Commun. math. Phys. 34, 223–228 (1973) © by Springer-Verlag 1973

Non Quasi-free Classes of Product States of the C.C.R.-Algebra

J. F. Gille*

Centre de Physique Théorique, C.N.R.S., Marseille, France

Received May 16. 1973

Abstract. Two exemples of pure states of Van Hove's Universal Receptacle in the boson case are presented with are not unitarily equivalent to any quasi-free state. In particular, it is shown that a discrete state is unitarily equivalent to some quasi-free state if and only if it is equivalent to the Fock state related to the chosen decomposition of the test function space.

I. Introduction

This paper is a continuation of a previous one [1] in which we showed that non discrete pure states of the Van Hove's Universal Receptacle in the fermion case are not unitarily equivalent to any quasi-free state. The situation in the boson case is a little more complicated. Indeed, the quasifree states of the C.C.R.-algebra are of discrete and non discrete type [2]. If we restrict ourselves to a fixed basis of the test function space H_0 the discrete states are equivalent to a class of states which we called "physically pure" ones. Those "physically pure" states are different from the quasifree states except for the Fock state, moreover there exist¹ non discrete states which are disjoint from every quasi-free state of the decomposition of H_0 we consider. But the question remained open as if we can state the same assertions considering all quasi-free states issued from any possible decomposition of H_0 .

I.1. Notations

Let $(H_k)_{k \in \mathbb{N}}$ a countable family of two-dimensional real vector spaces, and $H = \bigoplus_{k \in \mathbb{N}} H_k$ the weak sum of the H_k 's. $(H = \{\varphi \in H_0 | P_k \varphi = 0 \text{ for a} finite number of k's\}, H_0 = \bigoplus_{k \in \mathbb{N}} H_k$ denoting the Hilbert sum).

Equipped with σ , a regular, antisymmetric, real bilinear form (H_0, σ) is a separable symplectic space.

^{*} Attaché de Recherches - C.N.R.S. - Marseille.

¹ The Klauder-McKenna-Woods criterion [3] provides examples of this, as $\Omega_k = 1/\sqrt{2} \xi_k^1 + 1/\sqrt{2} \xi_k^2$. See notation further.

Let $\Delta(H_0, \sigma)$ denote the algebra generated by finite linear combinations of δ_w 's, $\psi \in H_0$, such that:

$$\delta_{\psi}(\varphi) = 0$$
 if $\psi \neq \varphi$
 $\delta_{\psi}(\psi) = 1$

with the product law:

$$\delta_{\psi}\delta_{\varphi} = e^{-i\sigma(\psi,\varphi)}\delta_{\psi+\varphi}$$

and the involution:

$$\delta_{\psi} \mapsto \delta_{\psi}^* = \delta_{-\psi}.$$

Let $\mathscr{F}(H_0, \sigma)$ the set of states of $\varDelta(H_0, \sigma)$. We define a norm on $\varDelta(H_0, \sigma)$ by:

$$x \in \Delta(H_0, \sigma), \quad ||x|| = \sup_{\omega \in \mathscr{F}(H_0, \sigma)} \sqrt{\omega(x^*x)}$$

It is a C*-algebra norm [4]. The closure of $\Delta(H_0, \sigma)$ will be denoted by $\Delta_0 \equiv \overline{\Delta(H_0, \sigma)} (\Delta \equiv \overline{\Delta(H, \sigma)})$ and we shall call Δ_0 the C.C.R.-algebra and Δ the local C.C.R.-algebra.

