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Abstract. Using the formalism developed in the preceding paper, all axisymmetric
stationary horizons are described. It is found that the bifurcate-type horizons (such as
Schwarzschild) are as numerous as about four functions of one variable, while the extreme-
type ones (such as extreme Kerr) only as about two functions of one variable. On the other
hand, there is exactly one axisymmetric stationary space-time containing a given bifurcate-
type horizon, in comparison to a whole family (at least as numerous as two functions of one
variable) of such space-times for a given extreme-type one.

The total mass m and angular momentum am of the corresponding black hole could
in principle be computed from the invariants describing the bifurcate-type horizons,
because the horizons determine their space-time uniquely, but a definite way of com-
putation will probably be difficult to find. On the other hand, the Kerr-Newman-like
parameters m and a are easily defined and computed for any extreme-type horizon, but their
physical meaning remains so far obscure.

1. Introduction and Summary

In the previous paper [1], a simple classification of symmetry
properties of the perfect horizons [2] has been achieved. In the present
paper, we find all horizons of the first few most symmetric classes which
can be imbedded in electrovacuum space-times. We use the notation
introduced in [1]; this paper will be referred to as I hereafter [e.g., the
Eq. (x) of [1] will be denoted I(x)].

In Section 2, the spherically symmetric horizons are investigated.
They are found to form a three-parameter family that contains the
Reissner-Norstr0m horizons with m2 > e2 + h2 (m is the mass, e the
electric and h the magnetic charge) and bifurcates in two two-parameter
subfamilies at m2 = e2 + h2, the first being the extreme Reissner-Nord-
str0m one, and the second being formed by the horizons in the homo-
geneous space-times S^xP^. Here S^9 P2 is the 2-sphere and 2-pseudo-
sphere, respectively, of radius m and x denotes the Cartesian product
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of metric manifolds. Thus, all spherically symmetric horizons are static -
a Birkhoff-like inversion of Israel's theorem [3].

The axially symmetric horizons with a collineation group — briefly
A C-horizons - are easy to deal with, because they possess special space-
like sections. The complete set of independent invariants for this class,
found in Section 3, consists of four functions A(9)9 B(ff), C(θ), D(θ) of
one variable ± finite number of parameters (cf. also [2]). Thus, AC-
horizons are rather numerous. One could argue that this result need not
have any physical relevance, because we have given only the horizons
and not whole space-times and we cannot, therefore, say whether there
is a physically reasonable (asymptotically flat, causal, etc.) space-time
for any of our horizons. But this argument seems to break down for the
following reason. We show in Section 3 that, given an ^4C-horizon Jt±

then there is only one axisymmetric and stationary space-time Jί
containing Ji as a Killing horizon (we suppose analyticity, but this
restriction is probably not very important). That is to say, if there is
some matter or charge orbiting a black hole, then this must show up
in the inner structure of the horizon (see also [4]). And it seems desirable
to have physically reasonable axially symmetric stationary space-times
with matter and charge flows round a black hole, since this would be the
simplest model for some observable effects. On the other hand, all such
space-times should be at least as numerous as four functions of two
variables (stationary constraints on the flows - essentially conservation
laws — together with the symmetry imply that just the φ- and ί-com-
ponents of any flow are non-zero and depend only on r and θ). Thus,
we have, in fact, obtained too small a number of horizons, showing
either that the flows round a black hole cannot be completely arbitrary
or that different flows are compatible with the same exterior analytic

fields examples of the latter possibility are well-known: the singularity

of the Schwarzschild field with a total mass m can be smoothed out by
matter of density ρ(r), arbitrary up to a relation

We believe that our result does not contradict the various no-hair-
theorems, because these are rigorously shown only for static electro-
vacuum [3] or stationary vacuum [5] in the full extent, and, in a restricted
extent, they concern only the fact that all fields different from Maxwell
and gravitational fields are zero at the horizon [6]. There seems also
to be no contradiction to [7], where the black hole in energy and angular
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momentum exchange with surrounding flows is described with just two
parameters.

More difficult is the analysis of the axisymmetric horizons with a
translation group — briefly AT-horizons (they are of the type, say,
extreme Kerr). The four invariant functions A, B, C, D, which were
arbitrary in the ^C-case, now have to satisfy a complex system of
differential equations. We show in Section 4 that the only solution is
given by A, B, C, D corresponding to the Kerr-Newman horizons with
m2 = a2 + e2 + h2. Thus, the parameters m, α, e, h are - formally - well-
defined for any AT-horizon. On the other hand, some other invariant
functions, which have to be identically zero for the A C-horizons, can,
now be arbitrary; we arrive at a complete set of independent invariants
consisting of two functions A^B), A2(S) of one variable + finite number
of parameters. Another surprising property is the following. Given an
^T-horizon Jl, then unlike the A C-horizpns, there is a whole family
of axisymmetric stationary space-times M containing Jf as a Killing
horizon, and this family is at least as numerous as two functions of one
variable ± finite number of degrees of freedom. In other words: put all
axisymmetric stationary solutions of Einstein-Maxwell equations which
contain Killing horizons in a box, shake it and fish at random one
space-time out of it. Then the probability to be confronted with an
A T-horizon is not less than that for an ^C-one! Of course, it is not clear
what is the "quality" of all these imbedding space-times. More analysis
will be necessary.

