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Abstract. We study the time evolution of a quantum field under a Hamiltonian con-
structed in an earlier paper by taking the limit as n -> cc of a Dicke maser model Hamiltonian
for n radiating atoms. We show that the radiation field converges to a dynamic equilibrium
state independent of its initial state and that the strength of the field is inversely propor-
tional to the square of the distance from the source. A number of variations of the Hamil-
tonian are also considered.

1. Definition of the Hamiltonian

In an earlier paper [2] we studied the limit as n-> oo of a sequence of
Dicke maser model Hamiltonians Hn on the spaces

{®n<E2}®^ (1.1)

where 3F is a Boson Fock space. The Hamiltonian Hn describes a simple
interaction between n 2-level atoms and a quantum field with an infinite
number of degrees of freedom. The limiting Hamiltonian H was
realised on

12(Έ) ®^~L2{(-π, π), &} . (1 .2)

In this paper we study the time evolution for the limiting Hamiltonian.
This is done in substantially greater generality than is required for the
development of [2]. The reason for this is that we wish to be able to
treat a number of variations of the maser model - for example the case
of multi-level atoms with a number of different emission modes.

We start by describing the quantum field in terms of a representation
of the canonical commutation relations. We take a complex test function
space D dense in the single particle Hubert space D~ D is supposed to be
a complete locally convex topological linear space under a topology
stronger than the Hubert space topology. The single particle Hamiltonian
S is supposed to be essentially self-adjoint on D and the unitary group
elSt is supposed to leave D invariant and to be jointly continuous from
IR x D to D. The quantum field is defined on a Hubert space Jf by a
representation of the C.C.R.'s on Jf. For each feD there is a unitary
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operator W(f) on Jf such that

W(f) W(g) = W(f + g) exp[i Im</, 0>/2] . (1.3)

The self-adjoint field Φ(f) is then defined by

(1.4)

The representation is supposed to be cyclic with cyclic vector Ω e JΓ
and so is determined through the Gelfand-Segal construction by the
functional

(1.5)

We supposed that for all / E D and t 61R

E0(eίStf) = E 0 ( f ) . (1.6)

Then by [4, 8] there is a self-adjoint operator, the free Hamiltonian H0,
on JΓ such that

eίHotΩ = Ω (1.7)
and

eίHQtW(f)e~iHnt=W(eίStf) (1.8)

for all /e D and ί eIR. We remark that the above assumptions generalise
[2] where we only considered the Fock space representation of the
C.C.R.'s.

We describe the Hubert space which is supposed to represent the
collective behaviour of the infinite system of atoms. We let X be a com-
pact metric space with a specified probability measure dx. We also
suppose that G0 is a topological group acting jointly continuously on X
and leaving the probability measure invariant. G0 represents the sym-
metries of the system including its time evolution, and has a unitary
representation on the Hubert space L2(X) defined by

(gφ)(x) = φ(xg) (1.9)

for all φeL2(X). We suppose that we are given a finite-dimensional
linear space V of complex continuous functions on X such that V is
invariant under G0 and contains the function 1. We let

(1.10)

so that Y is a finite dimensional linear space of real continuous function on
X invariant under the action of G0. The above assumptions generalise
the situation of [2] where X = [0, 2π] and G0 was the group of rotations
of X. In [2] the subspace V was not explicitly mentioned but it was in fact

V = { f : f ( θ ) : a + beiθ for some α,be<C}. (1.11)
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The Hubert space of the composite system is taken to be the space
L2(X, JΓ) of Jf-valued square integrable functions on X. The time
evolution of the system is defined by first introducing a certain infinite-
dimensional group of unitary operators on L2(X, Jf) as in [2].

Theorem 1.1. The formula

(Uhφ)(x) = ei^Wί^v,(x)ft\e-ίHot{φ(xg}} (1.12)
\ /• /

where
h = {y, Σu r/ r, ί. 0} e 7x(F®D) x 1R x G0 (1.13)

and φ e L2(X, JΓ), defines a group G of unitary operators on L2(X, Jf).

Proof. It is obvious that Uh is a unitary operator. If/z, hr e G then

= exp

\ ¥ I

•iywwfr yrW fλ e-ίHoteίy'(xg}WίΣ ^(*0) fs\ ' e-iίiot'{φ(xgg')}
( r } [ s }

^W\e-^(gυ's}(x)f^ e-ίH^ + ^{ψ(xgg')}

(1.14)vr(x) (gv's) (x

which is of the required form.
The expression for the multiplier (in the exp bracket) is very com-

plicated, but it fortunately turns out not to be important. We point out
that the group contains two subgroups corresponding to symmetries of
the atomic system

= eiv(x}φ(xg) (1.15)

and symmetries of the quantum field

(1.16)

The total Hamiltonian of the system is defined as in [2] by selecting a
one-parameter subgroup of G. We suppose that there is given a one-
parameter subgroup of G0, representing the time evolution of the
system of atoms in the absence of any interaction with the field.

