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Abstract. We study the time evolution of a quantum field under a Hamiltonian con-
structed in an earlier paper by taking the limit as n — oc of a Dicke maser model Hamiltonian
for n radiating atoms. We show that the radiation field converges to a dynamic equilibrium
state independent of its initial state and that the strength of the field is inversely propor-
tional to the square of the distance from the source. A number of variations of the Hamil-
tonian are also considered.

1. Definition of the Hamiltonian

In an earlier paper [2] we studied the limit as n— oo of a sequence of
Dicke maser model Hamiltonians H, on the spaces

@Ce7 (1.1)

where # is a Boson Fock space. The Hamiltonian H, describes a simple
interaction between n 2-level atoms and a quantum field with an infinite
number of degrees of freedom. The limiting Hamiltonian H was
realised on

PIYQF ~L*{(—mn.n),F). (1.2)

In this paper we study the time evolution for the limiting Hamiltonian.
This is done in substantially greater generality than is required for the
development of [2]. The reason for this is that we wish to be able to
treat a number of variations of the maser model — for example the case
of multi-level atoms with a number of different emission modes.

We start by describing the quantum field in terms of a representation
of the canonical commutation relations. We take a complex test function
space D dense in the single particle Hilbert space D™ ; D is supposed to be
a complete locally convex topological linear space under a topology
stronger than the Hilbert space topology. The single particle Hamiltonian
S is supposed to be essentially self-adjoint on D and the unitary group
¢'S' is supposed to leave D invariant and to be jointly continuous from
IR x D to D. The quantum field is defined on a Hilbert space .# by a
representation of the C.C.R’s on #". For each fe D there is a unitary
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operator W(f) on # such that

W(f)W(g)=W(f+g)explilm{f,g>/2]. (1.3)
The self-adjoint field @( f) is then defined by
W(f)=exp[io(f)]. (1.4)

The representation is supposed to be cyclic with cyclic vector Qe
and so is determined through the Gelfand-Segal construction by the
functional

Eo(f)=<W(f)Q.2). (1.5)
We supposed that for all fe D and teR
Eo(e¥'f)=Eo(f). (1.6)

Then by [4, 8] there is a self-adjoint operator, the free Hamiltonian H,,
on % such that

eiHol ) — O (1.7)
SHO W (f) e Hot = W (&St ) (1.8)

and

for all fe D and t e R. We remark that the above assumptions generalise
[2] where we only considered the Fock space representation of the
C.CRs.

We describe the Hilbert space which is supposed to represent the
collective behaviour of the infinite system of atoms. We let X be a com-
pact metric space with a specified probability measure dx. We also
suppose that G, is a topological group acting jointly continuously on X
and leaving the probability measure invariant. G, represents the sym-
metries of the system including its time evolution, and has a unitary
representation on the Hilbert space 1?(X) defined by

(go) (x) = p(xg) (1.9)

for all @ € I*(X). We suppose that we are given a finite-dimensional
linear space V of complex continuous functions on X such that V is
invariant under G, and contains the function 1. We let

Y:Re{lz T o fle V} (1.10)

so that Y is a finite dimensional linear space of real continuous function on
X invariant under the action of G,. The above assumptions generalise
the situation of [2] where X =[0,2x] and G, was the group of rotations
of X. In [2] the subspace V' was not explicitly mentioned but it was in fact

V={ff(0):a+be" for some a,beC}. (1.11)
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The Hilbert space of the composite system is taken to be the space
[*(X, #) of A -valued square integrable functions on X. The time
evolution of the system is defined by first introducing a certain infinite-
dimensional group of unitary operators on L*(X, ) as in [2].