2. Spherical Symmetry

Suppose that the transversal group <& is isomorphic to 50(3).
According to Theorem 3 of I, ̂  has a normal subgroup, '̂, say, with
spherical space-like trajectories in Jt and isomorphic to 50(3). Then,
in a sort of spherical coordinate system 5, φ, we can set (1(20))

tf = R-2

9 Γ=-R~12'^ctgB, <F2 = const, Φί -const, K-const, (1)

2ΦΪΦ1-Ψ2-ΨΪ=R-2. (2)

(Im Ψ2) ]/§ is a curl (1(23)), so the integral of (Im Ψ2) ]/§ over the whole
sphere vanishes, or

^2 - ̂ 2 , (3)

and the afϊϊne coordinate α can be chosen such that (1(22))

Ω = 0 . (4)
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All such affine coordinates form a class, ,̂ say; any two elements α,
from ^ are connected by a transformation

where η φ 0 is a real number and ξ a real function. On the other hand,
if g E <&' and α e #, then α' = 0(α) is again from #. This means that
g(oί) = ηg a + ζg(B9 φ). But, for any 0 e ̂ ', there is a point wise invariant
ray with coordinates, say, &g,φg Thus

0(α, ̂ , φg) - (α, ̂ , φ^)

for any α, or ̂  = 1 . Hence the affine distance between the intersection
points of any ray with two fixed orbits of <&' is independent of ray, if
measured by an α e ̂ , and there is, therefore, a subclass, <$' of #, such
that any α e #' is constant along the orbits of <&'. Any two α, α' from <$'
are related by a transformation of the form α' = 77 α + ξ9 where 77 φ 0 and

5
ί are two reals. Choose some α e ̂ ', L = -̂ — and M tangent to the orbits

3α
of '̂. Such a frame is determined by the horizon structure up to the
transformation

L=~L, M' = e ί ζM, (5)

where ί]φO, ξ are real constants and ζ(θ, φ) is a real differentiable
function. Because M is tangential to a family of surfaces, it follows from

I(11)Λat ,+ =,. (6)

Any rotation eiζ(p} Mp of M at a point p can be considered as a trans-
formation of Mp by means of g%, where g is an element of <§' keeping p
fixed. It follows that any quantity of non-zero spin weight [8] must be
zero:

λ=Ψ3 = Ψ4 = Φ2 = Q. (7)

From 1(14), we have
μ = μ0 + Ψ2Όt9

and μ0 must be constant along the surfaces α = const, because of (1)
and the constancy of μ (μ has spin weight zero). (3) and (6) yield

μt=μo (8)

Under the transformation (5), μ0 transforms as follows

μΌ = n - μ<> - Ψ2 ξ,
any other quantity so far mentioned remaining unchanged. We have,
therefore the following two cases
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1) *F2ΦO. Then there are always η and ξ so that μό^O
2) Ψ2 = 0. Then there are always η such that either μ'0 = 0 or μ'0 = 1 .

There is no transformation of the form (5) bringing these two cases into
each other.

Theorem 4. The spherically symmetric horizons form the following two
families:

1) There is a frame in which

This family has the additional symmetry generated by α+ -̂ — -̂ — if
\ * 2 / ^α

a
Ϊ^ΦO, ^wd fry — — , if Ψ2 = Q, and is identical with all Reissner-Nord-

strφm horizons with the mass m, electric charge e and magnetic charge h,
where

Ψ2= +R~2(mR-e2-h2),

h

R}/2

R = m± 1/ - e2 - h2 .

2) There is a frame in which

Ω = 0, Γ---0^, A = 0,
Λ / 2 '

d d
This family has the additional symmetry generated by α— — and — — .

δa 5a
Its full set of invariants: two reals ReΦ l 5 — i!mΦ 1 assuming all values
from IR2 except for the origin.

Corollary. (Analogy of the Theorem of Birkhofϊ). Any spherically
symmetric horizon has at least a one-dimensional longitudinal symmetry
group.

The horizons of class 2) are found in the homogeneous electrovacuum
space-time with the metric

v2

ds2 = / dw2 -2dwdy- (e2 + h2} (d92 + sin2 9 dφ2) , (9)
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which is obtained from the Reissner-Nordstrom metric

ds2 = ~du2- 2du dr - r2(dB2 + sin2 9 dφ2),2-

A = (r — m)2 — y , y — |/m2 — e2 — h2 ,

in the following limit [9] : perform the transformation

u = y ~ l(m + y)2 (Igy + Ig w), r = (m + y)~2 (w + (m + y)3) , (10)

and set y = 0. The solution is not asymptotically flat; two horizons of
class 2) crossing each other are going through any point of it. The class 2)
horizons are those of maximal symmetry possible (5-dimensional group).

3. Axisymmetry and Collineation (A C-horizons)

τ4C-horizons are defined as follows: their transversal group <& is
isomorphic to SO (2) and the group Jήf of all longitudinal HS is just the
one-dimensional two-component collineation group (see I). We have
the following (cf. [2]).

