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Abstract. Global methods of the calculus of variations and the infinite dimensional
critical point theories of Morse and Ljusternik are applied to investigate the structure of
the equilibrium states of thin flexible elastic plates under general body forces. The arguments
used are equally applicable to broad classes of physical systems governed by nonlinear
elliptic partial differential equations.

In this paper we take up the problem of determining the global
structure of the equilibrium states of a thin elastic plate (of arbitrary
shape) under the action of quite general body forces. We assume through-
out that the deformations are governed by the well-known (nonlinear)
von Karman equations, and we use a number of new and far-reaching
ideas in the calculus of variations in the large to study the global structure
of the solutions of these equations. Actually the von Karman equations
have a particularly interesting Hamiltonian structure, so that one of the
main purposes of this paper is the determination of the theoretical
implications of this structure.

In papers [1] and [2], the author (together with Fife) applied some
results from the calculus of variations in the large to study the buckling
of a thin elastic plate under rather general edge conditions. In this paper
we take up the general problem of studying the combined buckling-
bending problem. Previous determinations of the structure of the
resulting equilibrium states have been primarily restricted to rather local
considerations (for example [3]). By studying the qualitative features
of the nonlinear operator associated with the von Karman equations,
we are able to obtain global results on the structure of the equilibrium
states that perhaps explain some of the complicated phenomena
observed experimentally.

Our paper is organized as follows: In Section I we formulate the
mathematical problem to be considered and review the basic information
concerning this problem already established in our earlier papers. In
Section II we investigate those qualitative features of the von Karman
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equations that will be used in the sequel. Section III is devoted to applying
these qualitative features to ascertain characteristics of the global
structure of the equilibrium states.

The von Karman equations have particularly beautiful mathematical
properties that make them well suited for the application of modern
critical point theory. Not only do these equations always admit a “stable”
solution under very general body forces, but one can give rather inter-
esting variational characterizations of other “unstable” solutions of the
equations. It can be conjectured that the various solutions found here
lie on continuous curves (in function space), and the sharp exchange of
stability observed in elastic deformations is caused by the transition of
absolute minima among these curves. In any case, it is clear that the
qualitative results obtained here are fundamental for the mathematical
understanding of the structure of stationary states of elastic deforma-
tions under general stress-strain laws.

Hopefully, the investigations of the present paper will also be of
interest in contemporary problems concerning symmetry breakdown
and dynamic instability of infinite dimensional (nonlinear) Hamiltonian
systems. Indeed, the present paper shows that such systems (in contrast
to large amplitude motions of viscous incompressible fluids) can be
treated globally by the methods of the calculus of variations in the large.

Section I. The Mathematical Formulation of the Problem

The physical problem to be discussed can be described as follows:
a flat, thin elastic plate of arbitrary shape is subjected to forces along
its edge as well as forces acting normal to the plane of the plate. The
problem is to determine the resulting equilibrium states of the deformed
plate, assuming the plate is subjected to general edge conditions as
described in [2]. If the plate is represented by a bounded region Q
in the plane, the resulting von Karman equations governing the equi-
librium states can be written in the form

A f=—[o o] (1a)
A o= AFy, 0] +[f,0]+p, (1b)

where 4% is the biharmonic operator and the quadratic form [f,g]
= fexyy + f3y9xx—2f<y9x,- The meaning of the variables f, w, Fy, 4
and p is easily explained. w(x, y) represents the deflection of the plate
from its flat unstressed position, f+ AF, is the Airy stress function
in the plate, whereas AF, is a given function representing the stress
function in the undeflected plate with p=0. Finally p represents the
given force acting normal to the plane of the plate. Of course the partial
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differential equations (1a,b) must be supplemented with boundary
conditions representing the edge conditions for the problem. To simply
the presentation here, we suppose these conditions are represented by the
equations w=w,=n,=0 (1c)
’ on 09Q.
f:fx=fy=0 (1d)
All the results presented, however, are valid under the more general
edge conditions of [2]. This follows directly from the theorems of [2],
since only qualitative properties of the Eqgs. (1a—d) are used in the
sequel. By a solution to system (1a—d) we mean a pair (f,w) which
satisfy the equations in Q and at all smooth portions of 0Q.
The basic facts from our previous work, to be used here, are
summarized in the following