Theorem 1.2. The formula

(Vtφ] (x) = eiΛ(x't} W { f ( x , t)} e-ίHot{φ(xt)} (1.17)
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where φeL2(X, Jf) and ίelR, defines a one- parameter unitary group on
L2(X, Jf ) if and only if /, α satisfy the cocyde equations

/(x, s + ί) = /(*< s) + e~ ίss/(xs, ί) (1.18)
and

. (1.19)

A / / solutions of these equations satisfy

/(x,0) = 0, α(x,0) = 0. (1.20)

Proof. See [2].

The construction of all solutions of the cocycle equations seems a
difficult problem but an important class of these are given in the following
theorem.

Theorem 1.3. Suppose g:X^D and β:X^]R are continuous func-
tions. Then the formulae

f ( x , s ) = } e-is»g(xu)du (1.21)

A U =°ana

6 4 S U

α(x,s)= J β(xu)du+— f j Im<e~ ί S rgf(xι;),e~ / S l <gf(xM)>dι;dM(1.22)
u = 0 ^ u = 0 ) =0

define continuous cocycles with the properties

(1.23)

and

(1.24). s = 0
OS

Proof. See [2].

We are interested particularly in cocycles taking values in F(χ)D, and
to describe these we need some further definitions. Since V is invariant
under the action of G0 and hence of its one parameter subgroup 1R, there
is a finite orthonormal basis i^, ...,υn of V and constants ω l 5 . . . ,ω n elR
such that

= eίωftυr(x) (1.25)

for all x e AT and ί e 1R.

Theorem 1.4. // gί, . . . , gn e D ί/zβn ί/ie equations

ί

/(x,ί)= Σ t;r(x) j e-i(S-ω')ugrdu (1.26)
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and

(1.27)

define continuous cocycles.

Proof. This is obtained by substituting into Theorem 1.3 the choices

g(x) = t υ r ( x ) g r . (1.28)
r= 1

To summarise, we have shown that given g A , . . . , gn e D there is a strongly
continuous one parameter unitary group Vt defined on L2(X, JΓ) by
Eqs. (1.17), (1.26) and (1.27). The Hamiltonian H is then defined as the
self-adjoint operator such that Vt = e~ίHt in the usual sense. It may be
shown that the Hamiltonian is given explicitly by

(Hφ)(x) = H0{φ(x)}- £ Φ{υr(x)gr}{φ(x)}+ i-^φ(xt)\t = 0 . (1.29)

This formal equation may be given a precise sense as in [2], but we shall
not do this as we shall be working with the unitary group Vt, which is
already rigorously defined.

2. Convergence to Equilibrium of the Field

We now move on to a description of the evolution of the field for the
Hamiltonian H defined in the last section, and in particular the behaviour
in the limit ί-»oo. There are three conditions of great importance which
we shall use.

(i) For all /, g e D

\im<(e~ίstf,gy=0. (2.1)
i-> 00

Moreover for all r = 1, ..., n

lim \(e-i(S-ω'}ttf,gy du (2.2)
} o

exists and is finite.

(ii) The representation W has the asymptotic product decomposition
property; in other words for a l l f , g e D

lim E0(f + e- ίstg} = E 0 ( f ) E0(g). (2.3)
ί-> 00

(iii) The action of 1R on X is ergodic.
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Theorem 2.1. Suppose conditions (i) and (ii) are satisfied. If
φ 1 ? ι/>2 e L2(X, Jf) are invariant under the action of 1R on X then

(2.4)

= E o V n V > 2 > exP -
7 x

w/iere

φ,(f)= lim f <^- ί(S-ω^r,/>du. (2.5)
ί-OO ό

Proof. By the linearity with respect to tp and ψ' and the assumption
that Ω is a cyclic vector for the representation of the C.C.R.'s we only need
to prove this for the case

ψi(x) = λi(x)W(gl)Ω (2.6)

where λ^,λ2 are arbitrary continuous functions on X and g^g2 are
arbitrary elements of D. With these choices

<W(f)eίHtψ1,e-lHtψ2 >

(

e'iHotλ2(xt) W(g2)Ωy dx

W{f(x, t)} W{e-istg,} Ω , (2.7)
x

W{f(x,t)}W{e-ίStg2}Ωydx

where
= <W(f) W{e-'st

gι} Ω,

as ί-> oo, by conditions (i) and (ii),

= E 0 ( f ) ( W ( g ι ) Ω 9 W ( g 2 ) Ω y + o ( i ) .
Therefore

i) Ω, W(g2) Ω> f A A ( x i ) A2(xί)
X

(2.9)

