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Abstract. Two exemples of pure states of Van Move's Universal Receptacle in the
boson case are presented with are not unitarily equivalent to any quasi-free state. In
particular, it is shown that a discrete state is unitarily equivalent to some quasi-free state
if and only if it is equivalent to the Fock state related to the chosen decomposition of the
test function space.

I. Introduction

This paper is a continuation of a previous one [1] in which we showed
that non discrete pure states of the Van Hove's Universal Receptacle in
the fermion case are not unitarily equivalent to any quasi-free state. The
situation in the boson case is a little more complicated. Indeed, the quasi-
free states of the C.C.R.-algebra are of discrete and non discrete type [2].
If we restrict ourselves to a fixed basis of the test function space H0 the
discrete states are equivalent to a class of states which we called "physically
pure" ones. Those "physically pure" states are different from the quasi-
free states except for the Fock state, moreover there exist1 non discrete
states which are disjoint from every quasi-free state of the decomposition
of HQ we consider. But the question remained open as if we can state the
same assertions considering all quasi-free states issued from any possible
decomposition of H0.

LI. Notations

Let (Hk}ke^ a countable family of two-dimensional real vector spaces,
and H= @ Hk the weak sum of the Hks. (H = {φ <=H0\Pkφ =Q for a

/ceN

finite number of k's}, H0 = (J) Hk denoting the Hubert sum).
JceN

Equipped with σ, a regular, antisymmetric, real bilinear form (H0, σ)
is a separable symplectic space.

* Attache de Recherches - C.N.R.S. - Marseille.
1 The Klauder-McKenna-Woods criterion [3] provides examples of this, as

Ω k = l / ] / ϊ . ξ l + l/l/2^2. See notation further.



224 J. F. Gille

Let A(HQ,σ) denote the algebra generated by finite linear combina-
tions of (5v's, ip e H0, such that:

<5» = 0 if

with the product law:

and the involution:

Let ̂  (H0 , σ) the set of states of A (H0 , σ). We define a norm on Δ (H0 , σ) by :

xeZl(H 0 ,σ), ||x|| = sup ]/ω(x*x) .
ωe&(Ho,σ)

It is a C*-algebra norm [4]. The closure of A(HQ, σ) will be denoted by
AQ = A(HQ, σ) (A =A(H, σ)} and we shall call A0 the C.C.R.-algebra and A
the local C.C.R.-algebra.

For more details see [5] and [4]. Let $(H, σ) the set of non-degenerated
representations π of A(H,σ) such that the mapping /leIR, >lι->π(δλl/;)
is strongly continuous. Let πk e &(Hk, σ) be an irreducible representa-
tion of ^(Hk, σ) into the separable Hubert space J>^fk. There is only one
complex structure J such that JHk = Hk, V / c e N , which defines a
σ-permitted hilbertian form s on H. Let ωk be such that ωk(δψ)
= exp( — |s(φ, ip)) with <5V e zl(fίk, σ). ωfc is a pure state of A(Hk9 σ) ([5],
(3.2.1) and (3.2.2)) to which corresponds, in the G.N.S. construction, the
representation πk, called the Schrδdinger representation, and the cyclic
vector ξk E 3tifk. Let π = (X) πk and recall that each Ω = (X) Ωk, Ωk being

kelN keN

a unitary vector of J>fk, determines an incomplete tensor product
with #(Ω) the equivalence class of Ω for the relation

e

«(Ω«Ω' iff ^ |1 — (Ωk |Ωk)| < + oo). Let πΩ the irreducible representa-
feeN

tion such that xeΔ, πΩ(x) = π(x)\JjfΩ.

1.2. Definitions

Definition 1.2.1. The state ωβ = (Ω|πβ( )Ω) will be called a state of
Van Hove's Universal Receptacle (V.H.U.R.-state) relating to the
decomposition (Hk)kelN.

Let us denote by Ak the field operator, defined by
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We shall write the corresponding creation and annihilation operators, as:

a + (ψJ = τ(Ak(ψJ-iAk(Jψ$,

a~(Ψk) = iίΛOPk) + i Λ k ( J ι p k ) ) .

We choose ψkeHk, \\ψk\\2 = s(ψk, ψk)= 1 and we shall use ak = α+(ι/4),
ak = a~(ip\).

Recall that ξh is a cyclic vector corresponding to the state ωfc, and that

(^k)πeiN witrι £k = i/]/ni(ak)n£k is an orthonormal basis of J^k. Any
unitary Ωk of ^fk can be written Ωk = Σ ^^(Σ «*!2 = 1 V fc e N] . From

ι 11 Δ nn i n i ? we!N \ « e N /
now we shall denote βk = \ak\ .

Definition 1.2.2. A representation πΩ (a state ωβ) is a discrete one if
and only if ^ β{βl

k< + co. If this series does not converge πβ(ωβ)
(kJ,/)eN 3

J * Z

is called a continuous representation (state).

This is the terminology of [6].