Theorems. The complete set of independent invariants for all AC
horizons is formed by

1) Four smooth functions A, B, C, D on the circle 0 rg 5 ̂  2π such that

A(2π-9)= -

C(2π-θ) =

Af(0)= -A'(π)=i, (12)

and the limits

yl-1) (13)

all exist and are finite.
2) a positive real number R.
The horizon Jί corresponding to the value A, B, C, D and R of the

invariants can be constructed as follows: on Jί with the differ entiable
structure of S 2 xlR 1 , choose coordinates α, 5, φ,

α = const being S2 and (5 = const, φ = const)

being IR1; 5, φ are some usually oriented spherical coordinates on S2 with
singularities at θ = 0, 5 = π. Introduce the degenerate metric

φ2}, (14)



Axisymmetric Stationary Horizons 59

the vector fields

and the qfflne connection

(16)

(17)

VMM=-ΓM,
where

- ---
1/2 R A9 1/2 R A '

. (18)

The Maxwell and Weyl spίnors Φh Ψt are given by their components

<F3 = (M+ Ψ2 + Φ + M+ Φj) - α (19)

!F4 = — (M+ + Γ+ + Ω+) [(M+ Ψ2 + Φ+ M+ Φi) - α]

+ Φ+ (M+ + Γ+ + Ω+) [(M+ Φj) α]}

m ί/ie pseudoorthonormal tetrad whose first three vectors are L, M [10].
T/ιe HS group & is generated by

«f , -£- (20)
t α oφ

with the totally autoparallel Cauchy surface at a — 0.

Proof, i) The invariant properties of A, B, C, D, K can be seen as
follows. The coordinates 5, φ on Jί are determined by the whole con-
struction of the Theorem 5 up to transformations

#^π-θ, φ-+-φ, (21)

θ-*θ, φ->φ-φ0 (22)

where φ0 is a constant. For (22), A, B, C, D, and R remain unchanged.
For (21), the new A, B', C, D', and JR' describing the old horizon are

9), Bf(3)= -B(π-θ),
/
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As functions on the sphere ,̂ A, B, C, D, R are related to Ψ2 and Φί

by (19):

from which and from the boundary Condition (12) they are uniquely
determined (if existing at all for a given set of Ψ2, Φi). On the other
hand, Ψ2 and Φ1 are invariant (see I)1.

Thus, the invariance against all coordinate and triad transformations
with the exception of (21), (23) is established.

ii) The independence of A, B, C, D, R means that the horizon data
given in the Theorem 5 satisfy the characteristic initial value constraints
[Eqs. I(14)-I(16)] identically. A straightforward calculation, which
will not be given here, proves this easily.

iii) The symmetry claimed can be verified, if we introduce another
frame field L', M', which is invariant under the symmetries. Then, the
components of all magnitudes in the new frame must be independent
of φ and α. Such a frame is given by

L' = αL, M/ = M ~ α L ; (24)

the new metric component are equal to the old ones (14), and the new
rotation coefficients are given by

VL,L = L, VL,M' = ΩL, VM,L = ΩL, (25)

FM, M' - (MΩ + ΓΩ + Ω2)L - ΓM' ,
(26)

FM,M'+ = (Ψ2 + MΩ+ -ΓΩ+ + ΩΩ+)L + ΓM' + ,

where Γ, Ω is given by (17). The transformation formulas for the com-
ponents of the Weyl and Maxwell spinor under the transformation ([10])

Ifi = ηf9 mfi = mi + ξf9 nfί = — (nl + ξ+ ml + ξmί+ + ξξ+ Γ) , (27)
η

1 We could choose Ψ2 and Φ1 instead of A, B, C, D (a proposal by S. Hawking, private
communication). The set of invariants would, then, be more homogeneous; on the other
hand, Ψ2 and Φί must satisfy more complicated constraints than A, B, C, D and it is not
so simple to construct the corresponding horizon (differential equations had to be solved).
Therefore, we preferred the A, B, C, D.
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where η φ 0 is some real and ξ some complex function, are

Φί> = 0, ΦΊ = Φ!, Φ'2=-(Φ2 + 2<rΦι),
η

n=o, ^=0, ψ'2=ψ2, ψ'3=~(ψ3+3ξ+ψ2),

(if Φ0 = y0 = «p 1=o).
1 7 ?