E0(f) j <Vl(xί), Ψ2(xO> exp[ί
X
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by the invariance of ψ^ and φ2,

= E 0 ( f ) j (ψι(x), V^M) exp[iG(x)] dx + 0(1) (2.10)

where
G(x) = lim Im</, f(x, ί)>

ί-»oo

ί _ / ' _Ί. ^ \]

= lm< 2_; vr(x) lim ( /, ) e ωr)ugrdu)> (2.11)
U = ι ί-*00 \ 6 / J

r = l

The above theorem is inadequate in as much as it only applies to
invariant states ιp1 and ψ2. In the following theorem we use the notation

t
Limfc(ί) - lim Γ x f k(u) du . (2.12)
- -

noting that if the ordinary limit exists, then so does the generalised limit,
and both are equal.

Theorem 2.2. Suppose conditions (i), (ii) and (iii) are satisfied. Then
for any ψ1, φ2 e L2(X, JΓ)

(2.13)

U= i

Proof. From Eq. (2.9) we get for large ί

Therefore

(2.15)

= E 0 ( f ) J <V JιW^2M> ^x I exp[z'G(x)] dx
x x

by condition (iii) - see [6]. This concludes the proof.

Theorem 2.3. Suppose conditions (i), (ii), and (iii) are satisfied. Then
for any positive operator Q on L2(X, Jf) swc/z that tr [ρ] = 1.

(2.16)

exp — i L ^
x
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Proof. For operators ρ of finite rank this is obtained from Theo-
rem 2.2 by linearity. For general ρ we then use simple density arguments.

This is the central theorem of the paper. Physically it states that the
quantum field converges, in the mean, to a state independent of its
initial state. We continue this section by studying cases where the right
hand side of Eq. (2.16) may be simplified.

Theorem 2.4. Suppose that condition (iii) holds and that ω1 ? ...,ωπ

are rationally independent. Then

f e x p [ - z l m { £ ϋ,(x) </>,(/)} dx= f [ J0(\φr(f)\). (2.17)
X L U=l J r=l

Proof. We take from [6] the following facts. The action of 1R on X
defines a unitary group on L2(X). The eigenvalues form a countable
subgroup of 1R and each eigenvalue is of multiplicity one, each eigen-
function being of absolute value one almost everywhere. A set v1, ...,vn

of eigenfunctions are probabilistically independent if and only if the
corresponding eigenvalues are rationally independent. If this occurs then

I = f exp - i lm υr(x)φf(f)

J exp - i I m v , ( x ) φ,(f)

dx

dx.

(2.18)

r= 1 X

We next observe that for any function h

I 2π

f h{vr(x)} dx= — J J h{υr(x θω~*)} dx dθ

1

2" } ί
>

Therefore
2π

h{eiθv,(x)}dθdx

h{eίθ}dθ.

(2.19)

1= l -
(2.20)

= lJθ(\<Pr(f)\)

The case where two or more of the frequencies are rationally related
seems not to be capable of such simple calculation. Such a solution would
arise in the description of a coherent source which radiated harmonics
of a given frequency, with phase relation-ships between the harmonics.
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There is another case where the integral may be simply calculated,
which we start by motivating. The Dicke maser model was treated in [2]
with the Hamiltonian

H = o)J3 + #o + λ{J^ a*(b) + J+ a(b}} (2.21)

which commutes with the number operator. However, one also frequently
considers the more general Hamiltonian [3, 5]

H = ωJ3 + H0 + A{J_ a*(bύ + J+ a(b,} + J_ a(b2) + J+ α*(b2)}. (2.22)

If one recalculates [2] with this more general Hamiltonian, then one
finds a limit of much the same form, except that in the cocycle /(θ, r)
one has two terms corresponding to both frequencies ± ω. The integral
of Eq. (2.16) may be simplified using the following theorem.

Theorem 2.5. Suppose that condition (iii) holds and

υ ± ( x t ) = e±iωtυ±(x) (2.23)

for all x e X and t e 1R. Then

j exp [-/ Iιrφ + (x) φ + (f) + v.(x)φ _(/)}] dx

Proof. By ergodicity [6] we know that v_(x) = v + (x) for all xeX.
Therefore the left hand side of Eq. (2.24) is equal to

x
as before.

