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Abstract. We consider the time evolution of local observables and physical states in
an infinite system of non-interacting Fermi particles. The orbit of an observable in the
C*-algebra of the canonical anticommutation relations is proved to be asymptotic to a set
of observables consisting of sums of products of elements of grade two and lower with
support in a family of separated cells in 1R3 (a lacunary paving of IR3) under time evolution.
A space-factorization ("clustering") property for primary, even, locally Fock states is
established. A class of such states whose space-correlations decay as (logd)~(1+α) with a
positive and d the (space-) separation is, then, proved to be time-asymptotic to their
associated quasi-free states.

§ 1. Introduction

Statistical mechanics results from a "coarse grained" description of a
system, i.e., from the process of limiting attention to a restricted set of
observ&bles. It has been the hope underlying many recent studies in
Quantum Statistical Mechanics that, for most purposes, it is adequate
to take for this set the local observables in an infinitely extended medium.
If this is so then we should be able to show that time evolution of states
over the algebra of local observables in an infinite system is such that a
considerable simplification results as the time t tends to infinity (in-
sensitivity to initial conditions): the orbits of large classes of states
should coalesce (become asymptotic to each other) as £-»oo. While it
appears forbiddingly difficult to obtain any rigorous mathematical
results about asymptotic orbits of states for systems of infinitely many
interacting particles, it is possible to study this problem for the free
Fermi gas (an infinite system of non-interacting particles). From the
physical point of view, the free system is, of course, a poor example to
demonstrate the asymptotic simplification because interparticle collisions
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(which are absent in this case) are expected to be a principal agent in
bringing about the asymptotic coalescence of states. Nevertheless we
find that, even for the free gas, there is a very significant asymptotic
simplification.

Our goal is Theorem 5.5 in which we show that a physical state ρ
whose long-range (space-)correlations decrease sufficiently rapidly to
zero for large distances, is asymptotic under time evolution to its as-
sociated quasi-free state ρ (the quasi-free state with the same two-point
function). The main tool in the proof of this theorem is Theorem 2.3 which
describes the orbit of an observables as being asymptotic to the ob-
servables from a special set. Each of the observables in this set is a
(norm-limit of a) sum of products of observables of grade two or lower
with support in a "cell" of a certain ("lacunary") "paving" of IR3. In
computing the expectation value of such an observable in a state ρ
whose long range correlations decrease rapidly, we may effectively
replace ρ by its "factorization" ρx relative to the paving. For the ob-
servables in question, the expectation values in ρx are precisely equal to
those in ρx (the factorization of the associated quasi-free state) and
these, in turn, are effectively equal to those in ρ.

In loose outline, the preceding remarks describe the structure of the
argument proving Theorem 5.5. With the exception of § 4, the following
sections provide the precise mathematical proof of this theorem. In § 4
we prove that each even, primary, locally Fock state has long-range
correlations which decay with increasing space-separation. This result
lends force to the study of the class of states having prescribed rates of
decay in space-correlations (carried out in §5). In §3 we develop the
apparatus of factorization of even states essential to the application of
Theorem 2.3 to the study of the time-asymptotic behavior of states. One
form of this factorization is developed in [5; § 5]. In addition, we must
develop a "commutative" factorization and relate it to the "anti-com-
mutative" factorization of [5; §5]. (We are deeply grateful to Robert
Powers for valuable discussions of [5] and other topics involved in the
final phase of this work.)

Parts of this research have been discussed in [1, 2]. At the point
where we had established the asymptotic form of the orbits of ob-
servables, Lanford and Robinson [4] were able to prove our conjecture
of 'asymptotic equivalence with quasi-free states' for the class of trans-
lationally-invariant states with square-integrable truncated rc-point
functions.

For the most part, the notation and conventions we use will be
explained as needed (section by section). When the CAR algebra, the
C*-algebra of the canonical anticommutation relations, appears, it
will be denoted by 21. The annihilators and creators with wave function /



Asymptotic Orbits in a Free Fermi Gas 3

(in L2(IR3)) are denoted by α(/) and #*(/), respectively; and a'(f) is
used to designate either this annihilator or creator (when it is worth-
while, notationally, to leave the specification ambiguous). Following
usual notation, we write 9Γ for the commutant of a family 91 of operators
acting on a Hubert space (9Γ is the set of bounded operators on that
space commuting with all operators in 91). The weak-operator closure
of 91 is denoted by 9I~. When we speak of the CAR algebra based on 2tf,
we refer to the C*-algebra generated by the annihilators α(/) with /
in 3f. We use the notation 91 (M) to denote the C*-subalgebra of 91
generated by a(f) with / in the subspace M of Jίf. If J^ is L2(R3) and Φ
is a region in 1R3, we write 91 (&) in place of 91 (M), where M is the subspace
of L2 (IR3) consisting of functions vanishing (almost everywhere) out-
side of 0.