Definition 1,2.3. A state ωΩ will be called a "physically pure" one if
α"k=0, Vnφro(k) .

Corollary 1.2.4. [2, Proposition 4.2]. Tftere exisί s α physically pure
state ωΩ> unitarily equivalent to ωΩ iff ωΩ is a discrete state.

Definition 1.2.5. A quasi-free state on A is a state ω for which
ω(δφ) = exp( — ̂ s'(φ,φ) + i χ ( φ ) ) , \ / φ e H with 5' a σ-allowed hilbertian
structure on H and χ in the algebraic dual of//. Cf. [7-9].

There is only one Fock state ω3 among the V.H.U.R.-states related
to the decomposition (Hfc)keN. The discrete quasi-free states are all
unitarily equivalent to this Fock state, and they have χ continuous
[2, (4.3) and (4.6)].

II. Characterization of the Discrete States and an Example of a Class
of non Quasi Free Continuous States

ILL Discrete Case

Recalling that every-discrete V.H.U.R.-state is unitarily equivalent
to a "physically pure" state, we can restrict ourself to consider the
"physically pure" states.

Let ωΩ a "physically pure" state which is disjoint from the Fock state
Co, related to the decomposition (Hk)ke^ of //0 that we fixed. Then
O — Γv^i £mWiJ — (X) ζk .

feeN
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Let ωs, χ a pure quasi-free state on A, i.e. ωs> χ is such that cQs>,k(δφ)
= e

ίχ(φ)e~is'(φ'φ) with φ e H and s' a σ-allowed hiίbertian structure on H
(s' — — σ ° J', J' a complex structure on H). Via G.N.S. we obtain from
ωs>^ the Gelfand troϊka (J fs,,πS',Ξs,), such that V x e z l ,

cke(C, β'k
n = \tt'k

n2 [2]. To the representation π s> corresponds in the
Garding-Wightman classification [10] the measure vχ on N11"1. If ωs> ,* is

unitarily equivalent to ωΩ, ω s^ χ is a discrete state and therefore it is
unitarily equivalent to the Fock state of the decomposition of H related
to s'. We can choose ck φ 0, V k e N. The measure vχ can be described as

vk with vk a measure on N and vk({n}) = β'k
n = exp( - \ck\

2} \ck\
2n

ck φ 0 V /c e N, thus we have a quasi-invariant measure.
Let

m(fe) ̂  1 for an infinite collection of M of fe's, thus :

vx(Lk,m(k}) < -^~ < 1
l/2π

for those k's. Let

Yet, let πΩ be the representation constructed via G.N.S. from ωΩ

and μβ the measure onNN corresponding to πβ in the Garding-Wightman
classification. We can choose Ω" ~ Ω 2 with Ω" = (X) ΩJ[,

ΛeN

Ωi'= X vZίϊ and y ^ Φ O V(«,/c)eN 2,
MeN

00

yί = εkn if nφm(fe) , ε k -^ε k f j ,
n

ε,< + oo, and yj" fc) = l-ε k .

is the weak equivalence of C0-vectors defined by von Neumann [11].
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= n2Then μΩ = (X) μk, μk a measure on N and μfc({n}) = \y
/ceN

and
μΩ(Lm} = mϊμΩl f ] Lk,m < k )) = m

PeN UeMp / \/ceN

Therefore vχ and πβ cannot be equivalent. From ([12], Theorem 1.3,
quoted by [10]) we can conclude ωΩ is not unitarily equivalent to ωs^χ

and summarize:

Proposition ΪL.ΐ.l.The discrete V.H.U.R.-states on A related to a
decomposition (Hk)k€^ of H are either equivalent to the Fock state ωj
of this decomposition, or disjoint from any quasi-free state on A.

Example, ω Θ ξι (one particle in each mode) is not unitarily equivalent
/ceN

to any quasi-free state of A.

11.2. Continuous Case

Consider a non discrete state ωΩ such that:

3 / 0 e N V / c e N α£ = 0 if n£[ l ,/ 0 ]

Let Lk = {m eNN 1 ^ ro(fc) ̂  /0} and L - f] Lk. We can choose Ω" - Ω
/ceN

where

/ceN
and

is as in (II. 1) such that

μΩ=

Let ωs« χ a pure quasi-free state on A. Let (Jf^, πs>, Ξs») and vχ its correspond-
ing Gelfand troϊka and Garding-Wightman measure. Ξs>= (X)Sfc,

keN

2* = Σ *'k& a? = exp(- q|2/2) c^/jAI,
neN

c / c φO, V f c e N ,
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where M 0 =(/ 0 ! ) 1 / l 0 . Hence:

We can state:

Proposition Π.2.1. The non-discrete V.H.U.R.- states ωΩ on A such that

3 / 0 e N , V / c e N , V n e N - [ l , / 0 ] , α"k = 0

are disjoint from any quasi-free state on A.

Example.

Conclusion

We have stated that unitary equivalence to the quasi-free states is
not typical for product states of the C.C.R. -algebra.
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