Using (28) with η = α and £ = — -y=- — — — α, we obtain

φ'2 - M+ Φi + 2Ω+ Φx , ¥"3 = M+Ψ2 + 3Ω+ <F2 + Φ^ M+ Φi ,

y2 + Φ+ M+ ΦJ + 4Ω+(M+ Ψ2 + Φ+ M+ ΦJ (29)

Each of (14), (28), and (29) show the required symmetry.
iv) Finally, we must show that all horizons with axial and collineation

symmetry are described by the Theorem. Suppose Jί is a horizon with
these symmetries. We know from I, Lemma 6, that there is a unique
totally autoparallel Cauchy surface 5̂ 0 in Jί. On the other hand, the
Theorem 3 of I guarantees the existence and uniqueness of the subgroup
<S' of the group ^ of all HS of Jί, which is isomorphic to SO (2) and
satisfies ^-^xJf. ^'^Q = ̂ Q holds, because ^ and ^ commute,
so the trajectories of <§' starting in ^0 remain in 5 ,̂ and are closed.
5̂ 0 is, therefore, a Riemannian surface with axial symmetry (and spherical
topology), and we can choose coordinates θ, φ on it as follows. There
must be two fixed points p and q of <&' on ^0 because ^0 is complete,
there is at least one geodesic γ of length πR joining p with q. Choose B

along 7 so that θ = . — s, s being the distance from p, say. The parameter
R

of '̂ is φ, 0^φ^2π; the curves ^-7 form the φ = const-curves,
<§' - x, x e 5̂ 0 the B = const-curves of the coordinate system. The metric
has clearly the form

ds2=-R2(d&2 + A2dφ2), (30)

where A satisfies the boundary conditions

A(0) = A(π) = 0, A'(Q) = - A'(π) = 1 ,

because ^0 must be a smooth surface (a cusp would mean that the set
of tangent vectors orthogonal to the ray going through the cusp does
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not form a null hyperplane, which is impossible in regular space-times
I am indebted to S. Hawking for this remark). Now, we can extend the
functions 5 and φ to the whole of Jl keeping them constant along rays;
and we introduce an affine coordinate α such that α = 0 at ̂  and the
lines α = const, θ = const are trajectories of <§'. Then, θ and φ are co-
ordinates on & as well, so the metric g can be defined by (30). The vector
M on y (see I) can be normalized as follows

+ τi)
so that

r-f-- 1 1 A'
' ~' ~ 1/2 R A ' R2~ A '

Clearly, A ~1 A" must be regular at the poles p, q.

Because —— is a generator of $' the scalars Ψ2 and Φ t do not
cφ

depend on φ. Then, the Eq. 1(23) is

^-=F(θ), (33)dφ

where F(9)= -i(Ψ2 ~ ΨΪ)R2A. The vector field ΩA given by

(34)

with B' = F is a solution of (33). The Eq. 1(22) then implies the existence
of such a rescaling of α that ΩA is given by (34) or

Ψ —ψ+— iR~2A~1flf Π5ΪΎ2 — i 2 — — iΛ Ά D ' V J J /

Ώ^ is a continuous vector field, so it must be zero at the poles 9 = 0, π:

β(0) = J3(π) = 0; (36)

A'1 B', too, must be regular at the poles. (32), (35), and 1(20) yield

Ψ2 = C2+--R 2A 1A"---R A F, (37)

where we have set

Φ, = CeίD (38)

C(S) and D(B) being real smooth functions on the circle satisfying

C(θ) - C(2π -9), D(9) = D(2π - 9). (39)
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By rescaling α so that (34) holds we have arrived at an affine coordinate
α' which is determined up to a transformations

where 77 is a constant. Geometrical meaning of α' is as follows: choose
a vector L at p e 5 0̂, use the parallel transport along the curves φ = const,
and ^-maps along θ = const. A smooth, well-defined vector field L
along ^0 results because of (33). Parallel transport of L along the rays
completes the definition of L on Jt. α' is then the parameter of integral
curves of L such that α' = 0 at &*0.
From (31), 1(21) and 1(6), we obtain

Ω = -~^R~1A-1B (40)

and 1(14) together with (37) implies

where μ0 and A0 are independent of α. But «9o is totally autoparallel;
hence μ0 = λQ = 0 and

, λ = 0. (41)

On the other hand, (40) and (31) yield

L = ' M= + + β α ' Γ (42)

We have arrived at the metric (30) and the affine connection (32),
(40), and (41) in the frame (42) exactly as required by Theorem 5. In the
frame (24) they have components independent of α' and φ. Now, we
require that Ψ3, Ψ4 and Φ2 have the same property, or, using the trans-

formation formulas (28) for η = — -, ξ = — Ω:

ψ^ = u'(ψ's(S) - 3Ω+ Ψ2) , (43)

Ψ4 = u'2(Ψf

4(&) - 4Ω+ Ψ'3(9) + 6Ω+ Ω+ Ψ2) ,

where Φ'2($), ^(θ) and Ψf

4(S) are the α', φ-independent components of
Maxwell and Weyl spinors in the frame (24). Setting (43) into 1(14) we
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obtain

Φ'2 = M + Φ 1 + 2 Ω + Φ 1 ,

Ψ'3 = M+Ψ2 + 3Ω+ Ψ2 + Φ + M+

Γ+ + Ω+) [(M+ <F2 + Φ+

+ Φ + (M+ + Γ

and (43) yields (19) at once, q.e.d.

Theorem 6. For any analytic AC horizon Jί, there, is only one space-
time Jt satisfying the following conditions

1) Jί is analytic, symmetric under the action of a one-dimensional
group of motions <&, and contains a horizon Jί' isomorphic to Jί

2) The trajectories of $ starting at Jί' do not leave Jί' ana are neither
closed nor parallel to the rays of Jt' .