§ 2. The Asymptotic Form of Orbits

In this section the following notational conventions are used. We
denote by jj? the Hubert space, L2(IR3), of complex-valued, square-
integrable functions on 3-dimensional Euclidean space IR3. Its elements
will be denoted by /, g, etc., the scalar product by (/, g\ the norm by
| |/1|2( = (/,/)*). We deal with the CAR algebra 91 over ̂  - that is,
the C*-algebra generated by a system of elements a(f\ conjugate-
linear in / (in Jf) and satisfying the canonical anticommutation relations
(CAR):

[*(/), *(0)]+ = [**(/), **(0)]+ = 0, [**(/), a(g)-]+ = (/, g)

where/, g are in Jf, α*(/) is the adjoint o ί a ( f ) and [4, JB]+ = AB + BA.
Recall that ||α(/)|| = ||α*(/)|| = ||/||2, where \\A\\ is the bound of the
operator A in 91. With x(=(xί,x2,x3)) and x'(=(xi,x'2,x'3)) in IR3,
([x(I = (x? + x2

2 + x|)* and (x, x'} = χίX{ +x2χ'2 + χ3χ'3.
With / in Jf, we denote by /(ί) the element (exp(-iJff0ί))/ of &

where H0 = - \A, and by αf (α(/)) the element α(/(ί)) of 9ί. In this notation,
/(ί) is the solution of the free Schrodinger equation with initial condition,
/(0) = /; and ί->αt extends to the one-parameter automorphism group
of time translations of 91 specified by its action on the generators a(f)
of 91.

We use the notation BR to refer to the closed ball with center 0
and radius R in IR3. The term "essentially" is used in the technical
measure-theoretic sense; so that two essentially disjoints subsets of IR3

are subsets whose intersection has (Lebesgue) measure 0; and an es-
sentially bounded set is one which is essentially disjoint from the com-
plement of some BR. The essential diameter of a subset ίf of IR3 is the
infimum of the diameter of those closed balls which essentially contain £f.
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The essential outer distance of ίf from 0 is inf{R: £f is essentially con-
tained in BR} (=R(^)\ We denote by Sf' the complement in 1R3 of the
subset &>.

2.1. Definition. A lacunary paving & of 1R3 is a denumerable collection
{<%„} of essentially bounded, mutually essentially disjoint subsets of IR3

satisfying:
a) α(R)-»0 as R->oo, where α(R) is the quotient of the measure of

BRnW by that of BR andW=(j<%n;

b) r(lϊ)/r1->0 as R->oo, where r(R) = supfoiR^J^R} and rn

is the essential diameter of tfln .
Concerning these pavings, a) imposes the condition that "asymptoti-

cally, they fill almost all of space"; and b) imposes the condition that,
while the diameters of the %n may grow large, the diameters of distant Φπ

are small by comparison with their (essential outer) distances from the
origin. We note that the collection ^0 of (JUn in & lying (essentially)
outside a given essentially bounded subset of IR3 constitutes, again, a
lacunary paving; for r0(R) ̂  r(R) and α0(R) ̂  α(R) + F0(f π R3)"1, where
α0 and r0 are the functions of a) and b) for ^0, and P^ is the measure of
the bounded subset of IR3 "excised" from the paving .̂ We note, too,
that a translate ^o(={% — xo}) of & is a lacunary paving. In this
case, BRπ(W -XQ)' + xQQBR + nW', so that:

x 0 R + -X0 # ~ ^ as R

In addition, R(<%n) ̂  R + ||x0||
 if &(*%„ -x0)^R;so that:

r0(R)
and

as

The interiors of the cubes formed by the lattice of points outside
some BR with integer coordinates is an example of a lacunary paving.

2.2. Lemma. // 3? (={%„}) is α lacunary paving of IR3, then for
each / in L2(IR3) and each n there is a function hn (of t) such that
||/(ί)-0ί||2->° as ί^oo, where gt(x) = hn(t)ezp[%iΓl x||2] for x in <%n

and gt vanishes on tfl'.

