Non Quasi-free Classes of Product States of the C.C.R.-Algebra
 J. F. Gille*
 Centre de Physique Théorique, C.N.R.S., Marseille, France

Recerved May 16. 1973

Abstract

Two exemples of pure states of Van Hove's Universal Receptacle in the boson case are presented with are not unitarily equivalent to any quasi-free state. In particular, it is shown that a discrete state is unitarily equivalent to some quasi-free state if and only if it is equivalent to the Fock state related to the chosen decomposition of the test function space.

I. Introduction

This paper is a continuation of a previous one [1] in which we showed that non discrete pure states of the Van Hove's Universal Receptacle in the fermion case are not unitarily equivalent to any quasi-free state. The situation in the boson case is a little more complicated. Indeed, the quasifree states of the C.C.R.-algebra are of discrete and non discrete type [2]. If we restrict ourselves to a fixed basis of the test function space H_{0} the discrete states are equivalent to a class of states which we called "physically pure" ones. Those "physically pure" states are different from the quasifree states except for the Fock state, moreover there exist ${ }^{1}$ non discrete states which are disjoint from every quasi-free state of the decomposition of H_{0} we consider. But the question remained open as if we can state the same assertions considering all quasi-free states issued from any possible decomposition of H_{0}.

I.1. Notations

Let $\left(H_{k}\right)_{k \in \mathbb{N}}$ a countable family of two-dimensional real vector spaces, and $H=\bigoplus_{k \in \mathbb{N}} H_{k}$ the weak sum of the H_{k} 's. $\left(H=\left\{\varphi \in H_{0} \mid P_{k} \varphi=0\right.\right.$ for a finite number of k 's $\}, H_{0}=\bigoplus_{k \in \mathbb{N}} H_{k}$ denoting the Hilbert sum).

Equipped with σ, a regular, antisymmetric, real bilinear form $\left(H_{0}, \sigma\right)$ is a separable symplectic space.

[^0]Let $\Delta\left(H_{0}, \sigma\right)$ denote the algebra generated by finite linear combinations of δ_{ψ} 's, $\psi \in H_{0}$, such that:

$$
\begin{aligned}
& \delta_{\psi}(\varphi)=0 \quad \text { if } \quad \psi \neq \varphi \\
& \delta_{\psi}(\psi)=1
\end{aligned}
$$

with the product law:

$$
\delta_{\psi} \delta_{\varphi}=e^{-i \sigma(\psi, \varphi)} \delta_{\psi+\varphi}
$$

and the involution:

$$
\delta_{\psi} \mapsto \delta_{\psi}^{*}=\delta_{-\psi}
$$

Let $\mathscr{F}\left(H_{0}, \sigma\right)$ the set of states of $\Delta\left(H_{0}, \sigma\right)$. We define a norm on $\Delta\left(H_{0}, \sigma\right)$ by:

$$
\left.x \in \Delta\left(H_{0}, \sigma\right), \quad\|x\|=\sup _{\omega \in \mathscr{F}\left(H_{0}, \sigma\right)} \sqrt{\omega\left(x^{*} x\right.}\right)
$$

It is a C^{*}-algebra norm [4]. The closure of $\Delta\left(H_{0}, \sigma\right)$ will be denoted by $\Delta_{0} \equiv \overline{\Delta\left(H_{0}, \sigma\right)}(\Delta \equiv \overline{\Delta(H, \sigma)})$ and we shall call Δ_{0} the C.C.R.-algebra and Δ the local C.C.R.-algebra.

