore an important task of constructive field theory
to establish the precise sense in which the perturbation series for a model
approximates the model itself. Since the sum of the series may be expected
to diverge in general [6], the best result to be hoped for is that the series
is asymptotic.

In this paper we obtain such a result for the P(φ)2 model. We consider
the imaginary time P(φ)2 Green's functions (Schwinger functions) as
defined below, and study their dependence on the coupling constant
λe [0, oo). It is proved that on an interval [0,/l0] including the origin
they are C00 functions of λ. As a result the perturbation expansion for
the Schwinger functions (i.e. Taylor's series around λ = 0) is asymptotic
in the limit λ->0+.

Nelson [9] and Osterwalder and Schrader [11] have established
general techniques for passing from imaginary time to real time. It
remains to show that the smoothness in λ is preserved under this analytic
continuation. In particular one would like to know that the perturbation
series for the real time Green's functions are asymptotic. The LSZ
reduction formula [5] connects these Green's functions with the S-matrix,
which is known to exist for small λ by the Haag-Ruelle theory [7] and
results of Glimm, Jaffe, and Spencer on particle structure [2]. Since the
series are non-trivial, one could conclude that scattering is non-trivial
for the model, once the appropriate asymptotic property was established.
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A P(φ)2 model is determined by a lower semi-bounded polynomial
0> and a bare mass m0 > 0, as well as the coupling constant λ ^ 0. The
Hamiltonian for the theory is formally Hλ = Ho + λ j : 0>{φ{x)) \d1x-Eλ

where Ho is the free Hamiltonian for mass m0, φ(x) is the time zero field
operator, and Eλ is the (infinite) vacuum energy for the vacuum vector Ωλ.
Imaginary time fields are given formally by φλ(t,x) = e~Hλtφ(x)eHλt

(instead of the usual eιHλt φ(x)e~ιHλt) and the Schwinger functions are the
vacuum expectation values of time ordered products of these fields:

It is convenient to use an alternate representation in which the
Schwinger functions are realized as the moments of certain probability
measures [9,14]. For no interaction we consider the probability space
{Q, Σ, dq} where Q = £f'(R2) is the nuclear space of real-valued tempered
distributions, Σ is the σ-algebra of measurable sets generated by
coordinate functions in 9"{R}\ and dq is the Gaussian measure with
mean zero and covariance ( — A +ml)~ι. The interaction is introduced
into a bounded region ΛcR2 by the function VΛ(q)= j :0>(q(x)):d2x.

Standard estimates (see for example [1]) show that VΛ and exp( — λVΛ)
- (λ ̂  0) are well-defined functions in Lp(Q, dq) for p < oo, and one may
consider integrals with respect to the measure exp( — λVΛ)dq. We use
the notation

Let / be a function of the form / = ®nfi with f{ e C$(R2) and define an
associated function on Q by F(q)= J | <<?,//>. Then FeLp(Q,dq) for

i

p < o o , and cutoff Schwinger functions are defined as distributions by
S^(λj/) = <^)λ,yi Infinite volume Schwinger functions are defined by
S(λ,/) = <F> λ j 0 0 = lim <F>A Λ when the limit exists. The limit is known

Λ—* oo

to exist if λjm% is sufficiently small (Glimm, Jaffe, and Spencer [2,3])
or if SP is an even polynomial (Nelson, 1973 Erice lectures).

More generally we consider functions in Lp(Q, dq) of the form

Ϊ = 1

with kernels wt which are bounded, measurable, and have compact
support. Both F and VΛ are made up of terms of this form. We define the
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localization of ψ in R2 by J2?(tp)= (J suppWi. If E is a Euclidean trans-
ΐ

formation in R2 (translation, rotation, reflection), then a transformed
function ψE is defined by replacing wt by w ^ E " 1 . In particular ψx

denotes translation by xeR2 and ψRs denotes reflection through the
line t = s.

Suppose that / C [0, oo) is a finite closed interval such that the
following properties are satisfied by the integrals (ψ}λiΛ, λel.