3. Properties of the Equilibrium State of the Field

The next problem consists of an analysis of the final state of the field.
We concentrate attention for the sake of simplicity on the case where the
initial representation of the C.C.R/s is the Fock space representation,
and where there is only one radiation mode involved. We have shown in
the last section that the field evolves from its initial state to a final dynamic
equilibrium state with expectation function

E(f) = e x p [ - \ \ f \ \ 2 / 4 ] . J 0 ( \ φ ( f ) \ ) (3-1)
where

φ(f)=lim]^e-i(S-^g9fydu. (3.2)
ί-+co 5

The expectation function E defines a new representation of the C.C.R.'s
[1], which in general will be inequivalent to the Fock representation,
since the linear functional φ on D will be unbounded.
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We take the particular case where D is the Schwarz space in L2(1R3), S is
the operator — A/2, which is essentially self adjoint on D, and the con-
stant ω is non-negative (the more normal case). It can be readily verified
that condition (i) of the last section is satisfied.

Theorem 3.1. The functional φ is given on D by

φ(f)= j φ(x)J(F)<i3x (3.3)
1R3

where _ „
iy2ω\\χ-y\\

φ(x} = -i f g(y)—- -- Td
3y (3.4)

^3 2 π \ \ x - y \ \

is a bounded continuous function onlR 3.

Proof. We have

ε|0 Q

-ilim((S-ω-iεΓlg,fy (3.5)
ε |0

Now it is well known that i f / is not a negative real number

I ^-^-e1^d*x = (λ + \\y\\2γl . (3.6)

Therefore

R3

The stated properties of φ follows from simple estimates [7].

Theorem 3.2. 77ιe expectation function E is locally Fock. That is,
for each bounded region U in IR3 there is a density matrix ρv on the Fock
space ^u over L2(U) such that

for all /e D with support in U. The expected number of particles in the
region U is finite and is given by

L I]=ϋMx)|2d3x. (3.8)



Dicke Maser Model II 247

Proof. We follow the methods of [1], the reason for the validity of
the theorem being that restricted to L2(U), φ is a bounded functional.
Let us define

ίφ(x) if xeU
n ,u (3 9)[0 otherwise

and define

ί θ i Θ
ρ ϋ = - \W{eίθφv}Ω®W{eiΘ

φu}Ω~dθ (3.10)
2π Ό

where Ω is the Fock vacuum. Then Qυ is a density matrix on <Fυ and if
/eD has support in I/

π > dθ

;β</,φCΓ>}]^ (3.11)
zπ o

= exp[-[|/[|2/4] J0(K<Pc,,/>l)

= £(/)

as required. The expected number of particles in the region is given by

uΛy = ~ T <NW{Jβ

φu} Ω, W{eίeφv} Ω> dθ
2π 0

(3.12)

We have shown that the particles in the field are distributed throughout
space with the density

ρ(x) = ^ \ φ ( x ) \ 2 . (3.13)

Physically this is the equilibrium intensity of radiation due to the finite
source, which may be considered to be located within the support set of
the function g. The main interest centres on the form of the function ρ a
long distance from the origin compared with the wavelength of the
emitted radiation. The following theorem, a very simple case of one in
[7], states that the intensity of radiation varies with the inverse square
of the distance from the source.
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Theorem 3.3. Suppose that g is a continuous function of compact
support and that u is a unit vector in IR3. Then

lim r 2 ρ ( r u ) = π\g(]/2ωu)\2 . (3.14)

Proof. For large r > 0

rφ(ru)= -i \ rg(y)^— d3 y
^ 2π\\ru-y\\

•V'2^r-^y>)d3y (3^5)

We next turn to the situation described at the end of Section 2, where
the Hamiltonian has both position and negative energy terms of the
same frequency.

Theorem 3.4. // the quantum field is in the state

£(/)=exp[-| |/| |2/4].J0(|φ + (/)-^CΓ)|) (3.16)

then the particle density function ρ satisfies

limr2ρ(ru) = π\g + (]/2πu)\2 (3.17)

for every unit vector u in IR3.

Proof. We have to estimate

— - x ^3x (3'18)

where
Λ i ]/2ω| |χ-v | |

(3.19)
+ +^ 2π||x-.y| |

has already been estimated. On the other hand

(3.20)

uwhere _
- l / 2 ω | | λ - y | |

d*y. (3.21)



Dicke Maser Model II 249

It is clear that for large r

φ_(ru) = Q(e~vτ'r"'/r) (3.22)

which is negligible compared with φ + (ru).
The negative frequency term does therefore contribute to the final

equilibrium state of the field, but since φ_ is a bounded linear functional
on 1R3 it contributes only a finite number of particles which remain in
the neighbourhood of the source.
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