For more details see [5] and [4]. Let $\mathscr{R}(H, \sigma)$ the set of non-degenerated representations π of $\Delta(H, \sigma)$ such that the mapping $\lambda \in \mathbb{R}, \lambda \mapsto \pi\left(\delta_{\lambda \psi}\right)$ is strongly continuous. Let $\pi_{k} \in \mathscr{R}\left(H_{k}, \sigma\right)$ be an irreducible representation of $\Delta\left(H_{k}, \sigma\right)$ into the separable Hilbert space \mathscr{H}_{k}. There is only one complex structure J such that $J H_{k}=H_{k}, \forall k \in \mathbb{N}$, which defines a σ-permitted hilbertian form s on H. Let ω_{k} be such that $\omega_{k}\left(\delta_{\psi}\right)$ $=\exp \left(-\frac{1}{2} s(\psi, \psi)\right)$ with $\delta_{\psi} \in \Delta\left(H_{k}, \sigma\right) . \omega_{k}$ is a pure state of $\Delta\left(H_{k}, \sigma\right)([5]$, (3.2.1) and (3.2.2)) to which corresponds, in the G.N.S. construction, the representation π_{k}, called the Schrödinger representation, and the cyclic vector $\xi_{k} \in \mathscr{H}_{k}$. Let $\pi=\bigotimes_{k \in \mathbb{N}} \pi_{k}$ and recall that each $\Omega=\bigotimes_{k \in \mathbb{N}} \Omega_{k}, \Omega_{k}$ being a unitary vector of \mathscr{H}_{k}, determines an incomplete tensor product $\mathscr{H}^{\Omega}=\bigotimes_{k \in \mathbb{N}}^{\mathscr{C}(\Omega)} \mathscr{H}_{k}$, with $\mathscr{C}(\Omega)$ the equivalence class of Ω for the relation $\approx\left(\Omega \approx \Omega^{\prime}\right.$ iff $\left.\sum_{k \in \mathbb{N}}\left|1-\left(\Omega_{k} \mid \Omega_{k}^{\prime}\right)\right|<+\infty\right)$. Let π_{Ω} the irreducible representation such that $x \in \Delta, \pi_{\Omega}(x)=\pi(x) \mid \mathscr{H}^{\Omega}$.

I.2. Definitions

Definition I.2.1. The state $\omega_{\Omega} \equiv\left(\Omega \mid \pi_{\Omega}(\cdot) \Omega\right)$ will be called a state of Van Hove's Universal Receptacle (V.H.U.R.-state) relating to the decomposition $\left(H_{k}\right)_{k \in \mathbb{N}}$.

Let us denote by A_{k} the field operator, defined by

$$
\pi_{k}\left(\delta_{\psi_{k}}\right)=e^{i A_{k}\left(\psi_{k}\right)}, \quad \psi_{k} \in H_{k}
$$

We shall write the corresponding creation and annihilation operators, as:

$$
\begin{aligned}
& a^{+}\left(\psi_{k}\right)=\frac{1}{2}\left(A_{k}\left(\psi_{k}\right)-i A_{k}\left(J \psi_{k}\right)\right), \\
& a^{-}\left(\psi_{k}\right)=\frac{1}{2}\left(A_{k}\left(\psi_{k}\right)+i A_{k}\left(J \psi_{k}\right)\right) .
\end{aligned}
$$

We choose $\psi_{k}^{1} \in H_{k},\left\|\psi_{k}^{1}\right\|^{2}=s\left(\psi_{k}^{1}, \psi_{k}^{1}\right)=1$ and we shall use $a_{k}^{+}=a^{+}\left(\psi_{k}^{1}\right)$, $a_{k}^{-}=a^{-}\left(\psi_{k}^{1}\right)$.

Recall that ξ_{k} is a cyclic vector corresponding to the state ω_{k}, and that
 unitary Ω_{k} of \mathscr{H}_{k} can be written $\Omega_{k}=\sum_{n \in \mathbb{N}} \alpha_{k}^{n} \xi_{k}^{n}\left(\sum_{n \in \mathbb{N}}\left|\alpha_{k}^{n}\right|^{2}=1 \forall k \in \mathbb{N}\right)$. From now we shall denote $\beta_{k}^{n}=\left|\alpha_{k}^{n}\right|^{2}$.

Definition I.2.2. A representation $\pi_{\Omega}\left(\mathrm{a}\right.$ state $\left.\omega_{\Omega}\right)$ is a discrete one if and only if $\sum_{\substack{(k, j, l) \in \mathbb{N}^{3} \\ j \neq l}} \beta_{k}^{j} \beta_{k}^{l}<+\infty$. If this series does not converge $\pi_{\Omega}\left(\omega_{\Omega}\right)$ is called a continuous representation (state).

This is the terminology of [6].
Definition I.2.3. A state ω_{Ω} will be called a "physically pure" one if $\alpha_{k}^{n}=0, \forall n \neq m(k)$.

Corollary I.2.4. [2, Proposition 4.2]. There exists a physically pure state $\omega_{\Omega^{\prime}}$ unitarily equivalent to ω_{Ω} iff ω_{Ω} is a discrete state.

Definition I.2.5. A quasi-free state on Δ is a state ω for which $\omega\left(\delta_{\varphi}\right)=\exp \left(-\frac{1}{2} s^{\prime}(\varphi, \varphi)+i \chi(\varphi)\right), \forall \varphi \in H$ with s^{\prime} a σ-allowed hilbertian structure on H and χ in the algebraic dual of H. Cf. [7-9].