A. Uniform boundedness. For any ψ there exists a constant Mψ such
that sup |<φ> A J ^ Mφ for all A

λel

B. Uniform convergence. For any φ,

p\<Ψ>λ,Λ<Ψ>λ,Λ\ as
λel

C. Uniform cluster property. There exists a constant m^ and for any
ψ, ψ' a constant Mψtψ> such that

sup Kv', Ψx>λtA - W>X,Λ <Ψx>λJ ^ Mψψ,e-m*M

for all x e R2 and all A.
In this case we say that / is regular (for the particular ^ , m0). Con-

ditions A and B imply the existence of a Euclidean invariant functional
<^>A,OO which satisfies sup|<φ>λ > 0 0 | ̂ Mψ and sup|<φ>A > o o-<v>>λ f y l |->0

λel λel

as dist(O, ~Λ)->oo. Then C also holds for < >A>00 because of the uni-
formity in Λ.

The most general result is the following.

Theorem I. (ψyλ>00 is infinitely differentiable on a regular interval,
one-sided derivatives taken at the endpoίnts.

The proof of this theorem is given in Lemma 1 through Lemma 5 to
follow. We remark that the theorem and proof have straightforward
generalizations to theories with several coupling constants.

The phenomenon of uniform exponential cluster properties implying
smoothness of the Λf-point functions in the defining parameters also
occurs in classical statistical mechanics, see Lebowitz [8]. Simon and
Griffiths [13] make some use of this mechanism in their study of the
(φ4)2 model as an Ising spin system. By general analogy with statistical
mechanics there may be critical points in some P(φ)2 models where the
cluster property fails. This does not happen for λ small however, for we
have the following key result of Glimm, Jaffe, and Spencer [2,3].

Theorem II. For any (^, ra0), the interval [0, λo~\ is regular if λ0 is
sufficiently small.
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The convergence and cluster property are proved in [2, 3]. The
uniformity in λ is not explicit, but follows by the same proof. Now we
come to the main result.

Theorem III. S(λ,f) is C00 on [0,λ0] for λ0 sufficiently small The
derivatives at zero sr(f) = (Dλ)

r S(λ,f)\λ=0 are the coefficients of an
asymptotic series for S(λ,f); i.e. for each JV,

μi-JV S(λ,f)- Σ λrsr(f)/r\ >0 as

Proof. The C00 property is immediate from Theorem I and Theorem II.
Then Taylor's theorem is used to dominate the Nth order difference
quotient above by

λ sup \DN

λ

 + 1S(λ'J)\
(N+l)

and the convergence follows. |
We eventually identify the coefficients sr(f) with the usual perturba-

tion series. We remark that quite a bit is known about asymptotic series
for cutoff P(φ)2 theories [12].

We now begin the proof of Theorem I. Hereafter we assume that
(^, m0, /) are fixed and that / is regular. For A we take rectangles

Λ-.τ,iX;<f={(t,x)eR2: - τ / < ί < τ , - / < * < / }

and set Λτ^ = Λ-τtτ.^ and A€ = A£J. The associated integrals are denoted
A. _τ/ τ.<f, etc. If A j is a unit square centered on j e Z2, then for i e Z 1 + \

' , = ^ = Σ VΛj.

Lemma 1. (ψ}λiOO is continuously differentiable on I and

Proof. In general let <φi,φ 2> τ = <φ1φ2> - <v?i> <ψ2> For / < oo,
it is straightforward to show that (ψ}λ>j is C1 and that

j

By condition B we have sup|<tp, VA^)\j— <y>, VΔj}ltOO\->0 as /-^oo,

and by C, sup|<φ, VΔ }l,\<.&(e~mM) uniformly in /^oo. Therefore
λel J '

Σ ^ Ki )ί,oo i s uniformly convergent on / and as /->oo we have by
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dominated convergence

sup Dλ(wyλ p—i—i) y (w. vΛy{ m
λel j

ύ Σ SUP Zθ'e At) <ψ, VA.)lf-(ψ, VAj}l

- • 0 .