Lemma A ([1,2]). The solutions (w, f) of system (1a—d) are identical
with the solutions of the following operator equation defined on the Hilbert
space H=W, ,(Q)

u+Cu—Ailu=g with w=u and f=—31Cu,u), )
where the operators Lu, C(u,v), and Cu are defined implicitly by the

Sformulae (Lum)= !2 [Fy. ]
(Cu,v),n)= [[w.vly and Cu=C(C(u,u),u)
)
(g.m= [pn.
Q

Furthermore, the operator L is a self-adjoint and compact mapping of H
into itself. The operator C is a real analytic, completely continuous,
gradient operator mapping H into itself, with the additional properties:
(1) Cu is homogeneous of degree 3;
(i) (Cu,uw)=|C(u, w)||>=0, and equals zero if and only if u=0; and
(iii) the form (C(u, v), w) is symmetric in u, v and w € H.

Lemma B. The solutions of the system (1a—d) are identical with the
critical points of the functional

F3u)=lu)* + 3 (Cu,u) — A(Lu, u) — 2(g, u). 3)

Proof. The result is an immediate consequence of Theorem 2.3 of [1].

Section II. Special Properties of the von Karman Equations

In this section we shall study some interesting special properties of
the operator A,u=u+ Cu— A Lu defined on H for fixed real A. In order
to describe the most important of these, we recall the notion of a proper
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mapping g between two metric spaces X and Y: The mapping g is said
to be proper if the inverse image of a compact set in Y is compact in X.

Theorem 1. For any fixed A€ (— 00, o), the mapping A,(u)=u+ Cu
— ALu, as defined in Lemma A, is a proper mapping of the Hilbert space H
into itself.

Proof. Let {g,} be any sequence in the range of 4,, so that 4,(u,) =g,
for some u, € H. It suffices to show that whenever {g,} converges to g,
some subsequence of {u,} converges in H. To establish this fact we take
the inner product of the equation A4,u, =g, with u, and write

(gm un) = (Aﬂ.un’ un) = (“n’ un) - }'(Lum un) + (Cun’ un)
= (un* un) - ’I(C(FO’ un)’ un) + (Cun’ un) (4)
= (un’ un) - ).(C(u,,, un)a FO) + ”C(un’ un)nz . (5)

Thus for any ¢ >0 and any finite fixed A
(Gns ) Z 111> — 121 & |1C s w,)1* = (141/8) (| Foll® + 1| Clt )12 -

Consequently setting ¢ = 1/|A| and using the Cauchy-Schwarz inequality,
we find 2%||F,)? + |lg,ll = llu,|l. Since |g,| is uniformly bounded, ||u,||
is also uniformly bounded, so that {u,} has a weakly convergent sub-

sequence 1 with
q () ,, + Ctt, — ALty =g, . ©6)

Finally the complete continuity of C and L obtained in Lemma A,
implies that the sequence {Cu, — Lu, } converges strongly in H. Hence
(6) implies that the sequence {u, } itself converges strongly in H. Thus the
operator 4, is a proper mapping.

Corollary. Any solution of the Eq. (2) satisfies the a priori estimate

Il <3 gl +1/ 2211 Foll* + % ligl* - ™

Proof. We argue as in the proof of Theorem 1. Suppose w —ALw
+ Cw =g. Then taking the inner product with w and using the Cauchy-
Schwarz inequality, we find

o) =124 (Clo, @), Fo)l + | Clw, )II> < lgll o]l -
Thus for any ¢ >0,
lw]? = 14] & | Cla, @)|I2 — (12/e) | Fo | * + | Cle, )| < ligll o]l -
Choosing ¢ = 1/|4|, we find
lwl?< gl llwl +A% | Foll? .

Consequently the estimate (7) holds.
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Theorem 2. For fixed real 1, the operator A ,u is a Fredholm mapping
of index zero; i.e. for eachu € H, the mapping A,(u) has a Frechet derivative
A, (u), and the linear operator A, (u) is a bounded linear Fredholm mapping
of index zero.

Proof. By Lemma A, the operator A,(u) is real analytic and con-
sequently differentiable of all orders. On the other hand, by [4], the
Frechet derivative of a completely continuous mapping is again com-
pletely continuous. Thus A,’(u) exists for all 1 and can be represented as
a compact self-adjoint perturbation of the identity. By [5], A,'(u) is thus
a linear bounded Fredholm mapping of index zero.

