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Abstract. We extend previous work concerning the construction of unitary scattering
amplitudes that correspond to the scattering data at a given energy. The dispersive and
absorptive parts are by construction analytic in cos$ in the small and large Lehmann
ellipses, respectively. The dispersive and absorptive parts obtained here, in contrast to
those obtained before, are shown to have continuous derivatives on the boundary of
their domains of analyticity. The continuum ambiguity in the determination of the
scattering amplitude, which is associated with a lack of experimental information on the
inelastic contribution to unitarity, is present here as well.

Section I: Introduction

The problem of determining the scattering amplitude / at a given
energy, from the differential cross-section σ at that energy, has been
considered by several authors recently [1]. In particular, Atkinson,
Mahoux, and Yndurain [2] have dealt with the problem of constructing
a scattering amplitude /(z) which is analytic in z, the cosine of the
barycentric scattering angle, inside a certain unifocal ellipse. This
amplitude must correspond to a specified differential cross-section σ(z),
which is analytic inside the ellipse; in addition, /(z) must satisfy uni-
tarity. The present work is a refinement of Ref. [2] we discuss the same
nonlinear equation as was treated there, but we do the analysis in a
smaller Banach space and obtain stronger results.

For simplicity, we limit our discussion in the first two sections to
the case of purely elastic unitarity. The results may readily be gener-
alized to handle a fixed contribution to unitarity from inelastic channels.
In Section III we treat the inelastic case explicitly, and discuss the con-
tinuum ambiguity.

* Work supported in part by the National Science Foundation and a NATO
Research Grant.
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In the domain of elastic unitarity, the nonlinear equation for the
absorptive part A(z) is

A(z) = B(zιA)9 (1.1)
where

B(z;A) = (2/+l)μf+Z) /

2 )P ί (z), (1.2)
ι = o

Af = i }dxPl(x)A(x), (1.3)
-1

D, = i j d x P l ( x ) D ( x ) 9 (1.4)

and
D(zH[σ(z)-,42(z)]-. (1.5)

The unitary, analytic scattering amplitude is determined from a solution
of Eq. (1.1) by

f(z) = D(z) + i A ( z ) . (1.6)

As in Ref. [2], σ(z) is a specified function which is analytic in S(z0), the
interior of a unifocal ellipse of semi-major axis z0 > 1. The Banach space
of Ref. [2] was composed of real-analytic functions A(z), which are
analytic in z in S(ζ1), the interior of a unifocal ellipse of semi-major
axis ζ l 5 where

z 0 < C 1 < 2 z g - l . (1.7)

The norm was

\\A\\ = sup l^l/aίd) (1.8)
ί = 0,l,

where Al are the partial- wave projections of A(z), given by (1.3), and Ql

are Legendre functions of the second kind.
Let Kb be a certain finite ball of the Banach space, defined by

Kb = {A : \\A || ^b}. It was shown in Ref. [2] that, with suitable restric-
tions on σ, the functions A in Kb were mapped by (1.2)— (1.5) into
functions B, all of which lie in a relatively compact subset of Kb.
Schauder's fixed point theorem [3] was then used to establish the exist-
ence of at least one solution of Eq. (1.1) in the ball Kb.

The work of Ref. [2] has the shortcomings that (1) the ball radius b
approaches zero as z0, the semi-major axis of the elliptical region S(z0),
approaches 1, and (2) b becomes small also as ζί is taken to be close to
2zQ— 1. At asymptotically high energies the semi-major axis z0 of the
Lehmann ellipse, the ellipse of analyticity of the scattering amplitude,
/(z), is expected from general considerations to approach 1. In addition,
if σ(z) is analytic and bounded in S(z0), one similarly expects the absorp-
tive part A(z) to be analytic and bounded within an ellipse of semi-major
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axis equal to 2zg — 1. We will show here that both these shortcomings
are not intrinsic to the nonlinear Eq. (1.2)-(1.5), but may be avoided
by a more suitable Banach norm.