Theorem 1.1. The formula
(Uy0) (x) =€ W(Z v,(x) f,-) e ot {gp(xg)} (1.12)

P

where
h={y,Zv, f..t.g} € Yx(V®D) xR x G, (1.13)
and @ € L*(X, X'), defines a group G of unitary operators on L*(X, X').
Proof. Itis obvious that U, is a unitary operator. If h, h’ € G then
(U, Uy ) (x)
= e W(Z v,(x) f,-) e 1 {(U, 9) (xg)}

\ ¥

= WS ) ] WS ) )¢ gt

=eiy«x>+i<yy’)<x)W{Zvr(x)fl} W{eﬂS[Z(gU;)(X)fs’} .e—iHo(t+t’){(p(xgg')}
:wppuwdwwurwhqzmuwwmm<Nf”%%} (1.14)

rs

WIZ 00 S+ Llgv) (9”1

S e M p(xgg)}

which is of the required form.
The expression for the multiplier (in the exp bracket) is very com-
plicated, but it fortunately turns out not to be important. We point out

that the group contains two subgroups corresponding to symmetries of
the atomic system

(Uy @) (x) =" p(xg) (1.15)
and symmetries of the quantum field
(Upyp) (x)=W{f} el p(x). (1.16)

The total Hamiltonian of the system is defined as in [2] by selecting a
one-parameter subgroup of G. We suppose that there is given a one-
parameter subgroup of G, representing the time evolution of the
system of atoms in the absence of any interaction with the field.

Theorem 1.2. The formula
(Vi) (x) = e O W {f(x. 1)} e~ o' {p(x1)} (1.17)
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where @ € L*(X, A") and t € R, defines a one-parameter unitary group on
LX(X, A°)if and only if f.« satisfy the cocycle equations

flx, s+t =f(x,s)+e Sf(xs,1) (1.18)
and

o(x,s+ 1) = o(x,8) +a(xs.t) +iImd{ f(x.s), e 5 f(xs, £)>/2 mod2m . (1.19)
All solutions of these equations satisfy
f(x,00=0, «a(x,0)=0. (1.20)
Proof. See [2].

The construction of all solutions of the cocycle equations seems a
difficult problem but an important class of these are given in the following
theorem.

Theorem 1.3. Suppose g: X —D and : X —R are continuous func-
tions. Then the formulae

f(x,8)= f e Stg(xu)du (1.21)
u=0
and
S 1 S u . .
ax, )= | Plxu)du+ 5 [ [ Im{e Sg(xv), e SUg(xu)ddvdu(1.22)
u=0 u=01=0
define continuous cocycles with the properties
o
N f(x.8)]s=0 =9(x) (1.23)
s
and :
Lalx)lmo =) (1.24)
s

Proof. See [2].

We are interested particularly in cocycles taking values in ¥V ® D, and
to describe these we need some further definitions. Since V is invariant
under the action of G, and hence of its one parameter subgroup IR, there
is a finite orthonormal basis v, ..., v, of V and constants w,, ..., ,€R
such that

v,(xt)=e"“r"v,(x) (1.25)

for all xe X and t e R.

Theorem 1.4. If ¢,. ..., g, € D then the equations

M=

fx.)=

r

t
v(x) | e 'STeMg du (1.26)

1 u=0
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and

t u
)= 43 Im { AR | ] elenmemdeistg, om St ydudu
¥, u=01=0 127)
define continuous cocycles.

Proof. This is obtained by substituting into Theorem 1.3 the choices
=0 and

9= Y 1), (1.28)

To summarise, we have shown that given g, ..., g, € D there is a strongly
continuous one parameter unitary group V, defined on L*(X,.#") by
Egs. (1.17), (1.26) and (1.27). The Hamiltonian H is then defined as the
self-adjoint operator such that V,=e¢ ‘' in the usual sense. It may be
shown that the Hamiltonian is given explicitly by

-

.0

(Ho)(x)=Hy{p(x)} — Z P{0,(x)g QX)) +1--0(x1)];o (1.29)
r=1

This formal equation may be given a precise sense as in [2], but we shall

not do this as we shall be working with the unitary group V,, which is

already rigorously defined.

2. Convergence to Equilibrium of the Field

We now move on to a description of the evolution of the field for the
Hamiltonian H defined in the last section, and in particular the behaviour
in the limit r— oo. There are three conditions of great importance which
we shall use.