The uniform convergence of Dλ<φ>2><f on / implies that <φ>λ ) 0 0 is C 1 on /

>
j

Before proceeding we review some of the probabilistic aspects of
{β, Σ, dq} as formulated by Nelson [9,10]. For h e ̂ (R2) define
Φ(h)(q) = (q,h}. The map h^Φ(h) extends to a continuous map from
the Sobolev space #_ ̂ R2) = {he £f\R2): f \h(k)\2 {k2 + mg)~x dk < oo}
into Lp(Q,dq) for all p<oo. Then the functions Φ{h\ heH_l9 form a
Gaussian process indexed by H_x with mean zero and covariance
(-A +rnl)~1. For ΘcR2, let ΣΘ be the smallest σ-algebra with respect
to which all functions Φ(h) with supphc Θ are measurable. Let δΘ be the
conditional expectation with respect to ΣΘ, the projection onto
L2(Q,Σ&,dq). The Markov property is the statement that

for & open. By Σ{ab), Σt we denote the σ-algebras associated with
(α, b)xRx and txR1 respectively. There is a natural unitary map Ut

from the Fock space ^(^(R1)) to L2(Q,Σt,dq) which takes the free
vacuum Ωo to 1 and the field operator φ(f) to multiplication by Φ(f (x) δt).

e

Let Hj(X) = H0+ J \0>(φ{x)):d1x be the cutoff Hamiltonian on

Fock space with vacuum vector Ω^(λ) and vacuum energy Ee(X). The
associated semi-group can be represented by Qxp(-(b-a)H^λ))
= UJΪ&bexp(-λVatb;,)Ua [4]. Using this identity and the Markov
property, integrals over Q can be represented on Fock space. If
θeL2(Q,Σ{bi(X)),dq) and 6>'eL2(<2,Z (_^dq\ then for -τ^a^b^τ
we have

_τ;,) (2)

where

Z τ > / = ί e x p ( -
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Let H,(λ) = H'ό(λ) - Eg(X) so that H,(λ) Ω,(λ) = 0. The cluster property
C implies that H^(λ) has no spectrum in (0, m j for all {< oo and λel,
i.e. there is a uniform mass gap [3]. Here we reverse the argument and
use the uniform mass gap to determine the constant Mψψ, in the infinite
volume cluster property. The proof that follows would be easier to
carry out without reference to the cutoff theory, once one has enough
structure (e.g. measure, Markov property) in the infinite volume limit.
Such information is not known in general, and so to keep the assumptions
minimal we use cutoffs.

Lemma 2. Let λel and suppose J£(ψ) and JS?(y/) can be separated
by a strip of width d. Then

Proof. Because of the Euclidean in variance it is sufficient to assume
that the strip is [ - ^ O j x K 1 and that J5f(φ')C(-oo, - ^ x R 1 and
i?(vOC(0, ooJxΛ1. Then ψeL2(Q,Σ(θQO),dq) etc., and suppressing λ
we have by (2):

^ψX^Z-^ψo^e-^ψ'^J

ψLd^τ.J.

We now take the limit τ-+oo. Since (Ωo, Ω^)4=0 and Ωύ is a simple
eigenvector of He, we have e~xH( Ω0-*(Ωf, Ω0)Ω^ and hence
Z~f}

12e~tH>iΩQ-^Ω€, By time reversal invariance Ψo,τj = (ψR0)o,-τ
thus

117—1/2-7, 7-1/2-, 112

= <ψR0Ψ>τfί+<ψR0Ψ>x',',ί

As τ, τ'-> 00 the product of Z's converges to one, and by condition B each
factor {ψRoψ}τ^, etc. converges to the same limit (JPR0Ψ}OO,^' Thus the
above expression converges to zero, and so Z~J/2ψ0>τ;<f converges to a
limit Ψf. Similarly we obtain || Ψ€\ = (SpR0y>yll2t' Repeating the argument
gives that Z~Jt2,ψ'-dt-.τ;t has a limit Ψj with norm {ψR_dψ

fyU2^
Finally using Z;J/2ZlL\^edE* and Z'JZ^Z^^ί we obtain
the convergence of the right side of (3).

If Pe is the projection onto Ωj, then by the mass gap,
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Again by condition B it is straightforward to show O o o . ^ O o o a s

/-•oo, and this proves the lemma. In the last step we use KφΛip>ool
^ <M2>oo j this follows by the Schwarz inequality (which is easily proved
by limits) and the Euclidean invariance. |

Corollary. Given ψί9...9ψN and ψ'l9...9 xp'M there exists a constant K
such that for all xi9 yj e R2 and d^O

T

v (ίx \ -ίv 1̂  "C RΓp~m*d

λ,00

where χd{{Xi}9 {yj}) equals one if [j xt and (J y3 can be separated by a strip
i j

of width d9 and equals zero otherwise.