2.3. Theorem. // 21M is the 4-dίmensional subalgebra of 91 generated
by /, a(0f>n) and α* (&,„), where gt,n(x) = hn(t)exp[^it~1 ||x||2] for x in
tfίn and gttn vanishes on ̂ , and 9ϊf is the C*-subalgebra of 9ί generated
by {9Iί>n}, ί/ien, /or each A in 91, ί/zβre is a one-parameter family (Bt\ with
Bt in 9If, such that 11^(^4) — Bt\\ ~+Q as t-^oo (that is, at(A) is asymptotic
i n time t o W .
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Before beginning the proofs, we remark that the heuristic basis for
the lemma resides in two properties of the solutions of the free Schro-
dinger equation at large times. The first is that the wave function /(ί)(x)
spreads over a very large region of space, the diameter of which increases
proportionally to t. Thus, for a fixed lacunary paving, as a result of a),
the L2-norm of the part of the wave function /(ί) which has support in
the "unpaved" part of space will tend to 0 as ί-»oo. The second is, that
independently of the initial shape of the wave function, the shape of
/(ί), within a small region of space around a point xπ, is, in essence, that
of a plane wave with wave vector ί"1 xπ, at large times t. A slightly better
approximation, one which turns out to be valid to a sufficient degree
of accuracy within each <%„ when the size of the <%„ is limited by b) is
given by hn(t) gtfn(x).

Assuming, for the moment, that the lemma has been established,
we proceed to the

Proof of Theorem 2.3. Note that

\\at(a(f))-a(g,)\\ = \\a(fm)-a(gt)\\ = \\a(fm-gt)\\ = \\fw-gt\\2

so that ||αf(α(/) —α(0f)||->0 as £-»0, assuming Lemma2.2. As £0t>n
n

converges to gt in ffl, Σ #(&,„) converges to a(gt) in the norm topology
n

on bounded operators; whence a(gt) lies in 2If (in fact, a(gt) is in the
norm closure of the linear span of the 2lί>M). Taking a(gt) as Bt, our
theorem is established for the generators α(/) of 21. Since ||ocr(α(/)) — Bt\\
= Ik (α(/))*-#? || = || α,(α* (/))-£*j|, and B*e2If, the same is true
for #*(/). If p is a (non-commutative) polynomial in several variables
(regarded as a mapping from 21 x x 21 to 21), then p on bounded sets
is uniformly norm-continuous, and at ° p = p ° αf (where α( is the extension
of αt to 2ί x x 21 obtained by applying αr to each coordinate). Since
2If is a *-algebra, p maps 2If x x 2ίf into 2If. It follows that the
assertion of the theorem holds for the operators in the norm-dense,
*-subalgebra 2I0 of 21 consisting of polynomials in the generators
a(f),a*(f).

For arbitrary A in 21, choose Am in 210 so that ||^4 — Am\\^m ί.
Since ,4me2l0, there is a one-parameter family (Btm) such that

"->0 as ί-» oo, with Btm in 2If. Choose tl9 so that
^ 1 if tt ^ t and ίw, inductively, so that ί w _ A + 1 ̂  tm and,

ifίm^ίthen||α ί(/lm)-β (

B,,m for ίm<ί^ίm + 1. Then
>m ^m"1. Let Bt be 0 for 0^ί^ί1; and B, be

as t^co; for, if tm<ί^ίm+1,
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Proof of Lemma 2.2. It will suffice to establish the assertion of the
lemma for each function in a total family; for, by linearity of /-»/(ί),
the same then holds for each function in the dense linear subspace Jf0

consisting of finite linear combinations of functions in the total family.
For an arbitrary / in ffl , choose fm in jj?0 such that \f — fm\2 = m~^
and (0fίJ so that \\fmt(t)-gt,m\\2-+Q as ί-»°° Arguing, now, precisely
as above, we find (gt) such that ||/(ί) — ^t^-^O-

As our total family, we use the normalized Gaussians with various
centers and dispersions. If f ( x ) = π~^s~^ exp[ — ^s~2 \\x — x0||

2], then

/(ί)(x) = π-ϊs*(s2 + ίίΓ*exp[-i:(s2-hiίΓ1 | |x-Xo||2] Let gt>n(x) be
/(ί)(x), for x in ̂ , and vanish on <%lf

n. Let ^(x) be /(ί)(x), for x in ί̂ , and
vanish on W. Given a positive ε(<l), choose c exceeding 1 such that

oo ^ g2 oo £2

4π J u2 expwexp- -rU2du^—-. Then J w2 exp- u2du^ — . Let ̂ 0,
ic 4 2 c O

with associated % and α0, be the paving ̂  translated by — x0. Choose
R0 such that α0(£)<ic-3ε2 if £^#0 Write k(t) for 5(54 + ί2)"i.
Then fc(ί)->0 as ί-^oo; so that there is a positive ί0 such that c fc(ί)"1 ̂  /^0