Here we choose a norm such that a finite ball of the Banach space
is mapped into itself in the limit as z0 approaches -h 1. To motivate our
choice of norm, let us take z0 = 1 and consider the mapping of A into B,
given by (1.2)-(1.4), under the following restrictions:

(1) there exist constants K and μ, with 5/2 <μ < 3, such that1

(2) σ(z) is continuously differentiable for — 1 rgzίg -f 1, and
(3) D(z) has no zeros for — 1 ̂  z ̂  + 1. Under these conditions, one

may justify an integration by parts2 of Eq. (1.4) and obtain that

I D Λ g */(/+!)*. (1.10)

Consequently, we have that

^ - _ . (1.11)

Thus the large-/ bound of (1.9) is reproduced by the nonlinear mapping
(1.2)-(1.4), with appropriate restrictions on σ. Our Banach norm
(2.1) is chosen so that elements of the space satisfy (1.9) uniformly
as z0 approaches 1. It is shown in Section II that a finite ball of the
Banach space is mapped into itself by (1.2)-(1.4), and one can choose
the ball radius b to be independent of z0.

In Appendix B we discuss a compactness criterion which is natural
for subsets of Banach spaces with a discrete norm, such as our norm
(2.1). We have not seen such a criterion used previously in the physics
literature on nonlinear analysis. This compactness criterion enables us
to take zx = 2zQ — 1 and still be able to map a finite ball through the
system (this was not possible in Ref. [2]).

In Appendix A we use the Laplace representations of the Legendre
functions Pt(z) and Qt(z) to obtain certain upper bounds which are valid
when / is a non-negative integer and z is complex. The bounds (A 21)
and (A 34) on Legendre functions, along with bounds (2.32) and (2.36)
on their derivatives, are used extensively in the analysis of the nonlinear
mapping (1.2)-(1.4). These bounds are optimal at large / for z near ± 1.
The argument is given in considerable detail, since the underlying tech-
nique and the bounds themselves may be of more general interest.

1 Throughout this section K is a generic constant; it does not have the same value
in different relations in which it appears.

2 The technique of integration by parts is discussed in Appendix C. The results
obtained there reduce to (1.10) uniformly as z0 approaches 1.
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In Section III we consider a given unitary scattering amplitude
f(z\ for a fixed energy above the inelastic threshold, which is analytic
in z in the elliptical region S(z0). We show that this amplitude is merely
one of a continuum of unitary amplitudes analytic in S(z0), all of which
correspond to the same cross-section σ(z). This continuum of scattering
amplitudes may be generated, as in Ref. [2], by varying the inhomo-
geneous contribution to unitarity, the function /(z) defined by Eq. (3.2).

We shall require in Section III that the dispersive part of the given
scattering amplitude, D(z), does not vanish within S(z0). If D(z) does
have a zero inside S(z0), the inelasticities ηl in /(z) may not be varied
arbitrarily. In fact, there must be one constraint on the variation of the ηl

for every (simple) zero of D(z) inside S(z0). Thus, a continuum ambiguity
in the determination of the amplitude /(z) from the cross-section σ(z)
is present even if D(z) has zeros inside S. We will not prove this result
here; the details of the proof for this case are quite analogous to those
explicitly discussed in Sections III and IV of Ref. [4].

Certain of the limitations of Ref. [2] were overcome in Ref. [4] by
means of a technique which largely avoids estimates concerning
Legendre functions. In particular, in the discussion of Ref. [4], the ball
radius does not tend to zero as z0 approaches 1. Analyticity of the
absorptive part in the large Lehmann ellipse S(zί) is obtained, but
boundedness and differentiability on the boundary, which are obtained
in the present work, are not guaranteed. The compactness criterion used
in Ref. [4] works smoothly for open regions, but a more powerful
(if more laborious) technique such as that used here seems to be required
to handle the boundary. Control of behavior on the boundary is of some
interest, since one might wish eventually to specify the singularity of
cr(z) on the boundary of its region of analyticity. This might be required
in a phenomenological program in which one attempted to specify
certain features of the interaction; i.e., a generalized "polology".

Section II: Fixed Point Proof

Here we will show that Eq. (1.1) has a solution A(z) which is analytic
in the open unifocal elliptical region S(zi)9 with semi-major axis
zί = 2z0 — 1 3, if one has a cross-section σ(z) analytic in S(z0) and subject
to certain other restrictions to be given presently. To this end we define
a Banach space ^ of real-analytic functions h(z) analytic for z e S(z1).
We choose the norm to be

| |Λ| | = sup{|Λ 0 | , 2"(z, ,

sup (/+!)*
1 = 2,3,...