There is only one Fock state ω_{J} among the V.H.U.R.-states related to the decomposition $\left(H_{k}\right)_{k \in \mathbb{N}}$. The discrete quasi-free states are all unitarily equivalent to this Fock state, and they have χ continuous [2, (4.3) and (4.6)].

II. Characterization of the Discrete States and an Example of a Class of non Quasi Free Continuous States

II.1. Discrete Case

Recalling that every-discrete V.H.U.R.-state is unitarily equivalent to a "physically pure" state, we can restrict ourself to consider the "physically pure" states.

Let ω_{Ω} a "physically pure" state which is disjoint from the Fock state ω_{J} related to the decomposition $\left(H_{k}\right)_{k \in \mathbb{N}}$ of H_{0} that we fixed. Then $\Omega=\bigotimes_{k \in \mathbb{N}} \xi_{k}^{m(k)}$.

Let $\omega_{s^{\prime}, \chi}$ a pure quasi-free state on Δ, i.e. $\omega_{s^{\prime}, \chi}$ is such that $\omega_{s^{\prime}, k}\left(\delta_{\varphi}\right)$ $=e^{i \chi(\varphi)} e^{-\frac{i}{2} s^{\prime}(\varphi, \varphi)}$ with $\varphi \in H$ and s^{\prime} a σ-allowed hilbertian structure on H ($s^{\prime}=-\sigma \circ J^{\prime}, J^{\prime}$ a complex structure on H). Via G.N.S. we obtain from $\omega_{s^{\prime}, \chi}$ the Gelfand troïka $\left(\mathscr{H}_{s^{\prime}}, \pi_{s^{\prime}}, \Xi_{s^{\prime}}\right)$, such that $\forall x \in \Delta, \omega_{s^{\prime}, \chi}(x)$ $=\left(\Xi_{s^{\prime}} \mid \pi_{s^{\prime}}(x) \Xi_{s^{\prime}}\right), \Xi_{s^{\prime}}=\bigotimes_{k \in \mathbb{N}} \Xi_{k}, \Xi_{k}=\sum_{n \in \mathbb{N}} \alpha_{k}^{\prime n} \xi_{k}^{n}, \alpha_{k}^{\prime n}=\exp \left(-\frac{\left|c_{k}\right|^{2}}{2}\right) \frac{c_{k}^{n}}{\sqrt{n!}}$, $c_{k} \in \mathbb{C}, \beta_{k}^{\prime n}=\left|\alpha_{k}^{\prime n}\right|^{2}$ [2]. To the representation $\pi_{s^{\prime}}$ corresponds in the Gårding-Wightman classification [10] the measure v_{χ} on $\mathbb{N}^{\mathbb{N}}$. If $\omega_{s^{\prime}: \chi}$ is unitarily equivalent to $\omega_{\Omega}, \omega_{s^{\prime}, x}$ is a discrete state and therefore it is unitarily equivalent to the Fock state of the decomposition of H related to s^{\prime}. We can choose $c_{k} \neq 0, \forall k \in \mathbb{N}$. The measure v_{χ} can be described as $v_{\chi}=\bigotimes_{k \in \mathbb{N}} v_{k}$ with v_{k} a measure on \mathbb{N} and $v_{k}(\{n\})=\beta_{k}^{\prime n} \stackrel{=}{=} \exp \left(-\left|c_{k}\right|^{2}\right)\left|c_{k}\right|^{2 n} / n!$ $c_{k} \neq 0 \quad \forall k \in \mathbb{N}$, thus we have a quasi-invariant measure.

Let

$$
\begin{array}{r}
L_{k, n}=\left\{m \in \mathbb{N}^{\mathbb{N}} \mid m(k)=n\right\} \\
v_{\chi}\left(L_{k, n}\right)=\beta_{k}^{\prime n}=\exp \left(-\left|c_{k}\right|^{2}\right) \cdot \frac{\left|c_{k}\right|^{2 n}}{n!}
\end{array}
$$

$m(k) \geqq 1$ for an infinite collection of M of k 's, thus:

$$
v_{\chi}\left(L_{k, m(k)}\right)<\frac{1}{\sqrt{2 \pi}}<1
$$

for those k 's. Let

$$
\begin{gathered}
L^{m}=\bigcap_{k \in M} L_{k, m(k)} . \quad M_{p}=M \cap\{1, \ldots, p\} \\
v_{\chi}\left(L^{m}\right)=\inf _{p \in \mathbb{N}} v_{\chi}\left(\bigcap_{k \in M_{p}} L_{k, m(k)}\right)=0 .
\end{gathered}
$$

