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Abstract. It is shown that Schmidt’s b-boundary for a spacetime can be analyzed
using a submanifold of the tangent bundle, rather than the principal bundle or the bundle
of orthogonal frames.

1. Introduction

Schmidt [1] has shown that every spacetime can be assigned a
boundary, called the b-boundary. Roughly speaking, the boundary
points are ideal endpoints for those inextendible curves which do not
escape to infinity. Though useful in general arguments, such as those in
Hawking and Ellis [2], the b-boundary is hard to construct in specific
examples. The purpose of this paper is to point out that the construction
can be carried out using only a submanifold of the tangent bundle. Sec-
tion2 states the results, Section 3 supplies the proofs, and Section 4
gives 2 examples.

In discussing differential geometry, the notation and terminology of
Bishop and Goldberg [3] will usually be used. Hu [4] will be taken as
the standard topology reference. Throughout the paper (M, g, D) will
denote a spacetime: a real, 4-dimensional, connected, Hausdorff, oriented,
time-oriented, C* Lorentzian manifold (M, g) together with the Levi-
Civita connection D of g. T M denotes the tangent bundle, with projection
n: TM— M. The main idea is the following. Suppose «: E—~M is an
inextendible C* curve. o may be lightlike and need not be geodesic so,
in general, neither arc length nor an affine parameter supplies an adequate
criterion for when o fails to escape to infinity. But suppose we had a
unit timelike vector field P: M — TM available. Then we could use
arc length with respect to the positive definite metric g + 2g(P, -)®g(P, -).
The game is to introduce P and then amputate it back out.

2. The Unit Future

The unit future UM of M is the following C* submanifold of the
tangent bundle: UM = {(x, P)e TM |g(P, P)= — 1, P is future-pointing}.
Thus U, defined by U=rn|y,, is a C* onto map U: UM—M. As in
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Bishop and Goldberg [3] we can regard the identity map of UM onto
itself as a C* vector field P: UM — T M over the map U. For example,
suppose xeM and y,zeU~'{x}. Then Py, PzeMy,=M, and
g(Py, Pz) < — 1, where equality holds iff y =z. As pointed out in Bishop
and Goldberg [3], U*D is a C* connection over (“on”) the map U. For
example, suppose y€ UM and Y e (UM),. Then Y is vertical iff U, Y =0,
horizontal iff U* Dy P =0, and zero iff it is both horizontal and vertical.

Proposition 2.1. There is a unique Riemannian metric G on UM such
that for all (y,Y)e TUM, G(Y,Y)=g(U,Y,U,Y)+2[g(U,Y, Py)]*
+g(U*Dy P, U*Dy P).

Proof. Since g is Lorentzian, g(Uy) + 2¢g(Py, )®g(Py,.) is a positive
definite quadratic form on My,. Thus if Y is horizontal, G(Y, Y) =0,
with equality holding iff Y =0. Moreover, for any Y, g(U*DyP, Py)
=3U*Dy[(g° U)(P,P)]=%Y[—1]=0. Thus U*Dy P e (Py)" C My, for
any Y. But g restricted to (Py)* is positive definite. Thus if Y is vertical
G(Y, Y)=0, with equality holding iff Y=0. Thus G is positive definite.
The rest is straightforward. [J

Let d: UM?*—[0, ) be the topological metric determined by G,
as in Helgason [5; Section 1.9]. Let (UM, d) be the complete metric space
in which (UM, d) is dense. Denote the positive integers by Z*. Define
a relation RCUM? as follows. wRy iff there are Cauchy sequences
w:Z" UM and y': Z* — UM such that: (A) w converges to w and y’
converges to y; (B) the projections coincide, i.e. Uew =U-y’; and (C)
there is a uniform lower bound A4 € (— o0, — 1] such that, for all ne Z*,
g(Pw'n, Py'n)= A. We now show that R is an equivalence relation and
that the decomposition space UM/R is homeomorphic to the union of
M with the b-boundary of M.

3. Proofs

To give the proofs and relate UM/R to the space defined by Schmidt
we first review a standard definition of the b-boundary. Let OM be the
bundle, above M, of those (Lorentzian-) orthonormal frames whose
orientation and time-orientation is that determined by (M,g). Let
0:0M — M be the projection. Let P, (i=1,...,4) be the four standard
vector fields over 6. Thus for each de(1,2,3), (g-6) (P, Py)=1
= —(g-0) (P4, P,), with the other dot products zero. Let V:OM -»>UM
be the projection onto the unit future. Then 6=U-V and P,=P- V.

3

Define a C*, (0, 2) tensor field H on OM by H(Q, Q)= Z {g(0* Dy P;,
o=1

0* Dy Ps)+ [g(6* Dy Ps, P, q)}?} for all (¢,Q0)e TOM. By an argument
similar to that of Section 2, G, =V*G + H is a Riemannian metric on
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OM. Let d,, be the topological metric determined by G,, (OM, d,)) be the
complete metric space in which (OM, d,) is dense.