With this choice, zt + yz\- 1 = (z0 + ]/z\ - I)2.
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where 5/2<μ<3. The partial wave projections fy are real and are
defined by

A, = 4- IdzPMh®. (2.2)
Z -1

The elements h(z) of the Banach space are analytic for z e S(zx) because
their Legendre series representation can be shown to be uniformly
convergent for z in S(zί). Uniform convergence follows easily from

and

for / ̂  2, when used along with the bound

(2.6)

which is established in Appendix A.
Furthermore, we may use (2.3)-(2.6) to show that when z is in the

smaller ellipse S(z0), and \\h\\ ^b, then \h(z)\ is bounded above by a
constant independent of z0 :

2μ -

3 » (2'+1)1 (17)

We will consider the mapping of A(z)e $ into B(z) given by (1.2)-(1.4),
with the cross-section σ(z) analytic in z and free of zeros for zeS(z0). It will
be established that, with appropriate restrictions on σ(z), the operator
maps Kb into a subset of Kb, where the set Kb is defined to be the ball

Kb = {A\Ae& and \\A\\ ^b}, (2.8)

with b to be chosen later. Furthermore, we will show that B(A) is a con-
tinuous mapping in the topology induced by the norm (2.1). Finally, we
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will prove that the set of images B(Kb) is a compact set in the topology
induced by (2.1).

Thus, we shall be able to establish that B(A) is a continuous mapping
of a closed, convex set Kb in the Banach space J* into the compact
subset B(Kb)

 4. The conditions of Schauder's fixed point theorem are
met [3], and we will be able to conclude that at least one solution of
Eq. (1.1) exists and lies in the ball Kb.

For the work of this section we wish to constrain the ball Kb so that

\A(z}\2 <\σ(z}\ (2.9)

for A e Kb and z in the closed elliptical region S(z0). If we use the bound
(2.7), which is satisfied by any element of Kb, for \A(z)\9 we see that (2.9)
is satisfied if

(βb)2<m2, (2.10)

where we make the definition 5

m2= inf |σ(z)|. (2.11)
zεdS(zo)

We also require that |σ(z)| and \σ'(z)\ have finite maximum values on
5S(z0), which are given by

M2= sup |σ(z)|, (2.12)
zefS(zo)

2ΛΓ- sup |σ'(z)|. (2.13)
zePS(z0)

If condition (2.10) is met, the function D(z), defined by (1.5), is
analytic for z in the ellipse S(z0). Also, D(z) is continuous and bounded
on the boundary 3S(z0), and it may be represented for physical z by
a Cauchy integral over δS(z0). We may use this Cauchy integral, along
with the relation

(2.14)
.Z _ ^ Z X

to write the partial wave projections of D as

Dι=^-τ .f d z Q l ( z ) D ( z ) . (2.15)
2711 ΓS(zo)

In order to show that a certain ball Kb C & is mapped into a compact
subset B(Kb) by (1.2)-(1.4), we will need bounds upon £,, the partial

4 Convexity of the ball Kb follows from linearity of the norm (2.1).
5 Since σ(z) is free of zeros in the closed ellipse S(z0), it takes its minimum modulus

over S(z0) on the boundary, ?S(zΌ).
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waves of B(z), which are given by

B^Df+Af. (2.16)

To establish that B(Kb) c Kb, we must show that for all A(z) e Kb,

\B0\^b, (2.17)

lβιl^^r—-4^=> <2 18)

and

for / = 2, 3, . . . . Furthermore, B(K^) will be compact in the topology
induced by the norm (2.1) if, for any number ε > 0, there exists an integer
L(ε) such that

sup(ί + l)μ |>ι + l A i - i Γ1 IB/I ^β (2-20)
l^L

for every element A of Kb. This compactness criterion (2.20) is justified
in Appendix B 6.

Clearly, if b is chosen sufficiently small, the term Af in (2.16) is
appropriate for establishing (2.17)-(2.20). Hence we need only to obtain
appropriate bounds on the Df term. Let us first consider I = 0. From
(1.5), (2.7), and (2.12) we obtain for ze S(z0) that

\_M2 + β2b2]*. (2.21)

This bound may be used in (1.4) to obtain

\D0\£[_M2 + β2b2]*. (2.22)

For / = 1, let us use the Laplace representation for Q±(z\ Eq. (A 20) of
Appendix A, to obtain for z € dS(zQ) that