Theorem 6 is stronger than the corresponding one given in [2] except
for the analyticity requirement. This is likely not to be necessary, but
without it we were, in fact, unable to prove anything2. This new version
has been proposed by S. Hawking.

Proof. With the same_ tools as S. Hawking used in [13] and [14],
we show from 1), 2) that Jί musζin fact, be axisymmetric and stationary.
The group ffl of motions of Jί acting along the rays of Jί1 keeps all
points of the totally autoparallel Cauchy surface 5̂  of Jί' fixed.
According to the classification of such fixed points, given by Ehlers in [1 5],
the two null directions orthogonal to ̂  at ̂  are fixed directions of
ffl, and, according to Boyer's theorem [15], the two null hypersurfaces
generated by the rays corresponding toj hese initial points and directions
form a bifurcate Killing horizon of Jί. One of them is Jί', the second
one can be denoted by Jί" . On Jί', 3f" acts along rays and the axi-
symmetric group <§' of Jί' does not move Jί", because it does not move
y$, and commutes with Jf. Thus, Jί" must be of the type AC. We
compute the corresponding invariants. Clearly, A and R must be the
same as for Jί' , because the metric in Jί" is given by that of ̂ . At 5 '̂,
the vectors L", M" on Jί" are identical with nl and mί+ of the pseudo-
orthonormal tetrad l\ m\ mi+, n\ where l{ = Θ^(L) and ml = Θ#(M) ([10]).

Therefore

2 The analyticity in the conditions of the Theorem 6 could probably be completely
discarded, because the stationary electrovacuum space-times have been shown to be
analytic [12] (I am indebted to B. G. Schmidt for this remark).
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or
ΩM» = /V ;χ

 + = - l,jmj + n'=- Ωl,

thus, B is the same as for M'. Finally, Φ1 changes only its sign under the
transformation lt-+nh m^mf, so CM,, = CM<, DM,, = DM, + π. But then,
M", together with all initial data, is uniquely determined according to
Theorem 5 and we have a well-posed initial value problem for the Ein-
stein-Maxwell equations on the pair of null hypersurfaces M' and Jt".
In the analytic case [Π], there is one and only one development, which
must, therefore, be Jt, q.e.d.

Theorem 6 implies, e.g., that the space-time given by (9) is the only
axisymmetric and stationary one containing a horizon of type 2) of the
Theorem 4. Another interesting consequence of the Theorem is that the
total energy, total angular momentum and angular velocity of the black
hole corresponding to an A C horizon, which are defined as some global
functions on stationary axisymmetric asymptotically flat space-times
containing the hole [7], must be some functional of the horizon variables
R, A, B, C, D. The explicit form of these functional would be of great
interest, but, unfortunately, the problem is not simple to solve.

We finish Section 3 by giving an example. The invariants R, A, B, C, D
for the Kerr-Newman horizons with m2 > a2 + e2 + /ι2, h = 0, ([16]) are
determined by the following parametric relations:

κ=l
π

1 r2 + a2 / r — m

~R /r2 + α2cos2

r — ίαcost/

1 1 / r2 + α2

= m + 1/m2 — a2 — e2 , A(w)=~v > \ψ) R

4. Axial Symmetry and Translation (A T -Horizons)

If the translation is generated by L= -̂ — , the Eqs. 1(31), 1(32) must
(70C

be satisfied, and we have, in the frame L', M',

,M' = λ+L- ΓM', VM'M'+ = μQL + ΓMf+ .
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Also, Ψ'3, Ψ'4 and Φ'2, the components of Weyl and Maxwell spinors
in the frame L', M', must be independent of α. Using (28) with η = l,
ξ= — Ωα, we obtain

.= Ψ'4-4Ω+ ψ'3 - α + 6Ω+ 2 Ψ2 a2 , (44)

Then, 1(14) implies

Φ!+(M+ +Γ + +Ω + )Φ 2

- 3 A <F2 + 2AΦi + Φi - 4Ω+ ψ'3 + 12Ω+ 2 Ψ2 α ,

M + Φ i - -2Ω+Φί. (47)

Applying the operator M+ on both sides of Eq. 1(32), using 1(12), 1(31),
1(32) again, the first relation of 1(15) and (47), we obtain (45). Similarly,
from 1(31), (45), (47), and (44), we derive Eq. L (46) [which results by
applying L on both sides of (46)]. Therefore, the only independent part
of (46) is what remains after setting α — 0 in it

(M+ + Γ+ + 5Ω+) ψ's + Φ+ (M+ + Γ+ + Ω+)Φ'23 2 (48)
+

The same holds for 1(16), L(I(16)) being a consequence of (45), so there
remains

(M+ + Ω+)μ0 -(M-2Γ + Ω)λ - Ψ'3 + Φ^ Φ'2 = 0 . (49)

We observe that the quantities and the independent equations separate
into three groups:

I. The quantities Γ, £2, Ψ2, Φ1 ,

The equations: 1(31), 1(32), 1(15), (47).

II. The quantities μ0, λ, Ψf

3, Φ2,

The equations: (48), (49).

III. The quantities Ψ'4,

The equations : none.