One can extend 6 to OM by using the structure group L of OM.
The elements of L are real 4 x 4 matrices and L is isomorphic to that
component of the Lorentz group which contains the identity; here and
throughout L is assigned its standard topology. The action of /e L on
OM will be denoted by R,: OM —-»OM. Thus if g,r€ OM then 6q=0r
iff there is an I € L such that R,q =r. Each R, has a uniformly continuous
extension R;: OM —-OM. For q,re OM, R,q=r iff there are Cauchy
sequences ¢ : Z* - OM converging to g and v : Z* - OM converging
to r with R,° ¢’ converging to r. There is an equivalence relation ~ on
OM, defined as follows: g ~r iff there is an [ € L such that R,q=r. The
decomposition space M = O M/ ~ is called the spacetime with b-boundary
M. The b-boundary of (M,g,D) is the topological space M —60(0OM)
=M —-0(OM)=M — M, where 6 is the projection.

We can see the relation of these definitions to the discussion of Sec-
tion 2 by filling in the two missing maps, V and U, in the following
diagram.

0
| ]
oM V UM U M
() N M
oM vV UM U M
| ] t

Proposition 3.1. For all ,re OM and ye UM :
(A) dolg,r)2d(Vyg, Vr);
(B) there is an se V™ {y} such that dy(s, q) =d(y, Vq).

Proof. The tensor field H defined above is positive semi-definite.
Since G, = H + V*G, assertion (A) follows. To prove (B) we shall con-
struct an “optimum lift” into OM of each curve into UM. The following
notation will be convenient. Let f§ be a C® curve into OM. Abbreviate
(0° BY* D yay(Py > B), where ¢ is the curve parameter, by P,, etc. Now let
o:[0,a] > UM be a C® curve from Vg to y. Then there is a unique C*
curve f:[0,a]—>OM such that: (i) Vo f=ua; (i) fO=g; and (iii) § obeys
the Fermi-Walker transport law in the sense that for all de(1,2,3)
Py=[(g°0°p)(P,, Pso )] (P, f). From the form of H, the length of
B is the same as the length of «. Moreover V= !{y} is compact. (B) above
now follows by considering a sequence of curves o,,,,... into UM
whose lengths approach d(y, Vq), with each o; going from Vgtoy. [

Theorem 3.2. There is a unique, uniformly continuous, uniformly open,
onto extension V:OM—->UM of V:OM—->UM.
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Proof. V is uniformly continuous by 3.1.A. Therefore, as shown in
Kelley [6; Chapter 6], V has a unique uniformly continuous extension
V:OM - UM. If we can show that 3.1.B extends, the uniform openess
of V will follow; compare Kelley [6; Chapter 6]. Suppose that ge OM
and ye V(OM)CUM. Let ¥ : Z* — OM be a Cauchy sequence such that
Vor converges to y. For each neZ* we can, by 3.1.B, choose
s'(n)e V- '{V¥'n} such that dy(s'(n),q)=d(Vr'n,Vq). This determines
a sequence s': Z* —-OM,; it also determines a sequence [': Z* — L by the
rule R, ,s'n=r'n for all such n. Now P,(s'n)=P(Vs'n)=P(Vr'n)
= P,(r'n). Thus the image of I' is contained in a compact subset of L
and there is at least one cluster point, say [€ L. Then R; ' is a Cauchy
sequence; let s e OM be its limit. Then se V™' {y} and d(s, 9) = d(Vs, Vq)
=d(y, Vg). Thus 3.1.B extends to this case. 3.1.B also extends to the
more general case ye V(OM), ge OM; the proof is so similar to that
just given it is omitted. Thus V is uniformly open. Kelley [6; Chapter 6]
shows that the range of a continuous, uniformly open map of a complete
metric space into a Hausdorff uniform space is complete. It follows that
Vis onto. []

Since V is open and continuous it is an identification. Moreover, note
that any Cauchy sequence y':Z* —UM can be lifted to a Cauchy
sequence ' : Z* —-OM, with Vo' =y For lets': Z* - OM be a Cauchy
sequence such that Vo s converges to the limit ye UM of y'. For each
ne Z*, choose 'n such that dy(r'n, s'n) =d(y'n, Vs'n) and ¥ ne V" {y'n}.
Then # is Cauchy. Having extended V' we can now extend U. Suppose
ye UM and q,re V1 {y}.

Proposition 3.3. 0g =0r.

Proof. Suppose y' is a Cauchy sequence which converges to y. Lift y’
to a Cauchy sequence ¢' which converges to g, using the method just
discussed; also lift y' to a Cauchy sequence r which converges to r.
Define a sequence I': Z* — L by R, ,q'n=r'n. As in the theorem, there
isa cluster point le L. Rjg=rsoOq=0r. []

Thus we can define U: UM —->M by Uy=0(V ~'{y}) for all ye UM.
Since 6 and V are identifications, U is an identification. The last step is to
describe U wholly in terms of structures defined on UM. Suppose
w,ye UM;let R be as in 2.