? du
-1 o l lΛ 2 -l |cosh M

1 1

6 This criterion, in contrast to the treatments of Refs. [2] and [6], does not require
that B(z) be analytic in a domain larger than that assumed for A. Crudely speaking, it
requires that the derivative of B(z) be Holder continuous in z with a larger Holder
exponent than the elements A(z) of Kb. The compactness criterion (2.23) is more ap-
propriate for Banach spaces of sequences, and it allows us to carry through the proof
for z1 equal to 2z\ — 1.
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We use (2.15), (2.21), and (2.23) to obtain

\D1\<ϊ:[M2 + β2b2']* * j Z ^ . (2.24)
4 ZQ + ]/Z0 — 1 dS(z0) \Z ~~ I)

One can show that

f . ,|έ*ZL = 2π. (2.25)

[The proof of (2.25) is analogous to that of bounds on (2.37) and (2.38) ]
We obtain a bound on |DJ of the form:

^jLlff + W
l!- 2 2o+j/7iFr

To obtain appropriate bounds on Dt for / ̂  2 we integrate (2.15) by parts
to obtain

A=177^TΓ^τ f dz(l-z2)βί(z)D'(z). (2.27)

This result is justified in Appendix C. We use (1.5) to express the
derivative of D in terms of A and σ :

D'(z) = - - A(z) Λ'(z) /D(z) . (2.28)

We have required via (2.10) that \D(z)\ be bounded below; let us define

n= inf |D(z)|. (2.29)
zeS(zo)

We use (2.7), (2.13), and (2.29) to bound D':

. (2.30)

We use (2.30) in conjunction with an upper bound on |^4'(z)| for
ze 3S(z0), to bound the integral in (2.27). The upper bound on \A'\ is
obtained as follows: First, differentiate the Legendre series for A term
by term and use (2.3)-(2.5) to obtain

2 . (2.31)

In Appendix A we obtain the following bound on |P/|:

. (2.32)_ _ 0

J/π |z2-l| J
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where

We use

I ~ W I = Ξ 2μ

y- 4^ y
\Γ

(2.33) and (2.30) in (2.27) to

,n,^ * . 1

' k2- i|* '
1

2 ( ί+l)* ' 2 /* '

obtain

f I Λ Λ tτ 2 1 1 I/Ί'/VΉ

(2.34)

2" " "-'" | z 2_i | i

(2.35)

We majorize the integral (2.35) by using the bound

(2.36)
\Δ — l|

for z e 3S(z0), which is also obtained in Appendix A. We obtain an
estimate of \Dt\ from (2.35) and bounds on the integrals

and

(2.37)

(2.38)J= J | r fz |^2πz 0 .

We may change the integration variable in (2.37) to φ, where z = z0 cosφ
-f/I/ZQ — 1 sin</>, obtaining

/=
2π 2π

smφ + (z2

0-i)cos2φΓ*< j
0 0

The resulting bound for |DZ| is

IAI ̂ -~~~{Zo + l/^Γi}

As a consequence we obtain

. (2.39)

. (2.40)

100 (/+l)μ" 1

n2 I2

(2.41)

The right sides of (2.22), (2.26), and (2.41) are independent of z0.
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We will now establish that B(Kb)cKb for an appropriate choice
ofb. Conditions (2.17) and (2.18) are met if

2)^b, (2.42)

and (2. 19) is met if

100 f/ _ι_ IV4"1

t>2 + - Ji±Γ— [N + b2β(l + 2y)]2 £ b . (2.43)

We must also satisfy (2.10), so that D(z) will not vanish on S(z0). Let
us require that

(144)

so that

n2^^. (2.45)

We may ensure that (2.42) and (2.43) are satisfied if (2.44) is met
and if 7

(2.46)
where

(2.47)

Let us require that

4L < 1 (2.48)

this condition will be met if, for example, σ(z) is nearly constant and
sufficiently small. Under this condition, (2.46) is satisfied for

_ (2.49)
where

(2.50)

Finally, we note that (2.42), (2.43), and (2.44) are satisfied for b slightly
greater than b_, if condition (2.48) is met and if

i. (2.51)
m

Again, this condition can be satisfied if σ(z) is small and slowly varying.
The constraints (2.48) and (2.51) are sufficient to guarantee that
B(Kb)cKb.