Theorem 3. For any fixed real A and any fixed g € H, the functional
defined by (3), -
Fiw) = |[ull* + 3 (Cu, u) — A(Lu, u) — 2(g, u) ,

is coercive (i.e. #,(u)— o0 as ||u]| = o0 ). Therefore #,(u) is bounded below
on H.

Proof. The proof proceeds almost exactly as in Theorem 1. Let {u,}
be a sequence in H with |u,|— co. Then, as in (4)—(5), for any ¢>0,

Fau) Z Nlu, |1 + 1 Cluy, u,)|* = |4 & 1| C 1ty )12 = (A/e) | Fo 1> — 2(g. uy)
2 [|u,[|* = 22 [ Foll* = 2llgal sl (for e=1/1]).

Therefore £, (u,)— o0 as |u,| — co.
The most important consequences of the properties expressed in
Theorems 1—3 are:

Theorem 4. Let S be the set {ulue H, A,'(u) is not an invertible linear
operator}, i.e. the bifurcation set. Then for fixed real A:

(i) A,(S) is a closed subset of H which is nowhere dense in H,;

(ii) For each ge(H — A,(S)), the equation A,(u)=g has at most a
finite number of solutions;

(ii)) The number of solutions of A,(u)=g for g in any component of
H — A,(S) is constant;

(iv) The functional %,(u) satisfies the Palais-Smale Condition C on
the Hilbert space H (i.e. if #,(u,)<M on H, and ,(u,)—0, then {u,} has
a convergent subsequence).

(v) The functional #,(u) satisfies the Morse inequalities [6, p. 338]
for g e (H — A4;(S)).

Proof. All the conclusions [except (iii)] follow from quite well-
known results in the mathematical literature.

(i) follows from the paper [11] of Smale and from Theorem 2.

(i) follows from the properness of the mapping A4,(u). Indeed, if the
equation A,(u)=g has an infinite number of solutions uy,u,,... for
ge(H — A,(S)), then the elements u, must have a limit point u that also
satisfies A,(u) =g. But since A,'(u) is an invertible linear operator, the
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Inverse Function Theorem implies that 4,(u) is a local homeomorphism
of a neighborhood U of u onto a neighborhood of g. This contradicts
the fact that the set 4, !(g) has infinite cardinality near #.

Property (iv) follows immediately from the properness of A,(u)
(i.e. Theorem 1). For g ¢ A,(S) all critical points of .#,(u) are necessarily
nondegenerate. Consequently the Morse inequalities of [6] hold, by
Theorem 3, since .£,(u) is bounded below and .#,;(u) can have only a
finite number of critical points of given Morse index [by virtue of (ii)].

Thus it remains to prove (iii). Let U be an open component of
H — A,(S), and let ye U. Setting N(z) = cardinality of 4, !(z), we let
g,—g for g,e U and show that N(g,)= N(g) for n sufficiently large.
To this end, observe that by (ii), N(y) is finite, and if the solutions of
A;(u)=g occur at uy,u,,...,u,, then [since g¢ 4,(S)] the Inverse
Function Theorem implies that for n sufficiently large the equation
A,(u)=g, has a unique solution u,*” near u; for each i (i=1,...,k). On
the other hand, if Q(u;) are sufficiently small neighborhoods of u;
(i=1,...,k), the equation A,(u)=g will have no solutions on U,=U

k

— | Q(uy). Thus the slightly perturbed equation, 4;(u)—(g9,—9g)=4,
i=1

will also have no solutions on U, [i.e. A4,(u)=g, will have no solutions

on U,]. Hence N(y) is continuous at all points of U. Since N(y) is also

integer-valued, N(y) must be constant on U, as required.