Yet, let π_{Ω} be the representation constructed via G.N.S. from ω_{Ω} and μ_{Ω} the measure on $\mathbb{N}^{\mathbb{N}}$ corresponding to π_{Ω} in the Gårding-Wightman classification. We can choose $\Omega^{\prime \prime} \sim \Omega^{2}$ with $\Omega^{\prime \prime}=\bigotimes_{k \in \mathbb{N}} \Omega_{k}^{\prime \prime}$,

$$
\begin{gathered}
\Omega_{k}^{\prime \prime}=\sum_{n \in \mathbb{N}} \gamma_{k}^{n} \xi_{k}^{n} \quad \text { and } \quad \gamma_{k}^{n} \neq 0 \forall(n, k) \in \mathbb{N}^{2}, \\
\gamma_{k}^{n}=\varepsilon_{k n} \quad \text { if } n \neq m(k), \quad \varepsilon_{k}=\sum_{n}^{\infty} \varepsilon_{k n} \\
\sum_{k \in \mathbb{N}} \varepsilon_{k}<+\infty, \quad \text { and } \quad \gamma_{k}^{m(k)}=1-\varepsilon_{k}
\end{gathered}
$$

[^1]Then $\mu_{\Omega}=\bigotimes_{k \in \mathbb{N}} \mu_{k}, \mu_{k}$ a measure on \mathbb{N} and $\mu_{k}(\{n\})=\left|\gamma_{k}^{n}\right|^{2}$
and

$$
\mu_{\Omega}\left(L_{k \cdot m(k)}\right)=1-\varepsilon_{k}
$$

$$
\mu_{\Omega}\left(L^{m}\right)=\inf _{p \in \mathbb{N}} \mu_{\Omega}\left(\bigcap_{k \in M_{p}} L_{k, m(k)}\right)=\left(\prod_{k \in \mathbb{N}}\left(1-\varepsilon_{k}\right)\right)^{2}>0 .
$$

Therefore v_{χ} and π_{Ω} cannot be equivalent. From ([12], Theorem 1.3, quoted by [10]) we can conclude ω_{Ω} is not unitarily equivalent to $\omega_{s^{\prime}, x}$ and summarize:

Proposition II.1.1.The discrete V.H.U.R.-states on Δ related to a decomposition $\left(H_{k}\right)_{k \in \mathbb{N}}$ of H are either equivalent to the Fock state ω_{J} of this decomposition, or disjoint from any quasi-free state on Δ.

Example. $\omega_{k \in \mathbb{N}}^{\otimes} \underset{k}{\xi_{k}^{\prime}}$ (one particle in each mode) is not unitarily equivalent to any quasi-free state of Δ.

II.2. Continuous Case

Consider a non discrete state ω_{Ω} such that:

$$
\exists l_{0} \in \mathbb{N} \quad \forall k \in \mathbb{N} \quad \alpha_{k}^{n}=0 \quad \text { if } \quad n \notin\left[1, l_{0}\right] .
$$

Let $L_{k}=\left\{m \in \mathbb{N}^{\mathbb{N}} \mid 1 \leqq m(k) \leqq l_{0}\right\}$ and $L=\bigcap_{k \in \mathbb{N}} L_{k}$. We can choose $\Omega^{\prime \prime} \sim \Omega$ where
and

$$
\Omega^{\prime \prime}=\bigotimes_{k \in \mathbb{N}} \Omega_{k}^{\prime \prime}, \quad \Omega_{k}^{\prime \prime}=\sum_{n \in \mathbb{N}} \gamma_{k}^{n} \xi_{k}^{n}, \quad \gamma_{k}^{n} \neq 0 \quad \forall(n, k) \in \mathbb{N}^{2},
$$

$$
\left|\gamma_{k}^{0}\right|^{2}+\sum_{n}^{\infty} l_{0}+1\left|\gamma_{k}^{n}\right|^{2}=\varepsilon_{k}, \quad \sum_{k \in \mathbb{N}} \varepsilon_{k}<+\infty
$$

μ_{Ω} is as in (II.1) such that

$$
\begin{gathered}
\mu_{\Omega}=\bigotimes_{k \in \mathbb{N}}^{\otimes} \mu_{k}, \quad \mu_{k}(\{n\})=\left|\gamma_{k}^{n}\right|^{2} \\
\mu_{\Omega}\left(L_{k}\right)=1-\varepsilon_{k} \\
\mu_{\Omega}(L)=\inf _{p \in \mathbb{N}} \mu_{\Omega}\left(\bigcap_{k^{1}}^{p} L_{k}\right)=\prod_{k \in \mathbb{N}}\left(1-\varepsilon_{k}\right)>0 .
\end{gathered}
$$