If we find a set of these quantities satisfying all these equations, then
we have an AT- horizon. The equations of group I. can be solved
separately, because they contain only the quantities of group I. Keeping
such a solution Γ, Ω, Ψ2, Φ^ fixed, the equations of group II. turn out
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to be four linear differential equations of the first order for the eight
variables of group II. Thus, there will be a whole family of horizons with
fixed Γ, Ω, Ψ 2 , Φ1. Similarly, having fixed a solution of the group I.
and II. equations, there will be some freedom in choosing Ψ'4.

The solution of the group I. equations is given by

Lemma 133. // the horizon Jί is axially symmetric and & has spherical
topology, all solutions of the group I. equations form a three-parameter
family given by

1 E" ib AE'-A'E

v, R, d being the parameters, and A(B), E(ff) are defined by

. π 1 sinC „ , Λ r̂ -
2 E(v) I/I -v2 sin2 ζ '

1 ί .

Λ2 £ " /?2 £3

(51)

M - l d - l f e ί / t E - 2 ,
^ \ 0

w/z^r^

•*• •* -̂  -̂ -. x \ -. /~~] ^ T i / ^ «-. / \ \ - . / , 9
ll-6e=-τ= — ~E(v)l/l-2v 2 , b=-[ — E(v)\ v l / l - v 2 ,

V2 R π V U / .--.
(52)

O^v^-^r,

(53)

9=— —— f | / l - v 2 s i n 2 α d α , O g C - ^ π ; (54)
2 b(v) Ό

£(v) is the complete elliptic integral

£(v) - j | / l-v 2 s in 2 α rfα . (55)
o

Reparametrizing

R = -(E( , " ,\\λ/rf + J, v= , " . , (56)
π \ \ |/m +α // ym +a

we recover the well-known expressions for the Kerr-Newman extreme
horizons [16] (m2 = a2 + e2 + h2) with the electric and magnetic charges

= \/2(m2 + α 2)ccosd, h = \/2(m2 + α2

Similar results for the non-charged case have been obtained by J. Bardeen [17].
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Proof. The spherical topology and axial symmetry enable us to choose
the coordinates S, φ exactly as in Section 3; S, φ and α are well-defined
because the translation commutes with the axial symmetry. The metric
is then given by (30), which implies (31) and (32). On the other hand, Ω
must have the form

(57)

where E(9) must satisfy the boundary conditions

E'(0) = jE'(π) = 0, (58)

and can be normalized so that

E ( 0 ) = l ; (59)

1 - - ^ ° (60)
da ' |/2 R \ d& dφ} da

Finally, we set as in Section 3,

Φ, = CeiD. (61)

(32), 1(19), (61), and 1(15) yield

(47), together with (61) and (60), implies

Ω=__l_ L e. + _L ̂
2 J/2 R C 2 j/2 R '

On the other hand, from (57), (60), and 1(21), we have

1 1 F' / 1 R
fl=7iiri--]7TTT' (63)

or
C = cE~2, D'=-2A~1B (64)

where c is a real constant. Setting (60) and (63) in 1(31) and 1(32) we have

, A2 1 lA'E ,„ ^2 , A'E-AE'*

E" -A-1AEf-b2A2E~3 = Q , (65)

where b is a real constant; (62) and (64) then imply

= Q. (66)
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Hence, the functions E(9) and A(S) must satisfy the Eqs. (65) and (66)
supplemented by the boundary conditions

0,E'(0) = OX(0)=l, A"1A\A-^E regularat 0, (67)

A(π) = 0, E'(π) - 0, A'(π) = - 1 , A ' 1 A\ A~1E regular at π , (68)

9*2, Φ1 ? Γ and Ω being then given by (50) and (51).
General properties of the system (65), (66) can most clearly be seen

if we write it in the form

E' = A-IVE, A' = A-*VA, F' = A-^VF, G' = A-^VG,
where

The integral curves of the vector field V in the space of all (£, A, F, G)
are identical with the integral curves of the original system up to a
parametrization. V is analytic about the point P = (1,0, 0,1) corre-
sponding to (67), so there is at least^one analytic integral curve of V
through P. But P is a zero point of V. Setting

E=i+εnE, A = εnA, F = εnF, G=l+εnG,

we have

VE = 0(ε2), VA = nA ε + 0(ε2), VF = nF- ε + 0(ε2), VG = O(ε2)<

hence, P iŝ  approached by a whole one-parametric family of integral
curves of V, the parameter being (because A > 0 for θ > 0 at θ = 0)

(69)
'

We have, therefore, exactly one solution of (65), (66) satisfying (67) for a
fixed values of b, cR and /. We find all these solutions and then look to
see which of them satisfy (68).