if ί ̂  ί 0 . Writing K for c /c (ί)~ 1 , note that, if t ̂  ί 0 ,

exp-(k(t)\x\\)2dx+

j dx + 4π J y2 exp - (k(t) y)2

BRO^O R

^ πi /-^\ A ι / \ _ ^ ί 2

1 °°
c3α0(Λ)+ ί u2Qxp-u2du

Thus ||/(ί) — ̂  || 2 ->0 as ί^ oo and it remains to show that 1̂  — ̂ I^-^O
as ί^ GO, where ̂  is of the form described in the statement of the lemma.
Toward this end, choose a point xn in each %n. Note that, for x in %,
writing t;w(ί) for π~^sf (s2 + iί)~f exp[~i(52 + /ίΓ1 | |XM- x0||

2], &,„(*)
is
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Let gt,n(x) be 0 on ̂  and for x in ̂ n, let gtίn(x) be

Removing from each <%n a set of measure 0, we may assume that the
essential and actual diameters rn of each ύlln are the same, that the essential
and actual outer distances Rn of (JUn from 0 coincide, that xn is chosen
in the altered^, that distinct JUn are disjoint, and that each $Un is bounded.
We use the same symbols to designate the sets and paving as altered
as well as the restrictions of gtttl, gt, gt>n and gt to the altered paving.
Since these functions have been modified on a set of measure 0, the L2-
estimates obtained for them apply equally to the original functions.

With the notation as before^ let R±(> 16 ||x0||) be such that r(R)R~l

^εOcβc + s^llxoll)]- 1 if 2£^jR1. Since fc(f)->0 and ίfc(f)->s as
ί->oo, there is a tί9 such that 2ck(t)~i( = 2R)^Rί, 3tk(t)^s and
lΞ>6 | |x 0 | | /c( ί) if ί^ίi. Suppose Wn£BR, XE% and ί^^. Letting
q(u) be t/expw, and using the inequality |1 — Qxpu\^q(\u\), we have:

x\\2 -\\xn\\2\ +s-1k(t)\\x0\\\\x-xn\\

^ ε [4c(3c + 5'1 \\Xo\DT1 c(3c + s'1 ||x0||) exp^ε

Thus

Σ ||Λ.B-ft, I,l|i^iβ2 Σ

^ I I 2 < χ p 2 II f I I 2 —-

Since ε<l and l<c, ε^cίSc + s"1 Uxoll)] ' 1 <ιτ If

then ^^R^iRi; so that r^1 ̂ KRJΛ;1 <^. Thus ϋ
-rm; and u U x ' l l ^UΛw<l{w-rO T^ ||x||, for all x and x' in <2ς. As
Λ 1 >16| |xo | | ,Λ w >8| |x 0 | | ;and

||χw-χ0|| ^ IWI - ||χ0|| ^ l l ^ m l l -i«m^ l l ^ m l l -7
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With x in flς, |0(>m(x)- 0(,m(x)|2 is

\v (t)\2 CXP ( X ~ X " > X O ) CXD (H x l l 2-|kl | 2) exoPmWI exP _2 , .-. exp- Λ / _ 2 § _.^ -exp
2(52 + /ί) " 2zί

^ |υm(ί)|2 |1 + exp[(x- xm, x0) k(t)2] exp[- i(||x||2 - ||xm||2) /c(ί)2]|2

^π-*/c(ί)3exp[-||xm-x0 | |
2/c(t)2]

• 11 + exp [(x - xm, x0) k(t)2] exp [i(/?2 - (Rm - rj2) /c(ί)2]|2

^4π-*/c(ί)3exp[-i||x||2/c(ί)2]exp[2||x-xm | |. | |x0 /c(ί)2]

.exp[2rmΛm/c(t)2]

^/c(ί)3exp[-i||xl|2fe(ί)2]exp[2(||x||+2||x||)| |x0 | |fe(ί)2]

2] exp[||x|| /c(t)3 exp[i(||x|| /c(ί))2] .

Thus

Σ ||Λ.»-ft.»||i^ Σ MO3 ί exp[-i||x||2/c(t)2]exp[||x||fe(ί)]^

)3 J
iΛ

00

= 4π j u2

£

= 4π J u2 exp w exp — \u2 du^. — .
-ire 2

Collecting estimates, we have:

s2 ε2

\\9t- 9t\\2= Σ \\dt,n-9t,n\\22+ Σ \\9t,m- 9t,m\\2 ^ ~Γ + ^Γ <

®n£BR ®m^BR ^ ^

t^t1. Thus ||/(ί) — ^rlU ^O as ί-^oo, completing the proof.