sup
λ e l

/ N

(Πv,.
M

*, π
7 = 1

Proof Choose ρ so that JSf(y>λ i?(v>})C {xeR2: | x |^ρ} . Then the
above expression can be dominated by

λ,oo

2\ 1/2

λ, 00

y-m*(d-2ρ)

For d>2ρ this follows from the Lemma, and for d^2ρ from the Schwarz
inequality. Continuing to apply the Schwarz inequality and using transla-
tion invariance gives bounds which are independent of {xj, {yj}. |

Truncated JV-point functions (xpu ..., ψN}τ are defined by <τp>Γ =
for N = 1, and then inductively by

where /7N is the set of all partitions of the set (1, . . . , N). By a standard
argument we now pass from the cluster property of the corollary to the
decay of the general JV-point function, c.f. [5].

Lemma 3. Given ψl9 ...9ιpN there exists a constant K such that for
all x u ...,Xjy6 R2

λel

where δ{x1,...,xN) = sup \xt — x | is the diameter of the set {xj.

Proof. It is sufficient to prove that for any proper subset σ of (1, . . . , N)

l - n * d ( 4 )
λel

where xσ = {Xi}ieσ.
The Lemma then follows by restricting to the submanifold

d = δ(x1,...,xN)/N and summing over σ. Here we use 1 ̂  Σfow/tfC**' x~σλ
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that is for any x = (xί9 ...,xN) there exists a partition (σ, ~σ\ such that
(J Xi and [j xt can be separated by a strip of width δ(xu...,xN)/N.
ieσ ie~σ

This follows by a simple geometric argument ([5], p. 176).
The proof of (4) is by induction on JV. Suppose it has been established

for 1,..., JV — 1. In the definition of the truncated JV-point function we
break the sum over ΠN into partitions which are finer than (σ, ~σ),
denoted ΠN(σ\ and those which are not, denoted ~ΠN(σ). The sum
over ΠN(σ) may be identified with / Π ^ u Λ / Π V ,̂χΛ a n c * s o

\ / λ, oo \ie~σ / A, oo

^ sup
λeJ i = l A, oo . A, oo

p e π

Multiplying by χd(xσ, x^σ) the first term is 0(e~m*d) by the Corollary.
In the second term for each π in ~ ϋ ^ σ ) there is a p* 6 π such that
p * n σ + 0 and p * n ^ σ φ 0 (since otherwise neΠΉ(σ)). Then by the
induction hypothesis the expression

λel

is also Θ(e~m*d) once we note that χd(xσ9x~σ)^χd(xσnp>9x~σnir)
The remaining terms in the product over π are bounded by constants

and so (4) is proved. |

Lemma4. For λel

E>λ<Ψl> " . , V>JV>Ifoo = - Σ < ^ 1 ' •• » Ψ N > ^ > I , O O
j

Proof. Note that the sum converges (uniformly on /) by the previous
lemma. The proof of differentiability is by induction on JV. The case
JV= 1 was proved in Lemma 1, and we now assume the lemma is true
for 1,..., JV — 1. Returning to the definition of the truncated function we
have

+ Σ Σ <{ψthep>U].
p'eπ pen

Comparing the terms in the brackets with the definition of
— <φ 1 ? ...,ψN9 VΔj)l9θ0 we obtain equality by identifying our second term
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with the sum over {π e ΠN+1: {N + 1} e π} and our third term with the
sum over {π e ΠN+ x : {N + 1} φ π}. |

Lemma 5. <φ>λ>Q0 is C00 on / and

αo=(-l)Γ Σ < ^ V . . . , ^ > ί , o o .

Proof. The sums converge uniformly on / by Lemma 3 since

<5(0,j1? . . . , j r )= —(1/iH ~ 1/VI) The result then follows by repeatedly

applying Lemma 4. In each case the infinite series can be differentiated
term by term because of the uniform convergence of the resulting series.
This proves the lemma and Theorem I. |

Final Remark. The derivatives may also be expressed as

Then since Oo.oo = <*>o = j" [•] dq, the coefficients of the perturbation
series are given by s Γ (/)= l i m ( - l) r <F, F Λ ..., F^>J. These Gaussian

integrals can be evaluated and the results expressed as a sum over
connected Feynman diagrams (see [1], for example). Thus we identify
the usual perturbation series.
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