Proposition 3.4. Uw=Uy iff wRy.

Proof. Suppose Uw=Uy. Thus if ¢ is a Cauchy sequence which
converges to ge V'~ '{w} and r is a Cauchy sequence which converges
to re ¥V~ 1{y} then there is an [ € L such that R, ¢’ converges to r. Form
a Cauchy sequence which converges to w by alternating terms from Ve g’
and Vo R; ' o ¥ and a Cauchy sequence which converges to y by alternating
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terms from Vo R;oq and Ver'. The projections of these two Cauchy
sequences into M coincide and the existence of a uniform lower bound
is implied by the fact that [ is fixed. Thus wRy. Conversely, suppose wRy.
Suppose w’ converges to w and y' converges to y, with the projections of
w" and y' identical. Lift w' to a Cauchy sequence g’ into OM, y’' to a
Cauchy sequence r' into OM. Define I': Z* —>L by R,,qdn=rn. The
existence of a uniform lower bound on g(Pw'n, Pr'n) implies that [
has at least one cluster point /e L. Then R, 4 converges to the same
point as ¥ so Uw=Uy. [

As corollaries we have that R is an equivalence relation and that
UM/R =M, as claimed in Section 2.

4. Examples and Comments

The first example shows that the condition of a uniform lower bound
in the definition of R, Section 2, cannot be dropped. Let a: (— 0, 0)> M
be a lightlike geodesic with the following property. There is an xe M
such that, for all ne Z*, a(—1/2")=x and o, (— 1/2")=2"a,(— 1) e M,.
Thus the image of « is [ —1, —3)CM and o winds around an infinite
number of times as the affine parameter, say ¢, approaches zero from
below. Hawking and Ellis [2] show this rather peculiar behavoir can in
fact occur. Now let X, € M, be unit, timelike, and future-pointing. The
constant sequence y': Z* —-»UM given by y'n=(x, X,) has y=(x, X,)
as limit and Uy = Uy = x. Next define a vector field over o, X : (— o0, 0)
—TM, as follows: X is parallel, i.e. a* D, (X ) =0; and X(—1)=X,.
Then the sequence w' defined by w'n=(x, X(—1/2") is also Cauchy.
For the only contribution to the arc length of the curve ff=(a, X °a)
:(—00,0)> UM comes from the term 2[(ge o) («,, X)]*, which is con-
stant; let w be the limit of w'. w' has the same projection into M as y/,
but Uw= Uy, as discussed in Hawking and Ellis [2]. The catch is that
g(Pw'n, Py'n)=g(X(—1/2"), X,) is not bounded from below.

The second example shows that, at least in one artificially constructed
case, working with UM rather than OM gives a major simplification.
Let N be R® with the origin (0, 0, 0) deleted. Let h be a C° Riemannian
metric on R* which is C* on N. Let M = N x (— o, o0), with projections
S:M-N and T: M —(— o0, ). Define g on M by g=S*h—dT®dT.
Supply (M, g) with the natural orientation, natural time-orientation,
and the Levi-Civita connection D. Then (M, g, D) is a spacetime. The
claim is that M is homeomorphic to R*; roughly speaking, the b-boundary
consists simply of the “missing points” (0,0, 0) x (— o0, ). Only an
outline of the rather tedious proof will be given.

_ Let 2:[0,a] > UM be a C” curve. Then (Geo)(a,,x,)Z(g9° Uca)
(P, P), with P essentially as in 3.1. Define the vector field X .M —>TM
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by T, X =d/ds, S, X =0. X is unit, timelike, future pointing, and parallel
(“covarlant constant”) Let f: [0 a]—[0, oo) be the function defined by
coshf=—(geU-a) (P0 o, Xo U-a). Using the inequality mentioned
above and the fact that X is parallel one finds that the arc length of «
is at least | fO— fa|. Now let w': Z* — UM be a Cauchy sequence with
limit w. The above estimate shows there is a uniform lower bound on
g(Pwn,XUw'n). Next one can work with the “horizontal part”
g(U,Y,U,Y)+2[g(U,Y,Py)]* of G, rather than the “vertical part”
g(U* Dy P, U* Dy P) used above. One finds that the sequence y’, defined
by yn=({Uwn,XUwn)e UM is also Cauchy and that its limit y
obeys Uy = Uw. Thus one can confine attention to sequences y’ with the
property Pcy'=XoU-=y. The rest is straightforward and gives the
result already mentioned.

If one tries to work directly with OM in this second example a
terrible mess results. Unfortunately, in more realistic cases even using
UM still leads to quite difficult computations. Whether one can develop
effective techniques for computing the b-boundaries of the various
physically interesting spacetimes remains to be seen. If not, the physical
relevance of b-boundary techniques may remain rather obscure.
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