(i) For all f,ge D

lim (e 5'f.g>=0. (2.1)
Moreover forallr=1,....n
lim [ Ce™ 'S f g du (2.2)
t— o0 0

exists and is finite.
(ii) The representation W has the asymptotic product decomposition
property; in other words for allf.ge D

lim Eo(f +e "'g)=Eo(f) Eo(g) - (2.3)

t—

(iti) The action of R on X is ergodic.
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Theorem 2.1. Suppose conditions (1) and (i) are satisfied. If
V1., € [X(X, A) are invariant under the action of R on X then

lim (W(f)e My, e My
[ande s}

(2.4)
:Eo(f)<w1,wz>_s"exp[-ilm(2 x)(p(f)
where X ) -
¢.(f)=lim [ (e ey, f du. (2.5)

0

Proof. By the linearity with respect to y and ' and the assumption
that Q is a cyclic vector for the representation of the C.C.R.’s we only need
to prove this for the case

wi(x) = Ai(x) Wig,) Q2 (2.6)

where 4, 4, are arbitrary continuous functions on X and ¢,,g, are
arbitrary elements of D. With these choices

<W(f) eiH[UJu eﬂHIUJz>
= [{W(f) eSO W{f(x,0)} e” oA (xt) W(g,) Q,

X

e O W f(x. 1)} e” o), (xt) W(g,) Q) dx

= [ L(x) L) KW () W{Sf (x, 08 Wie g, 3@, (27)

X
W{f(x.0)} W{e S'g,} Q) dx
= F(t) | 2,(xt) Z,(xt) exp[i Im{ f, f (x, 1)>] dx
X
where
Fiy=<{W(f) W{e g} Q. W{e g} Q)
=exp[—iIlm{e gy, f+e g, /2
+ilm{f, eqlS!gl>/2] : Eo(f*‘ekiStgi ~‘e"isrgz)
=exp[—iIm<g,.9,>/21 Eo(f) Eolg;, — g2) +o(1)
as t— o0, by conditions (i) and (ii).
=E (/)XW (g,) 2, W(g,) 2> +o(1). (2.8)
Therefore
(W(f)e My e My,
=Eo(f){W(g,) Q W(gy) Q> [ A,(xt) A(xt)
X

-exp[i Im{ f, f (x.0)>] dx + o(1) 29
Cpi(xt), wolxt)y explilm (f, f (x, )] dx + o(1)

Ny
=Eo(f) | <wi(x) po(x)> exp[i ITm{f, f (x, > T dx + o(1)
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by the invariance of y, and .

=Eo(f) | <p1(x). p,2(x)) exp[iG(x)] dx + o(1) (2.10)
X

where
G(x)= }Ln; Im{f, f(x, 1))

=Im{z L(x) hm <f t[e_“s"“’”“g,du>} (2.11)
0

r=1

-~ n{ T aw o).
r=1
The above theorem is inadequate in as much as it only applies to
invariant states y; and y,. In the following theorem we use the notation
t

Limk(t)= lim¢™* | k(u) du . (2.12)

10 o

noting that if the ordinary limit exists, then so does the generalised limit,
and both are equal.

Theorem 2.2. Suppose conditions (i), (i) and (iii) are satisfied. Then
for any vy, @€ IX(X. A')

L1m<W(f let Vi eithll)z>

(2.13)
= Eo(f)<py. ) fexp| —i Im{ S 0, <p,(f)} dx.
X r=1
Proof. From Eq. (2.9) we get for large ¢
W(f)e My e My, (2.14)
=Eo(f) | <y (x0). po(xt)) exp[i G(x)] dx +o(1). '
X
Therefore
tLjr@g<W(f)e"’”’w1’e“‘”‘wz>

=Eq(f) limt‘llf [(wl(xs ), P, (xs)y exp[iG(x)] dx ds (2.15)
t—> o0 0 X
)

=Eo(f) | <w1(x). wo(x)) dx | exp[iG(x)] dx
X X
by condition (iii) — see [6]. This concludes the proof.

Theorem 2.3. Suppose conditions (i), (i), and (iii) are satisfied. Then
for any positive operator @ on L*(X, A") such that tr[g] =1.

letl‘[W(f —th th]
to (2.16)

=Eo(f) jexp[—ilm{i v(x) @.( f)}

X
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Proof. For operators ¢ of finite rank this is obtained from Theo-
rem 2.2 by linearity. For general ¢ we then use simple density arguments.