Conditions (2.48) and (2.51) guarantee also that the mapping of A(z)
into B(z\ given by (1.2)-(1.4), is continuous in the topology induced by

7 In condition (2.44), we have used the relation (/+ I)*" 1// 2 ̂  9/4, which is valid for
μ < 3 and / ̂  2.
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(2.1). To establish this, we first show that, for A^ and A2 in Kb,
\D((z) — D'2(z}\ is small on the boundary δS(z0) when Aγ is close in norm
to A2 It then follows from a straightforward analysis of (2.27) that
ί*(z0 + J/ZQ — I)*"1 \Du — D2l\ is also small. Finally, we establish via
(2.16) that /3(zt + j/Zi - I)1"1 |Bu-B2il

 is small. The separate analysis
for / = 0 and 1 is trivial, so that we may conclude that || Bl — B2 \\ vanishes
as \\A± — A2\\ tends to zero. Continuity of the mapping is thus established.

We establish compactness of the image set B(Kb) via the criterion
(2.20). This inequality is easily established, however, since from (2.40)
and (2.16) we may conclude that \Bt\ is of asymptotic order

at large / and since we assume μ < 3, we may ensure (2.20) by an appro-
priately large choice of L(ε).

The restrictions (2.48) and (2.51) are thus sufficient to guarantee that
the hypotheses of Schauder's theorem are met, so that there is at least
one solution of (!.!)-( 1.4) in the ball Kb.

Section III: Continuum Ambiguity

Here we assume the existence of a particular scattering amplitude
at a fixed energy, which satisfies unitarity with a certain inelastic con-
tribution and which corresponds to the cross-section σ(z). Let us de-
compose this scattering amplitude, /0(z), into its dispersive part D0(z)
and its absorptive part AQ(z). We shall assume that σ(z) is analytic in
the ellipse S(z0), with a bounded derivative on the boundary, dS(zQ).
We require that AQ(z) be in the Banach space £8 of functions which are
analytic inside the larger ellipse S(z1). Also, we wish to require that
D0(z), which isjtnalytic and bounded in the region S(z0), have no zeros
in its closure, S(z0). We will show that, under weaker conditions, one
may construct a continuum of unitary scattering amplitudes, all with
the same cross-section σ, by varying the inelastic contribution to
unitarity. Thus we establish the existence of a continuum of acceptable
unitary amplitudes, all giving the same cross-section.

The equation to be satisfied by the imaginary part in the inelastic
regime is

9 (3.1)

where B(z A) is given by Eqs. (1.2)-(1.4), and the inelastic contribution is

/(z)= £ ( 2 / + l ) /,*>,(*), (3.2)
ι = o

with
/ / = i( l->// 2 ) . (3.3)
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Let us require that /(z) lie in the Banach space J*, so that for /(z) the
norm (2.1) is finite. Let us also require

O^ηi^i, (3.4)

so that inelastic unitarity is valid for the scattering amplitude f = D + iA,
where A satisfies (3.1) and D is given by (1.5).

It is a consequence of the analysis of Section II, and the requirement
that / be in ,̂ that P(z\ A) belongs to Si when A lies in a sufficiently
small neighborhood of A0. Let us note from (3.1) that the partial waves
of P are

Pi-Bi + I t . (3.5)

Let the function /(z) depend upon a parameter λ (which is a pre-
scribed function of the elasticities), such that (3.4) is satisfied and
||/(z; A) |[ is finite for λ in some neighborhood of the initial values, A 0 .
We wish to establish the conditions necessary to apply an appropriate
implicit function theorem to guarantee the existence of a solution of (3.1),
A(z, λ), for λ in some neighborhood of λ0. We will require that the de-
rivative of the inhomogeneous term /(z, λ) with respect to λ be in the
Banach space 0$, and depend continuously on λ.

As a prelude to the implicit function argument, we must show that
PA(AQ) /ι, the Frechet derivative of P with respect to the function A
evaluated at AQ and applied to an arbitrary element h of 3&, has certain
properties.

Since uniform convergence is guaranteed for the relevant series and
integrals for A sufficiently close to A0 with /ze^, one may write
PA(A) has

p(z) = PA(A) h(z) = (21 + 1) Pt(z) Pl (3.6)

Pl= f d x P l ( x ) h ( x ) { A l - D l A ( x ) [ _ σ ( x ) - A 2 ( x ) T - }

with

where ht are the partial-wave projections of h(z\ and ql are the partial-
wave projections of

) = h(z)A(z)/D(z). (3.8)

In order to apply the implicit function theorem to (3.1), we establish
the following properties of PA(A):

(1) The formal expression (3.6) for PA(A) is in fact the Frechet deriv-
ative of P on Jf, which exists for A in a neighborhood of AQ.