For more details see [5] and [4]. Let $\mathscr{R}(H, \sigma)$ the set of non-degenerated representations π of $\Delta(H, \sigma)$ such that the mapping $\lambda \in \mathbb{R}, \lambda \mapsto \pi(\delta_{\lambda\psi})$ is strongly continuous. Let $\pi_k \in \mathscr{R}(H_k, \sigma)$ be an irreducible representation of $\Delta(H_k, \sigma)$ into the separable Hilbert space \mathscr{H}_k . There is only one complex structure J such that $JH_k = H_k$, $\forall k \in \mathbb{N}$, which defines a σ -permitted hilbertian form s on H. Let ω_k be such that $\omega_k(\delta_{\psi})$ $= \exp(-\frac{1}{2}s(\psi, \psi))$ with $\delta_{\psi} \in \Delta(H_k, \sigma)$. ω_k is a pure state of $\Delta(H_k, \sigma)$ [[5], (3.2.1) and (3.2.2)) to which corresponds, in the G.N.S. construction, the representation π_k , called the Schrödinger representation, and the cyclic vector $\xi_k \in \mathscr{H}_k$. Let $\pi = \bigotimes_{k \in \mathbb{N}} \pi_k$ and recall that each $\Omega = \bigotimes_{k \in \mathbb{N}} \Omega_k, \Omega_k$ being a unitary vector of \mathscr{H}_k , determines an incomplete tensor product $\mathscr{H}^{\Omega} = \bigotimes_{k \in \mathbb{N}}^{\mathscr{G}(\Omega)} \mathscr{H}_k$, with $\mathscr{G}(\Omega)$ the equivalence class of Ω for the relation $\approx (\Omega \approx \Omega' \text{ iff } \sum_{k \in \mathbb{N}} |1 - (\Omega_k | \Omega'_k)| < + \infty)$. Let π_{Ω} the irreducible representation such that $x \in \Lambda, \pi_{\Omega}(x) = \pi(x) | \mathscr{H}^{\Omega}$.

I.2. Definitions

Definition I.2.1. The state $\omega_{\Omega} \equiv (\Omega | \pi_{\Omega}(\cdot)\Omega)$ will be called a state of Van Hove's Universal Receptacle (V.H.U.R.-state) relating to the decomposition $(H_k)_{k \in \mathbb{N}}$.

Let us denote by A_k the field operator, defined by

$$\pi_k(\delta_{\psi_k}) = e^{iA_k(\psi_k)}, \qquad \psi_k \in H_k.$$

224

We shall write the corresponding creation and annihilation operators, as:

$$a^+(\psi_k) = \frac{1}{2} (A_k(\psi_k) - iA_k(J\psi_k)),$$

$$a^-(\psi_k) = \frac{1}{2} (A_k(\psi_k) + iA_k(J\psi_k)).$$

We choose $\psi_k^1 \in H_k$, $\|\psi_k^1\|^2 = s(\psi_k^1, \psi_k^1) = 1$ and we shall use $a_k^+ = a^+(\psi_k^1)$. $a_{k}^{-} = a^{-}(\psi_{k}^{1}).$

Recall that ξ_k is a cyclic vector corresponding to the state ω_k , and that $(\xi_k^n)_{n\in\mathbb{N}}$ with $\xi_k^n = 1/\sqrt{n!}(a_k^+)^n \xi_k$ is an orthonormal basis of \mathscr{H}_k . Any unitary Ω_k of \mathscr{H}_k can be written $\Omega_k = \sum_{n\in\mathbb{N}} \alpha_k^n \xi_k^n \left(\sum_{n\in\mathbb{N}} |\alpha_k^n|^2 = 1 \quad \forall k \in \mathbb{N}\right)$. From now we shall denote $\beta_k^n - |\alpha_k^n|^2$. now we shall denote $\beta_k^n = |\alpha_k^n|^2$.

Definition I.2.2. A representation π_{Ω} (a state ω_{Ω}) is a discrete one if $\sum_{(k,j,l)\in\mathbb{N}^3} \beta_k^j \beta_k^l < +\infty.$ If this series does not converge $\pi_{\Omega}(\omega_{\Omega})$ and only if

is called a *continuous* representation (state).

This is the terminology of [6].

Definition I.2.3. A state ω_{Ω} will be called a "physically pure" one if $\alpha_k^n = 0, \forall n \neq m(k).$

Corollary I.2.4. [2, Proposition 4.2]. There exists a physically pure state ω_{0} unitarily equivalent to ω_{0} iff ω_{0} is a discrete state.