Let $\omega_{s^{\prime}, \chi}$ a pure quasi-free state on Δ. Let $\left(\mathscr{H}_{s^{\prime}}, \pi_{s^{\prime}}, \Xi_{s^{\prime}}\right)$ and v_{χ} its corresponding Gelfand troïka and Gårding-Wightman measure. $\Xi_{s^{\prime}}=\bigotimes_{k \in \mathbb{N}} \Xi_{k}$,

$$
\begin{gathered}
\Xi_{k}=\sum_{n \in \mathbb{N}} \alpha_{k}^{\prime n} \xi_{k}^{n}, \quad \alpha_{k}^{\prime n}=\exp \left(-\left|c_{k}\right|^{2} / 2\right) c_{k}^{n} / \sqrt{n!}, \\
c_{k} \neq 0, \quad \forall k \in \mathbb{N}, \quad \beta_{k}^{\prime n}=\left|\alpha_{k}^{\prime n}\right|^{2} \\
\forall k \in \mathbb{N} \quad v_{\chi}\left(L_{k}\right)=\sum_{n}^{l_{0}} \beta_{k}^{\prime n} \leqq 1-e^{-u_{0}}<1
\end{gathered}
$$

where $u_{0}=\left(l_{0}!\right)^{1 / l_{0}}$. Hence:

$$
v_{\chi}(L)=\inf _{p \in \mathbb{N}} v_{\chi}\left(\bigcap_{k^{1}}^{p} L_{k}\right)=0
$$

We can state:
Proposition II.2.1. The non-discrete V.H.U.R.-states ω_{Ω} on Δ such that

$$
\exists l_{0} \in \mathbb{N}, \quad \forall k \in \mathbb{N}, \quad \forall n \in \mathbb{N}-\left[1, l_{0}\right], \quad \alpha_{k}^{n}=0
$$

are disjoint from any quasi-free state on Δ.
Example.

$$
\omega_{k \in \mathbb{N}}^{\otimes} \Omega_{k}, \quad \Omega_{k}=1 / \sqrt{2} \xi_{k}^{1}+1 / \sqrt{2} \xi_{k}^{2}
$$

Conclusion

We have stated that unitary equivalence to the quasi-free states is not typical for product states of the C.C.R.-algebra.

Acknowledgements. The author wishes to thank J. Manuceau, M. Sirugue, D. Testard, A. Verbeure and E. J. Woods for fruitful discussions.

References

1. Gille, J. F.: Commun. math. Phys. 34, 131-134 (1973)
2. Gille, J.F., Manuceau, J.: Gauge transformations of second type and their implementation. II-Bosons. Preprint-Marseille, p. 486 (1972)
3. Klauder, J. R., McKenna, J., Woods, E. J.: J. Math. Phys. 7, $822-828$ (1966)
4. Manuceau, J.. Sirugue. M., Testard, D., Verbeure, A.: Commun. math. Phys. 32. 231-243 (1973)
5. Manuceau, J.: Ann. Inst. Henri Poincaré 8, 139-161 (1968)
6. Schweber, S. S., Wightmann, A. S.: Phys. Rev. 98, 812-837 (1955)
7. Manuceau, J., Verbeure, A.: Commun. math. Phys. 9, 293-302 (1968)
8. Manuceau, J., Rocca, F., Testard, D.: Commun. math. Phys. 12, 43-57 (1969)
9. Araki, H., Shiraishi, M.: RIMS Kyoto University, Vol. VII, p. 105-120 (1971)
10. Garding, L., Wightmann, A.S.: Proc. Natl. Acad. Sci. US 40, 622 (1954)
11. von Neumann, J.: Comp. Math. 6, 1-77 (1938)
12. Guichardet, A.: Algèbres d'observables associées aux relations de commutation. Paris: Armand Colin 1968

J. F. Gille
Centre de Physique Théorıque
C.N.R.S.
31, Chemin J. Aiguier
F-13274 Marseille, Cedex 2, France

[^0]: * Attaché de Recherches - C.N.R.S. - Marseille.
 ${ }^{1}$ The Klauder-McKenna-Woods criterion [3] provides examples of this, as $\Omega_{k}=1 / \sqrt{2} \xi_{k}^{1}+1 / \sqrt{2} \xi_{k}^{2}$. See notation further.

[^1]: $2 \sim$ is the weak equivalence of C_{0}-vectors defined by von Neumann [11].