(2) PA(A) is continuous in A at A0.
(3) PA(A0) is a completely continuous linear operator on .̂
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One establishes these properties for PA in a manner quite analogous
to the analysis of B(z; A) in Section II. In particular, note that, like the
function D(z) of Section II, q(z) is analytic in S(z0), and its derivative
on the boundary dS(z0) is bounded. One may obtain bounds upon the
partial waves ql of the same form as relation (2.40) for the partial waves
of D. This estimate, along with subsidiary estimates for / = 0, and
appropriate bounds on 1,4,1, |/ιz|, and |Dj|, allows us to establish these
properties. For (3) we apply the compactness criterion discussed in
Appendix B. The argument is similar to our proof of compactness of
the set B(Kb) in Section II.

We are considering Eq. (3.1), which we write in the form

F(z\A,λ) = A(z\λ)-P(z\A) = Q. (3.9)

We are given a solution AQ(z)9 corresponding to λ = λ0. We will establish
the existence of a solution A(z\ λ) of (3.9) for λ in some neighborhood
of A 0 .

Let us make the additional assumption that the homogeneous
equation

FA(A0)ψ = 0 (3.10)

has no nontrivial solutions. This condition does not follow from the
previous assumptions, and we shall not discuss the exceptional case in
which it is not met. If the condition is met, the operator FA(A) has an
inverse on & [5]. Furthermore, we can use an appropriate form of the
implicit function theorem 8 to guarantee the existence of a solution to
(3.1), A(z9λ)9 in the Banach space .̂ One may generate A(z9λ) from
A(z9 λ0) = A0(z) by solving the differential equation

dA
)=-lFA(A,λ)Y^Fλ(z',A,λ). (3.11), , , , .

dλ

We have established a continuum ambiguity in the determination
of the scattering amplitude from the cross-section via unitarity, in a
Banach space & of analytic functions. Considerations have been limited
to the case for which σ — A2 does not vanish in the closed elliptical
region S(z0). An^ zeros of σ — A2 in S(z0) do change the nature of this
continuum ambiguity, but do not remove the ambiguity. In fact, it can
be shown here, as it was shown under similar circumstances in Ref. [4],
that for each simple zero of σ — A2 within S(z0)c one must place one
constraint upon the variation of the elasticities I{ with respect to the
parameter λ.

8 For a discussion, see Ref. [3], pp. 554 — 561.
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Appendix A

Here we will obtain bound (2.6) for Pt(z), (2.32) for P/(z), and (2.36)
for QΊ(z), where / is an integer and z is a point on the conventional
"physical" sheet of the complex plane. We can consider the point z to
be on a unifocal ellipse of semi-major axis z0 ̂  1:

(Al)

(A2)

(A3)

(A4)

ΐ]/Zo — 1 sinφ,

We define 1/z2 — 1 with the cut from — 1 to +1, so that

/z2 — 1 = — 1

Consequently,

The Laplace representation of Pj(z) is

P,(z) - — j dω{z + /z2 - 1 cosω}'.

From (A 1) and (A2) it follows that the phase difference of z and |/z2— 1
is less than or equal to 90°, so that

|z + l/z2 - 1 cosω| <* |z + ]/z2 - 11 = z0 + J/z2, - 1,

so that

Remark. We may use the Laplace representation to obtain

/
p/(z) = + l/z2 — 1 cosω)' 1

+ (I - 1) z sin2ω(z + |/z2-l cosω)'"2},

It follows immediately that

(2.6)

(A 5)

(A 6)

In order to motivate the bound (2.32) on P,'(z) let us first obtain
a corresponding bound upon P,(z) itself. We remove a factor of
(z + j/z — i)' and change the variable of integration to ι> = 1 — cosω
to have

-

where

z +
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(A 1) and (A 2) imply that

l > > - έ l ^ τ . (A9)

In particular, Rey^O, with Rey = 0 only at z= ± 1. Let us express y
in polar form:

(A 10)

It follows from (A 9) that at a given phase θ, \y\ ̂  cosθ. We will obtain
bounds explicitly for O^θ^π/2; the bounds for negative θ will follow
immediately from real analyticity of A(y).