This is the central theorem of the paper. Physically it states that the
quantum field converges, in the mean, to a state independent of its
initial state. We continue this section by studying cases where the right
hand side of Eq. (2.16) may be simplified.

Theorem 2.4. Suppose that condition (iii) holds and that wq, ..., o,
are rationally independent. Then

| exp{ —i Im{ > vx) (p,.(f)}
X r=1

Proof. We take from [6] the following facts. The action of IR on X
defines a unitary group on L*(X). The eigenvalues form a countable
subgroup of R and each eigenvalue is of multiplicity one, each eigen-
function being of absolute value one almost everywhere. A set vy, ..., v,
of eigenfunctions are probabilistically independent if and only if the
corresponding eigenvalues are rationally independent. If this occurs then

I=§ exp{—ilm{i u,.(x)w,.(f)} dx

! (2.18)
—1i Im{v,(x) qo,.(f)} dx.

dx= 1 hllo, D). 217

n

=[] iexp

r=1

We next observe that for any function h

2n
[ o) dx =~ T ] hio(x- 0o 1)} dx dO
X 2t o x
2n
= 21_71 )[ _E hie'v,(x)} dO dx (2.19)
B 1
T

(]

f h{e'®y do .
Therefore 0
1 2n
o [ exp[—ilm{e’,(/)}]d0

0

ﬂ
! (2.20)
= 11

The case where two or more of the frequencies are rationally related
seems not to be capable of such simple calculation. Such a solution would
arise in the description of a coherent source which radiated harmonics
of a given frequency, with phase relation-ships between the harmonics.
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There is another case where the integral may be simply calculated,
which we start by motivating. The Dicke maser model was treated in [2]
with the Hamiltonian

H=wJy+ Hy+ A{J_a*(b)+ J, a(b)} (2.21)

which commutes with the number operator. However, one also frequently
considers the more general Hamiltonian [3, 5]

H=wJy+Hy+ 2 {J_a*(b))+J,ab,)+J_alb,)+J,a*(by)}.  (2.22)

If one recalculates [2] with this more general Hamiltonian, then one
finds a limit of much the same form, except that in the cocycle f(0,1)
one has two terms corresponding to both frequencies + w. The integral
of Eq. (2.16) may be simplified using the following theorem.

Theorem 2.5. Suppose that condition (iii) holds and
vy(xt)y=eT v, (x) (2.23)
for all xe X and t e R. Then

[expl=iIm{e.(x) @ () +v-(x) - (N} dx (2.24)

=Jolle. (/)= _(N).

Proof. By ergodicity [6] we know that v_(x)="0, (x) for all xe X.
Therefore the left hand side of Eq. (2.24) is equal to

fexpl—ilmo, (x){o. (f)—¢ (N1dx=Jy(lo.(f)—o ()

X
as before.

3. Properties of the Equilibrium State of the Field

The next problem consists of an analysis of the final state of the field.
We concentrate attention for the sake of simplicity on the case where the
initial representation of the C.C.R.’s is the Fock space representation,
and where there is only one radiation mode involved. We have shown in
the last section that the field evolves from its initial state to a final dynamic
equilibrium state with expectation function

E(f)=exp[— | f1?/4] - Jo(lo()]) (3.1)

where .

o(f)=lim [{e "S7g f>du. (3.2)

t— 0
The expectation function E defines a new representation of the C.C.R.’s
[1], which in general will be inequivalent to the Fock representation,
since the linear functional ¢ on D will be unbounded.
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We take the particular case where D is the Schwarz space in L*(R?), S is
the operator — A4/2, which is essentially self adjoint on D, and the con-
stant w is non-negative (the more normal case). It can be readily verified
that condition (i) of the last section is satisfied.