Because (65), (66) do not contain 9 explicitly, we can choose E as a
new independent variable. (By this step, we could omit all solutions with
E = const, but we shall see that this is not the case here.) Then,

E" = pp, A = q(E)9 A' = qp9 A

the dot denoting E-derivative, and (65), (66) become
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The solution of the first equation under the condition lim — = f isH £-1 q J

p2 = E~2q2[(b2+f2}E2-b2-]. (70)

Putting this into the second equation yields

E2[_(b2 + f2)E2-b2^x + El2(b2 + f2)E2-b2~]x + 4b2x + 4b2P2 = Q (71)

c R
where x = q2, P= —7—. We assume frφO. The case 6 = 0 is simple to

b
deal with, but all the solutions obtained there are limiting cases of our
solutions. A general solution of (71) is

/ Ί — r? 5
yb2 + f2 smξ

where ξ is a parameter Qt and Q2 some real constants. From E'=]/y
(setting E' = — |/y reduces to reversing the 5-axis), (70), (72), and (67),
we obtain

Because of -—- = 2 ]/xA' -j-τr, we have
rfξ y dξ

dX 2b A^, (74)
dξ b2+f2 sin2ξ '

therefore, x(£0) = 0, -rτ(^o)= —r» an<^ ^e general solution for the
dξ b

initial conditions (67) is

x = 2Q sm(ξ - ξ0) sin(^0 + η0-ξ), (75)

where

I
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Distinguish the cases

II.

In both cases, we must have ξ(π) = ζ0 + η0 because of the first condition
of (68), or

, ξo+no At
ι"7/:ιπ (76)

The second condition of (68) is satisfied automatically. The third one
is in both cases equivalent to

sin2 (ξ0 + η0) = sin2 (ξ0) = ^ + . (77)

Now, dividing I and II into subcases according as / ^ 0, / < 0, ξ0 + ̂ 0 ̂  0,
£0 + f7o<0, a detailed analysis shows that all solutions can be found
under the subcase b < 0, / < 0. Then

and (77) yields ηQ = 3π — 2ξ0, o r π + — ^ξ 0 <π+ — , so b ̂  / and
T" ^

Solving this for P2, we obtain finally

1 /2 + b2

 5 < f < 0

' β~ * 2fc/ ' -/<0'
(78)

Being given this special shape of x, we can greatly simplify all calculations
by introducing a new variable ζ defined by

JΛ 2+/ 2 sinξ
^ζ^π. (79)
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Then,

X 7 - 2 , / 2 772 ' 7 5 - 1 / 7 7 , />? ' E ' (80)

-/ sin2C

b2 + /2 E2 ' dζ

and (76) reduces to
l/-f

(81)
V*>*+.Γ

where
-f 1

(82)

E(v) being given by (55). Equations (81) and (82) can be solved for b
and /, giving

12 \2 i 12 \2

b=-( — E(v)} vl/ί^Λ /=- _E(v) v 2 ,

whereas the formulas (78) and (80) yield the rest of (52), (53) and (54), if
v>0. But the functions Av(ζ), Ev(ζ) and 5V(Q have well-defined values
for v = 0, too, which corresponds to b = 0. Now, setting b = 0 in the
original systems (65), (66), it is very easy to show that the only solution
of it satisfying (67), (68) is given by A0(ζ)9 E0(ζ)9 90(0 Moreover, E = const
is a subcase of b = 0, so Lemma 13 is shown.

It follows that any AT- horizon is characterized by well-defined
"Kerr-Newman" parameters a, e, h. From now on, we shall suppose
α, e, h fixed and turn our attention to the group II. quantities and equa-
tions. The main difficulty at this step is not solving the Eqs. (48), (49) which
are rather trivial, but finding independent invariants describing the
degrees of freedom in these quantities. On AT- horizons, we can choose

ImM in the direction of — — , but there is no simple invariant manner
oφ

of prescribing the direction of ReM, while L is determined up to a
constant factor:

L = ηL9 M' = M + ξL. (83)

Under this transformation, the group I. quantities remain invariant,
while the second group changes like this :

λ'=— (λ + M+ξ++ξ+Lξ+ +Γ+ξ++Ω+ξ+),

1 (84)
'=—(μ + Mξ++ξLξ+-Γξ++Ωξ + )9

Φ'2=-(Φ2 + 2ξ+Φ1).
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Our way out of the difficulty is based on the observation that the
differences (Δλ, Δμ, A Ψ^, ΔΦ2) between two sets of these quantities
transform much more simply. We choose some standard horizons,
e.g. the extreme Kerr-Newman ones, and consider only the excesses of the
second group quantities over their standard values. This approach has
one more advantage that the resulting invariants measure the departure
from a well-known situation, being zero for Kerr-Newman horizons.
A correct performing of this simple program can be based on the
following

Lemma 14. Let (M, θ) be a perfect horizon in a space-time Jt (see I).
Then, for any autoparallel y on Jtjparametrized by an affine parameter

1) y = θ°γ is a geodesic in Jί parametrized by an affine parameter,
2) γ = π o y is a geodesic in & parametrized by an affine parameter.
Moreover, if y is not a ray, and coordinates β, s on π ~ 1 (y) are chosen

such that

d d\_
~ 9 ~

and the fields L, M on Jί such that, at π"1^),

d d
L=-^> ReM=— ,dβ ds

M tangential to the surface β — 0, then y satisfies the equation

d2β(y(s))

ds2 + Re Ψ2 β(y(s)) + Re (μϋ + λ) = 0. (85)