Section III. Global Properties of Equilibrium States

Here we study the properties of the solutions of the system (1a—d)
as a function of the real numbers A and |g|, by using the results of
Section II. It is very useful to relate the solutions of (2) to the spectrum
of the operator L defined in Lemma A. Indeed, we denote by {4} the
real numbers A; at which the linear operator I — AL is not invertible.
By known results of linear self-adjoint spectral theory [5], the com-
pactness of L implies that |A]—c0 as j—oco, and for example, if the
force acting on the edge of the plate is purely compressive, we may
suppose that 1;> 0. In general we order the numbers {4;} in such a way
that (i) {4} = {4, }u {4, }with--- 4,7 4,7 20<4, =47 =47 =

The first general result we prove is

Theorem S. For any values of A and g:
(i) The system (1a—d) always possesses a solution (i, f) that renders

the functional #,(u) an absolute minimum;

(i) Any solution will satisfy the a priori bound (7);

(iii) For fixed A <A, and |g|l accordingly small (but nonzero) the
minimizing solution of (i) is unique;

(iv) If the system admits 2 isolated absolute or relative minima, then
the system will always possess a third distinct solution.
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Proof. (i) There are various proofs possible for this result. Perhaps
the simplest is the observation that clearly the function .#;(u) is lower
semi-continuous with respect to weak convergence in H. (This follows
immediately for [7, pp. 110—112].) By Theorem 3, inf,.#,(u) =a > — c0.
Consequently by Theorem 3 again, any minimizing sequence {u,} in H
has a weakly convergent subsequence, which we again denote by {u,},
with weak limit u. Thus #,(4) = « and % is the desired solution of (2) since
J,(u) is differentiable.

(i) This is an immediate consequence of the Corollary of Section II.

(i) If A<4,, and @ satisfies (2), the Inverse Function Theorem
applied to the operator f(w)=w+ Cw — ALw implies that f is a local
homeomorphism near w =0, since f'(0)=I— AL is invertible. Thus,
since f(0)=0 for [g| sufficiently small, (2) has a unique solution # near
® =0. On the other hand, taking the inner product of (2) with @, we find
that since (I — AL)w, w) 2 k|w||?,

killol*= gl ol .

Thus |w|| <k, '|g|l, and consequently choosing ||g| sufficiently small
(but positive relative to k;), any solution of (2) must lie in a domain of
uniqueness for f.

(iv) To establish the existence of a third critical point, we observe
that by Theorem 4 (iv), .#,(u) satisfies the Palais-Smale Condition C
on H. On the other hand, Theorem 4 implies that .#,(u) is bounded below
on H. Thus (iv) follows by [8, p. 396], if the given absolute minima are
nondegenerate critical points. In the general case the results follow from
relatively standard arguments, as in [9], or [7, pp. 59—62].

For “generic” values of g the following holds.

Theorem 6. For fixed A, and almost all values of g (i.e. g¢ A,(S)),
the number of solutions of (1a—d) will be a finite integer. Moreover, for
such values of g, the following Morse inequalities hold for these solutions.
Let M; be the number of critical points of Morse index i for %,(u), then

My=1
%1”ﬂ02‘1
,ﬂz—‘%1+%og1 (8)

k
(=0 "y z (= 1)
m=0

Y (=, =1
m=0
Proof. 1f g¢ A,(S), there can be at most a finite number of solutions
for (2), since the mapping A,(u) is proper (Theorem 1) and the a priori
bound of the Corollary holds. Indeed, otherwise some neighborhood
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of a solution % would contain an infinite number of solutions so that
g € A,(S), contrary to hypothesis. The validity of the Morse inequalities
follows immediately from [6], since the functional .#,(u) is bounded from
below (Theorem 4) and satisfies the Palais-Smale Condition C on H.
Indeed, the relevant Betti numbers R; of .#°={u|#,(u)<b} (for b
chosen so large that all critical points of .#,(u) lie in .#”) are one if i =0
and zero otherwise.

Remark. Even if g e A(S), it is conjectured that a slight perturbation
of Q will cause g to be a nonsingular value for the slightly perturbed
domain.

We now give a somewhat more precise result in case g =0, that does
not require that 0e (H — A4,(9)).

Theorem 7. For Ae(4,, 2,1 or A€, As1 1, and g=0 the
system (1a—d) has at least n pairs of distinct nontrivial solutions (4 u,(4)).
These solutions are characterized by the variational principle (11) defined
below.