Definition I.2.5. A quasi-free state on Δ is a state ω for which $\omega(\delta_{\varphi}) = \exp(-\frac{1}{2}s'(\varphi,\varphi) + i\chi(\varphi)), \forall \varphi \in H \text{ with } s' \text{ a } \sigma\text{-allowed hilbertian}$ structure on H and χ in the algebraic dual of H. Cf. [7–9].

There is only one Fock state ω_J among the V.H.U.R.-states related to the decomposition $(H_k)_{k \in \mathbb{N}}$. The discrete quasi-free states are all unitarily equivalent to this Fock state, and they have χ continuous [2, (4.3) and (4.6)].

II. Characterization of the Discrete States and an Example of a Class of non Quasi Free Continuous States

II.1. Discrete Case

Recalling that every-discrete V.H.U.R.-state is unitarily equivalent to a "physically pure" state, we can restrict ourself to consider the "physically pure" states.

Let ω_{Ω} a "physically pure" state which is disjoint from the Fock state ω_J related to the decomposition $(H_k)_{k\in\mathbb{N}}$ of H_0 that we fixed. Then $\Omega = \bigotimes \xi_k^{m(k)}.$

Let $\omega_{s',\chi}$ a pure quasi-free state on Δ , i.e. $\omega_{s',\chi}$ is such that $\omega_{s',k}(\delta_{\varphi}) = e^{i\chi(\varphi)}e^{-\frac{1}{2}s'(\varphi,\varphi)}$ with $\varphi \in H$ and s' a σ -allowed hilbertian structure on H(s' = $-\sigma \circ J', J'$ a complex structure on H). Via G.N.S. we obtain from $\omega_{s',\chi}$ the Gelfand troïka $(\mathscr{H}_{s'}, \pi_{s'}, \Xi_{s'})$, such that $\forall x \in \Delta, \omega_{s',\chi}(x) = (\Xi_{s'} | \pi_{s'}(x) \Xi_{s'}), \Xi_{s'} = \bigotimes_{k \in \mathbb{N}} \Xi_k, \Xi_k = \sum_{n \in \mathbb{N}} \alpha'_k n_k^n = \exp\left(-\frac{|c_k|^2}{2}\right) \frac{c_n^n}{\sqrt{n!}}, c_k \in \mathbb{C}, \beta'_k n_k = |\alpha'_k|^2$ [2]. To the representation $\pi_{s'}$ corresponds in the Gårding-Wightman classification [10] the measure v_{χ} on $\mathbb{N}^{\mathbb{N}}$. If $\omega_{s',\chi}$ is unitarily equivalent to $\omega_{\Omega}, \omega_{s',\chi}$ is a discrete state and therefore it is unitarily equivalent to the Fock state of the decomposition of H related to s'. We can choose $c_k \neq 0, \forall k \in \mathbb{N}$. The measure v_{χ} can be described as $v_{\chi} = \bigotimes_{k \in \mathbb{N}} v_k$ with v_k a measure on \mathbb{N} and $v_k(\{n\}) = \beta'_k n_{z'} \exp(-|c_k|^2)|c_k|^{2n}/n!$

Let

$$L_{k,n} = \{ m \in \mathbb{N}^{\mathbb{N}} | m(k) = n \}$$

$$\chi(L_{k,n}) = \beta_k^{\prime n} = \exp(-|c_k|^2) \cdot \frac{|c_k|^{2n}}{n!}$$

 $m(k) \ge 1$ for an infinite collection of M of k's, thus:

$$v_{\chi}(L_{k,m(k)}) < \frac{1}{\sqrt{2\pi}} < 1$$

for those k's. Let

v

$$L^{m} = \bigcap_{k \in M} L_{k,m(k)}, \qquad M_{p} = M \cap \{1, \dots, p\}$$
$$v_{\chi}(L^{m}) = \inf_{p \in \mathbb{N}} v_{\chi}\left(\bigcap_{k \in M_{p}} L_{k,m(k)}\right) = 0.$$