Within the formalism of I, the proof is very simple and we omit it. Now,
choose a point p on the ray with 5 = 0, and a direction

d" -0 d& - { ω-φ (86)77~υ> Ίi~Ύ' φ~ψo ( '

at p (values of φ at θ = 0 describe directions rather than points). From
JQ 4

Lemma 14, it follows that φ — φQ, —— = — all along the autoparallel
ds R

yo,p,φo determined by the initial data (86). Thus yotpfφ0

 must intersect
the ray θ = π. On the other hand, any two autoparallels y o f p t < p o , yo,p,φo+Aφ
intersect B = π at the same point, say q, because their initial data are
transformed into each other by a rotation, therefore, so must the auto-
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parallels themselves. Moreover, if / is the α-component of the unit
ds

tangent vector to yotptφo at θ = π, then / depends neither on p nor on φ0,
because y0,p,φ0 *

s transformed into 7o,p',<p6 by a combination of translation
and rotation [/ does not depend even on whether the autoparallel starts
at & = π (yπίptφ0) and / is measured at 9 = 0, as is easily computed from
(85), (50), (51), and 1(22)]. On the other hand, under any rescaling of α,
/ is multiplied by a positive constant. Thus, α can always be rescaled in
such a way that either / = 1, or / = 0, or / = — 1 the cases / = 1 and / = — 1
go over into each other by time inversion.

An example of an (a, e, /z)-horizon with / = ! ( / = — ! ) is the future
(past) extreme Kerr-Newman horizon (m2 = a2 + e2 + h2). The most
simple (= most symmetric) example of the / = 0 case is constructed as
follows. The maximal extension of any 70,p,φ is a closed autoparallel.
The rotation surface £f defined by it can be chosen to be totally auto-
parallel. Then, we have the maximal longitudinal symmetry: a group
generated by the translation and the collineation corresponding to ^.
Horizons of this type are fully described by three parameters α, e, h, and
they can be imbedded, under the conditions of Theorem 6, only in
space-times SP x P2, where & is a space-like section of an extreme
(α, e, /z)-Kerr-Newman horizon, m2 = α2 + e2 + h2, P2 is the pseudo-
sphere with signature zero, radius m and topology of 1R2 and x denotes
the Cartesian product of two metric manifolds, analogously to the
spherically symmetric situation (this easily follows from the Theorem 6).
We choose these three examples as our standards.

Consider a horizon with / = 1. The scaling of the affine coordinate α
and the field L is fixed. Choose the origin of α at the rotation surface ̂
based on an autoparallel y0,p,o> and the field M tangential to ίf, and
parallel-propagated along the rays. Any two such so-called canonical
coordinate systems are transformed into each other by means of a
translation and possibly 5-»π — 3. In any such triad field L, M we must
have

Imμ0 = 0, Re(μ0 + Λ) = 0, (87)

because 1) M is tangential to a surface α = 0 and 2) α = 0, φ = const
is an autoparallel, so Lemma 14 implies the second identity. On the
other hand, the identities (87) imply that α —0, φ = const is an auto-
parallel and M is tangential to the surface α = 0, which, with the symmetry
of the horizon, implies the very same canonical system. Thus, (87) are
the only constraints on λ and μ0.

Given two (a, e, /ι)-horizons Jί, N with / = 1 and some canonical
systems on them, there is a unique diffeomorphism \p\M-*Jf mapping
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the canonical system of Jt into the canonical system of JV. Moreover,
any two such maps ι p ί , ιp2 differ at most by a horizon symmetry com-
bined possibly with S -» π — 5. That is to say, we can compare the group II.
quantities on Jt and Jf by means of ψ. Choosing for N the future Kerr-
Newman (α, e, /ι)-horizon, we can describe Jί by the differences

Aμ0 = ψ(μ0) - μOKN, Aλ = ιp(λ) - λKN ,

μ0 and λ being the values for Jt and KN denoting Kerr-Newman.
From (87) it follows

ImΔμ0 = 0, lm(Δ λ + Δμ0) = 0 ,

so we have

Δλ = Δί + iΔ2, Aμ0= — Δί9

where zl l 5 Δ2 are two real functions of B determined up to θ->π — θ.
The Δi(S) are not completely arbitrary at the endpoints $ = 0, θ = π,
because, in a special coordinate system, they coincide with real and
imaginary part of a spin-weight-( — 2)-quantity. Therefore

There are some more relations including derivatives; the best method
to incorporate them is to write Δ± + IΔ2 as a series in the spin weighted
harmonics [7].

The Eqs. (48), (49) are linear homogeneous and they hold, therefore,
for the differences Δλ, Aμ0, A Ψ'3 and ΔΦ2 as well. We obtain

R AΦ\12 * ^(x)dx
.)

3 = Φi+ zl Φ'2 - (M+ +Ω+)Aί-(M-2Γ + Ω)(Al + iΔ2) ,

where g is a real constant. Summarizing: one parameter g and two
functions A1(B), Δ2(9) represent (up to the transform θ-»π — 9) all the
degrees of freedom in the second group quantities in case / = ! . For
other cases, the results are similar. The group III. quantities contain
obviously another two functions of $.
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