Proof. We consider the functional .#,(u) with g =0 defined over H.
For either A>A;% or A<~

Co= in}flfl(u) <0. )

Indeed, if u, is a normalized eigenvector associated with A, * or 4,7,
then for sufficiently small positive c,

co<f1(cu1)=c2( l)||u1u2+%c4<0u1,u1)<0. (10)

=7

Thus (by Theorem 5), ¢, is a critical value corresponding to nontrivial
(i.e. u;(4) £0) critical points +u,(4). For larger values of [A|, topological
generalizations of the critical point ¢, seem to be required to obtain
further solutions.

Thus we shall follow an argument due to Clark [10]. Let the class
of closed sets of ¥ = H — {0} symmetric about the origin be denoted by
S(2). Then, the genus of A € S(), g(4) =1 + cat(4, X), where cat(4, 2/Z,)
denotes the Ljusternik-Schnirelmann category of the A (4 with anti-
podal points identified) relative to 2 (X with antipodal points identified).
Then the arguments of [10] together with Theorem 4 show that the
numbers

e, =c,(F,w)= inf supSu ®=012,..), (11)

g(A)Zzn+1 ued

if finite and strictly negative, are critical values for #;(u); and that the
associated critical points on X can be chosen as distinct. Clearly by
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Theorem 3, and (10), —0o<c¢y=<c;=c,<---. Thus to establish the
desired result we need only show that, for A e (4,*, 4,1 1or (4, , Aps 1 1,
the numbers ¢, ¢,, ..., ¢,_ are strictly negative. To this end, we argue as
in [10]. Let 4, be the closed linear subspace formed from the eigen-
vectors (u; 5, u,*, ..., u,) of L (with zero deleted), and let S,° denote
the sphere of radius ¢ in 4, or 4,”. Then g(S,°)=n+ 1, and for suffi-
ciently small ¢ and normalized @ € S,, there is a constant (/) <0 such

that (I — AL)u, %) < B(4) |[#]*. Hence
¢, < Sy(cu) = Sup {=c2B) I[ull* + 5 c*(Cu, )}
ul|=1
<0 (as required).

Consequently, the desired result is established.

An Example. Consider a thin circular clamped plate acted on by a
uniform compressive force of magnitude A along its edge. As is well-
known, for A< 41, (the lowest eigenvalue of the associated linearized
problem) the plate does not deform out of its plane, while for A > 1, the
plate does “buckle”. For A slightly larger than A; this deformation is
observed to be radially symmetric. However as A is increased still further
the non-planar radially symmetric equilibrium state (while continuing
to exist) itself loses stability to a new asymmetric equilibrium state.
This situation is discussed in Yanowitch [12], and demonstrates the
physical importance of the multiple equilibrium states shown to exist
in Theorem 7. Indeed, it seems likely that the critical points found in
Theorem 7 are the “continuations” of the solutions bifurcating from the
eigenvalues 4, of the linearized problem (about the planar equilibrium
state).

Similarly if the plate is subjected to a uniformly distributed normal
force of magnitude u (but no edge forces), then it is again shown in [12]
(for suitable edge conditions) that for sufficiently small g, the stable
deformation will be radially symmetric. On the other hand, as u increases,
while continuing to exist, the unique radially symmetric equilibrium
state loses stability to an asymmetric equilibrium state. (Here stable
means that the second variation of #,(u) is positive definite at the given
equilibrium state.)

Corollary. Suppose 0 e (H — A;(S)), then the conclusions of Theorem 7
hold also for nonzero g, provided | g| is sufficiently small.

Proof. 1f 0¢ A,(S), then by Theorem 4 (iii), the number of solutions
of the equation A4,(u)=g is constant in the component C of H — A4,(S)
containing 0. Since C contains an open ball about 0, the Corollary
follows provided g is contained in this ball.
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Remark. In conclusion we note that the results of [1, 2] explored the
structure of the equilibrium states (w, f) of (1a—d) with g =0 and with
fixed norm, but without regard to 1. In contrast, here, we have fixed 1
and g and investigated the solutions (w, f) of (1a—d) without regard to
their norm. The exact relationship between these approaches seems
difficult to determine. We conjecture that if g =0 the solutions (w,, f;, A)
bifurcating from (0, 0, A¥) define smooth curves with ||w, |2+ || f2|>—
as |A| = co. Such behavior is consistent with all the facts so far known
about the solutions of the von Karman equations, and would explain
the relationship between the two approaches to the study of equilibrium
states.
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