Theorem 3.1. The functional ¢ is given on D by

o(f)= .[ @(x) f(x)d’x (3.3)
where *
B 7711/2(0[\*77}1 3 3 4)
p(x)=— f 90) - T (3.

is a bounded continuous function onR3.
Proof. We have
oo

G(f)=lim | e=¢e™ 5", f du

el0 0

:fililr{)l<(S—a)—i8)71g,f> (3.5)

0 Sy o —is

Now it is well known that if / is not a negative real number

e~ VI piEd 3 -1
[ TGH?H frmemn .
Therefore
_ ;]/2(u)+lf)||“ i 3 3
o(f)= —211}1{101”0()’) (x)*m;*YH &
R o] PR 33
= — ” W f(x)= 27|[x — Wd X "
= [ o) TR & x.
R3

The stated properties of ¢ follows from simple estimates [7].

Theorem 3.2. The expectation function E is locally Fock. That is,
for each bounded region U in IR? there is a density matrix g on the Fock
space F, over L*(U) such that

E(f)=trlecW(/)]

for all fe D with support in U. The expected number of particles in the
region U is finite and is given by

trloy Nyl =3 f lp(x)|* d*x (3.8)
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Proof. We follow the methods of [1], the reason for the validity of
the theorem being that restricted to L*(U), ¢ is a bounded functional.
Let us define

e(x) if xeU
7 = 3.9
¢ulx) {0 otherwise (39)
and define
2n
0= % [ W{epu} QW (o} Q™ do (3.10)
0

where Q is the Fock vacuum. Then g, is a density matrix on %, and if
f €D has support in U

{ 2" . .
trlee W)=~ (f) (W) W{e oy} Q. W{e oy} Q> db

2n

= 21—” [ exp[iIm{f. ey >]1 (W (f)Q.Q>do

= %{GXp[— 1£12/41 g exp[iIm{e " f,ud}]1d0  (3.11)

= exp[— [ f1I>/41- Jo(IKey. £ D)
= exp[— [ /11>/41 Jo(lo( )
= E(f)

as required. The expected number of particles in the region is given by

2n

trloy Nyl = — [ <NW{€E6(PU} Q,W{eieq’v} Q> do
0

2
=3loull® (3.12)
1
2

[lo(x)* d*x.
LY

We have shown that the particles in the field are distributed throughout
space with the density

o) =3lpX)*. (3.13)

Physically this is the equilibrium intensity of radiation due to the finite
source, which may be considered to be located within the support set of
the function g. The main interest centres on the form of the function ¢ a
long distance from the origin compared with the wavelength of the
emitted radiation. The following theorem, a very simple case of one in
[7]. states that the intensity of radiation varies with the inverse square
of the distance from the source.
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Theorem 3.3. Suppose that g is a continuous function of compact
support and that u is a unit vector in R3. Then

lim 2 o(ru) = g () 20u)*. (3.14)
Proof. For large r>0
IVZ(JHIN | 3
r IU g
( \ IV S =y Y
T ’z" [ gly) V2o g2y (3.15)
T R3

=1/ 21V §()/ 20u).

We next turn to the situation described at the end of Section 2, where
the Hamiltonian has both position and negative energy terms of the
same frequency.

Theorem 3.4. If the quantum field is in the state

E(f)y=expl—1f1?/4]- Jo(lo (/)= (1)) (3.16)
then the particle density function ¢ satisfies
lim 2 (ru) = mlg . ()/ 2mu))* (3.17)

for every unit vector u in IR>.

Proof. We have to cstimate

P ()= (f) (3.18)
= ﬁfx {@,(x) [(x) X)—w- () f ()} d*x
where e
P(x)=—1i ‘ gly 2751[*;**)%43}/ (3.19)

has already been estimated. On the other hand
t
¢7(f) = lan;l) f <e*i(S+<v))ug_ 7j> du

=—i{(S+w) q D
i f____)_f(y)d y (3.20)

o slylP+o
= .“Q’f(x).f((—ﬂdsx

where
e—l 2olx—y|

¢ _(x)= 'Eg » ZR]ITAA);II_ dy. (3.21)
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It is clear that for large »
o_(ru)=0(e V2" /r) (3.22)

which is negligible compared with ¢, (ru).

The negative frequency term does therefore contribute to the final
equilibrium state of the field, but since ¢ _ is a bounded linear functional
on IR? it contributes only a finite number of particles which remain in
the neighbourhood of the source.
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