In order to obtain bounds that are uniform in θ we distort the inte-
gration over υ in (A 7) to be a "house top" contour with slope ρ = θ/2;
i.e., two line segments with endpoints (0, eiρ/cosρ) and (eiρ/cosρ, 2):

= — (A1+A2) ( A l l )
π

e'e/cosρ

ι= ί

J

{i-(2-υ)\y\e~iθ}1.
J/ι;(2 - 1;)

Note: |2 — 1;| ̂  1 in Aλ and ^42.
Let us change the variables of integration in Ai and A2to x = ve~lβ

and veiQ

9 respectively:

l/cosρ J

(A 12)
o

l/cosρ J

z -
o V*

We define

(A 13)

for 0 ̂  |y| ̂  cosθ; 0 ̂  x ̂  1 /cos 0/2. We will obtain the following upper
bonds on |D| and |JE|:

^(x ? |y |)- |D| 2 -l+xM^O, (A 14)

£(x,\y\)=\E\2-\+x\y\^. (A 15)

® and δ are second degree polynomials in x and |y| furthermore, the
coefficients of x2 and \y\2 are positive, so that 2 and <ί take on their
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maximum values at one of the 4 points (x, \y\) = (0,0), (0, cos$),

cos0/2 ' / ' \cos0/2 ' /
Let us consider 3) first. (A 14) is trivially true if either x or \y\ is zero.

Furthermore,

cos0
3l(I/cos0/2, cos0) = 2 {cos0/2— 1} rgO . (A 16)

cos 0/2

So (A 14) is established.
As for <?, (A 15) is trivially true for \y\ = 0. In addition,

(A 17)

by virtue of (A 9), and

O. (A18)

Furthermore, we may use the inequality 1— p ^ e ~ p f o r 0 ^ p ^ l to
obtain from (A 14) and (A 15) the bounds

*|y| *bl
\D(x)\^e 2 and \E(x)\^e 2 . (A 19)

Whence, from (A 12) and (A 13),

Λ l / c o s ρ J __ |_ - -

l^(y)l^- ί -^^ 2 " (A20)
π o 1/x

We may extend the integration out to infinity to obtain the bound

nl\y\
or

_ (A21)

We now obtain the bound (2.32) on P/ by similar prestidigitation. From
the Laplace integral (A 4) one can obtain

/ . (A22)
π yz2 - 1 o

Let us define B(y) through the relation

'" (A23)
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We may again let v = 1 — cosω be the variable of integration and obtain

B(y)=-\-r$=r(ί-v){i-yv}1 (A24)

where y is given in (A 8). We again distort the v integration contour to
a "house top" and decompose B(y) as was done in ( A l l ) with A(y).
After the contour distortion

for 0 < ρ < π/4 and x in the domain of integration hence we obtain
analogously to (A 21) the bound

(A25)

and hence for P/ the bound

\z -
(2.32)

Now we will obtain the bound (2.36) on QΊ and an analogous bound
upon Ql itself. The Laplace representation for Qt(z) is

β«(z) - ]du{z + 1/z2 - 1 coshM}~ ( ί + 1) . (A26)
o

We define C(y(z)) = {z + |/z2 - 1 }ί + 1 β^z), with 3; given in (A 8), to obtain

C(y)=]du{i+y(coshu-i)Γ(l+1} . (A27)
ό

We change the integration variable to x = cosh u — i and obtain

(A28)

(A29)

Then we rotate the x-contour through an angle θ:

Now we divide the integral (A 29) into two parts.

(A30)
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In the integral for Cί we have |ί + 2e~'β\ ^ 2. Also, we use the inequality

1 ,

1+P
(A31)

if O ^ p ^ l to obtain

| C l l=
We may take the integration out to infinity to obtain

(A32)

In the integral for C2 we may use |ί -f 2e~ίθ\ ^ ί to obtain

|C2|£ I — {l + Mί
1/w (A 33)

(/+!) 2' ~

As a consequence,

(A34)

We obtain the following representation of Q'h for / real and positive,
from (A 26) [6]:

<2',(z)= - /(/+!) du sinh2u [z + |/z2- 1
0

Define
2- +2z2- lV

With y defined by (A 8). We may write

D(y)=]dusmh2u{i+y(coshu-iΓ(l+2).
o

We again let x = coshw— 1 be the integration variable to obtain

(A35)

(A36)

(A37)

D(y)= (A38)
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Again we rotate the x integration contour by an angle θ and divide D
into two parts:

D = (Di+D2)e2iβ,

1 J
0

oo

We may change the variable of integration in Dί to obtain

+ i θ ( l + 2 }u}/u + 2\y\e+iθ{i+u (A 40)

We use (A31) and the inequality (u + 2\y\eiβ)*£]/3 to obtain

D^ \du]fie~m\ (A41)