Yet, let π_{Ω} be the representation constructed via G.N.S. from ω_{Ω} and μ_{Ω} the measure on $\mathbb{N}^{\mathbb{N}}$ corresponding to π_{Ω} in the Gårding-Wightman classification. We can choose $\Omega'' \sim \Omega^2$ with $\Omega'' = \bigotimes_{k \in \mathbb{N}} \Omega''_k$,

$$\begin{aligned} \Omega_k^{\prime\prime} &= \sum_{n \in \mathbb{N}} \gamma_k^n \xi_k^n \quad \text{and} \quad \gamma_k^n \neq 0 \ \forall (n, k) \in \mathbb{N}^2 ,\\ \gamma_k^n &= \varepsilon_{kn} \quad \text{if} \quad n \neq m(k), \quad \varepsilon_k = \sum_n^\infty \varepsilon_{kn} ,\\ \sum_{k \in \mathbb{N}} \varepsilon_k &< +\infty , \quad \text{and} \quad \gamma_k^{m(k)} = 1 - \varepsilon_k . \end{aligned}$$

 2 ~ is the weak equivalence of C₀-vectors defined by von Neumann [11].

Then
$$\mu_{\Omega} = \bigotimes_{k \in \mathbb{N}} \mu_k$$
, μ_k a measure on \mathbb{N} and $\mu_k(\{n\}) = |\gamma_k^n|^2$

and

$$\mu_{\Omega}(L^m) = \inf_{p \in \mathbb{N}} \mu_{\Omega}\left(\bigcap_{k \in M_p} L_{k,m(k)}\right) = \left(\prod_{k \in \mathbb{N}} (1 - \varepsilon_k)\right)^2 > 0$$

 $\mu_{\Omega}(L_{k,m(k)}) = 1 - \varepsilon_k$

Therefore v_{χ} and π_{Ω} cannot be equivalent. From ([12], Theorem 1.3, quoted by [10]) we can conclude ω_{Ω} is not unitarily equivalent to $\omega_{s',\chi}$ and summarize:

Proposition II.1.1. The discrete V.H.U.R.-states on Δ related to a decomposition $(H_k)_{k \in \mathbb{N}}$ of H are either equivalent to the Fock state ω_J of this decomposition, or disjoint from any quasi-free state on Δ .

Example. $\omega_{\substack{k \in \mathbb{N} \\ k \in \mathbb{N}}} \xi_k^{\pm}$ (one particle in each mode) is not unitarily equivalent to any quasi-free state of Δ .

II.2. Continuous Case

Consider a non discrete state ω_{Ω} such that:

$$\exists l_0 \in \mathbb{N} \quad \forall k \in \mathbb{N} \quad \alpha_k^n = 0 \quad \text{if} \quad n \notin [1, l_0].$$

Let $L_k = \{m \in \mathbb{N}^{\mathbb{N}} | 1 \leq m(k) \leq l_0\}$ and $L = \bigcap_{k \in \mathbb{N}} L_k$. We can choose $\Omega'' \sim \Omega$ where

$$\Omega'' = \bigotimes_{k \in \mathbb{N}} \Omega''_k, \quad \Omega''_k = \sum_{n \in \mathbb{N}} \gamma^n_k \xi^n_k, \quad \gamma^n_k \neq 0 \ \forall (n,k) \in \mathbb{N}^2,$$

and

$$|\gamma_k^0|^2 + \sum_{n \atop l_0 + 1}^{\infty} |\gamma_k^n|^2 = \varepsilon_k, \qquad \sum_{k \in \mathbb{N}} \varepsilon_k < +\infty \ ,$$

 μ_{Ω} is as in (II.1) such that

$$\mu_{\Omega} = \bigotimes_{k \in \mathbb{N}} \mu_{k}, \qquad \mu_{k}(\{n\}) = |\gamma_{k}^{n}|^{2},$$
$$\mu_{\Omega}(L_{k}) = 1 - \varepsilon_{k},$$
$$\mu_{\Omega}(L) = \inf_{p \in \mathbb{N}} \mu_{\Omega}\left(\bigcap_{k=1}^{p} L_{k}\right) = \prod_{k \in \mathbb{N}} (1 - \varepsilon_{k}) > 0$$

Let $\omega_{s',\chi}$ a pure quasi-free state on Δ . Let $(\mathscr{H}_{s'}, \pi_{s'}, \Xi_{s'})$ and ν_{χ} its corresponding Gelfand troïka and Gårding-Wightman measure. $\Xi_{s'} = \bigotimes_{k \in \mathbb{N}} \Xi_k$,

$$\begin{split} \Xi_k &= \sum_{n \in \mathbb{N}} \alpha_k'^n \xi_k^n, \qquad \alpha_k'^n = \exp\left(-|c_k|^2/2\right) c_k^n / \sqrt{n!}, \\ c_k &= 0, \qquad \forall \ k \in \mathbb{N}, \qquad \beta_k'^n = |\alpha_k'^n|^2. \\ \forall \ k \in \mathbb{N} \qquad v_{\chi}(L_k) &= \sum_n^{l_0} \beta_k'^n \leq 1 - e^{-u_0} < 1 \end{split}$$

where $u_0 = (l_0!)^{1/l_0}$. Hence:

$$v_{\chi}(L) = \inf_{p \in \mathbb{N}} v_{\chi}\left(\bigcap_{k^1}^p L_k\right) = 0.$$

We can state:

Proposition II.2.1. The non-discrete V.H.U.R.-states ω_{Ω} on Δ such that

 $\exists l_0 \in \mathbb{N}, \quad \forall k \in \mathbb{N}, \quad \forall n \in \mathbb{N} - [1, l_0], \quad \alpha_k^n = 0$

are disjoint from any quasi-free state on Δ .

Example.

$$\omega_{\underset{k\in\mathbb{N}}{\otimes}\Omega_{k}}, \qquad \Omega_{k} = 1/\sqrt{2}\,\xi_{k}^{1} + 1/\sqrt{2}\,\xi_{k}^{2}\,.$$

Conclusion

We have stated that unitary equivalence to the quasi-free states is not typical for product states of the C.C.R.-algebra.

Acknowledgements. The author wishes to thank J. Manuceau, M. Sirugue, D. Testard, A. Verbeure and E. J. Woods for fruitful discussions.

References

- 1. Gille, J. F.: Commun. math. Phys. 34, 131-134 (1973)
- 2. Gille, J. F., Manuceau, J.: Gauge transformations of second type and their implementation. II-Bosons. Preprint-Marseille, p. 486 (1972)
- 3. Klauder, J. R., McKenna, J., Woods, E. J.: J. Math. Phys. 7, 822-828 (1966)
- 4. Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: Commun. math. Phys. 32, 231-243 (1973)
- 5. Manuceau, J.: Ann. Inst. Henri Poincaré 8, 139-161 (1968)
- 6. Schweber, S.S., Wightmann, A.S.: Phys. Rev. 98, 812-837 (1955)
- 7. Manuceau, J., Verbeure, A.: Commun. math. Phys. 9, 293-302 (1968)
- 8. Manuceau, J., Rocca, F., Testard, D.: Commun. math. Phys. 12, 43-57 (1969)
- 9. Araki, H., Shiraishi, M.: RIMS Kyoto University, Vol. VII, p. 105-120 (1971)
- 10. Garding, L., Wightmann, A.S.: Proc. Natl. Acad. Sci. US 40, 622 (1954)
- 11. von Neumann, J.: Comp. Math. 6, 1-77 (1938)
- 12. Guichardet, A.: Algèbres d'observables associées aux relations de commutation. Paris: Armand Colin 1968

J. F. Gille
Centre de Physique Théorique
C.N.R.S.
31, Chemin J. Aiguier
F-13274 Marseille, Cedex 2, France

228