Let us extend the integration in (A 41) out to infinity to obtain

We may express D2 as

Z i 12 J L \" ' \J I ~ /_! V " ' "J

We use the inequality |M(M +2|j;| e~iθ)\^ ^ 1 -f w to obtain

(A43)

T 1 < 1 1
21 |,,|2 — /κ, |2 i/ΓT

(A44)

I21 \y\2 ~ l\y\

We thus obtain

/ + 1
(A45)

Consequently, we have for / > 0 that

l+2J/6π

10



240 D. Atkinson et al

On the other hand, the relation

Λ, , , -1

allows us to justify the bound (2.36) for / = 0 as well.

Appendix B

We are considering a Banach space & of sequences, a = {al9 a2, ...},
with the norm

(Bl)

We wish to consider a set S of sequences, such that S is a subset of some
finite ball Kb= {a\ae J>, ||α|| ^6}. We will establish the following com-
pactness criterion:

Lemma.9 S is compact in the topology induced by the norm (B 1) if
for every number ε > 0 there exists an integer L(ε), such that for every
element a of S,

ε . (B2)

Proof. To show that S is compact if (B2) is met, we construct a finite
ε-net for S from elements of S. To this end, we first construct a finite
ε-net for S from elements of Kb. For any ε>0, let N be the greatest
integer such ε(N — l)^2b. Define the N numbers dt by

(dl,d29...9dN) = (-b,-b + ε,...9-b + (N-l)ε). (B3)

Then for any number sl9 — b^st^ g, there is a άi such that |s/ — dt\ ^ ε.
Let Cε C Kb be a set of NL sequences, where a sequence in Cε is denoted
by c(nl5 π2, •••> WL) and has the form

c(nl9n2,...,nL) = {dni9dn29...,dnL9Q9Q9...}. (B4)

Here each nt may have any of the values nt= 1,2, ..., N. If 5 is any
element of S, there is an element c of Cε such that ||s — c|| ̂  ε, since with
an appropriate choice of the nt we have

||s-c|| = sup sup 15,-d I, sup |sj
/^L(ε) l>L(ε)

^ sup [ε, ε] = ε .

Consequently, Cε is a finite ε-net for S, composed of elements of Kb.

9 This lemma is analogous to the more familiar Arzela-Ascoli equicontinuity cri-
terion for compactness. The latter criterion is appropriate for Banach spaces of functions
with a continuous argument.
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We can now find an ε-net Tε for S, composed of elements of 5.
Consider any element c of Cε/2. If there is at least one element s of S
such that || c — s||5ίε/2, then put one such element, say f e S , in Tε.
Otherwise, go on to another element of Cε/2. Repeat the procedure for
all elements of the finite set Cε/2. The finite set Tε, consisting of all t
selected in this way, is indeed an ε-net for S, since for an arbitrary s e S,
there is a c e Cε/2 such that ||s — c|| ̂  ε/2, and a corresponding t e Tε such
that \\c-t\\ gε/2. Consequently,

\\s-t\\£\\s-c\\ + \\c-t\\£ε. (B6)

Appendix C

Let k(z) be a function analytic in a unifocal ellipse S(z0) with a con-
tinuous derivative on its boundary. Consider its partial wave projec-
tion kl for / = 1, 2,...:

(CD

We integrate by parts to obtain

i i
(C2)fcι =

-i -i

The first term in (C2) vanishes. Furthermore, from the Legendre dif-
ferential equation we obtain

(C3)

So -

k,= ...7.. .μx(x2-l)P/(x)/c'(x). (C4)
I j _!

We may write k7 as a Cauchy integral over dS(z0) and use an identity,
which is valid for />0:

(l-2

2)ρ;(z) = l f d x ( 1 " χ 2 ) J Y ( x ) . (C5)

This identity is obtained from the Legendre differential equation and
(2.14). To verify Eq. (C5), let us differentiate the right side of (C5) with
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respect to z, to obtain

- i dx - - —— (i - χ2) PΊ(χ) (C6)
_ i ax \ z — x

We integrate by parts on x to obtain

(cη

This is the derivative of the left side of (C5), according to Legendre's
differential equation. Since for / > 0 both sides of (C5) vanish as \z\ -> oo,
we have the identity.

It then follows that

ί dz(i-z2}Q'l(z}k\z}. (C8)

One can, consequently, verify (2.27).
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