§ 3. Factorizations of States

With 91 the CAR algebra based on J^( = L2(^?}\ orthogonal
decompositions of Jίf give rise to (mutually) "anticommuting" sub-
algebras of 91 which generate 91. Powers shows [5; Theorem 5.4] that
a family of even states, one defined on each of these subalgebras, gives



Asymptotic Orbits in a Free Fermi Gas 9

rise to an even state of 21 which is their "product". This process may be
applied to "decouple" even states "along" an orthogonal decomposition
of ffl. The state is restricted to the corresponding subalgebras and the
product of these restrictions is formed. If the decomposition of 3f
arises from a partition of 1R3, then this "factorization" of the state
amounts to eliminating its correlations between distinct regions of the
partition.

We say that a state ρ of 21 is "locally Fock" if the restriction of ρ
to 2I(M) is normal whenever M arises from a bounded region of 1R3,
where 2ί appears in its Fock representation and the weak-operator
closure 2I(M)~ of 21 (M) is taken relative to this representation. For
such a subspace M, 21 (M)" is a type /^ factor. For a locally Fock state ρ,
another process is available for forming products along a decomposition
of ffl arising from bounded regions of 1R3. Applying the GNS con-
struction to ρ, we may suppose that ρ is a vector state ωx \ 21. We will note
(Lemma 3.2) that 2I(M)~ is a type / factor, again, in this representation
(M associated with a bounded region of 1R3). Using the simplest properties
of tensor products, we can form the product of the restrictions of ωx

to the type / factor 2I(M)~ and its commutant 21 (M)7. The restriction
ρ§ of this product to 21 is the second factorization. Denoting by ρ^
the product according to Powers, we will see (Lemma 3.4) that ρj|
and ρ^ coincide. For later application, this identification is needed, as
well as the determination of the commutant of 21 (M) in 2Ϊ~ preliminary
to it.

If & is a collection of regions mutually disjoint in 1R3 (̂  is to become
a lacunary paving, at a later stage), and ρ is an even state of 21, we denote
by ρjί the (Powers) factorization of ρ along the decomposition of L2(1R3)
obtained from the regions in & and the complement of their union.
The next five lemmas will establish the existence of the "commutant"
product ρ® for even locally Fock states ρ.

3.1. Lemma. // {Λ^} is a family of mutually commuting type I factors
acting on a Hubert space ffl and ρa is a normal state of Jfa, there is a
unique state ρ of the C*-algebra 21 generated by {J^} (von Neumann
algebra, if {J^a} is a finite family) such that ρ(A1... An) = ρaί (AJ... ρan (An\
when AJ is in Jia. ana ai,..., an are distinct.

Proof. Let / be the finite set {a^,..., an} and 21̂  be the C*-subalgebra
of 21 generated by Λ^ l5 ...,Λ^n. Represent Jfa^ ...~,J\fan on Hubert
spaces ^1,...,Jf7

rt, respectively, so that each is a type I factor with
separating vector. (This can be effected by taking repeated copies of
Jfap if necessary.) In this representation, ρaj = ωXj\^r

aj for some unit
vector Xj in ̂ . Form jffϊ (g) - - (g) jVn. Then Λ^ ® - - ® Jian is isomorphic
to the von Neumann algebra generated by J^,..., Λ^n; and ωXί Θ... Θ;Cn



10 R. Haag et al

restricts to the (unique) normal state ρf of 9lr such that ρf(A1...An)
= ρ α ι ( A ί ) . . . Qan(An). (Uniqueness results from the fact that such products
are a total family for this C*-algebra.) If/! £/2, this uniqueness implies
that ρ/2 is an extension of ρ/ι. Thus the ρf define a bounded linear
functional on the norm-dense subalgebra1 v 9Ij of 91. Its unique extension
to 91 is a state ρ extending each ρf. Thus ρ(A1 - An) = ρα ι(A^...ρ a n(A n),
when AJ is in J f a j .

3.2. Lemma. // 9ί is ί/ze Cv4# algebra based on L2(1R3), 91 acting on
Jf1 is the Fock representation of 91, ρ is a locally Fock state of 91, and π
is the representation of 91 engendered by ρ; then there is a (unique) state ρ
of the norm closure 91 of the union of the weak-operator closures 9I(M)~
(relative to jfi) of those subalgebras of 91 corresponding to bounded
regions 0/IR3, extending ρ and normal on each such 9I(M)~. The representa-
tion π of 91 engendered by ρ restricts, on 91, to (a representation unitarily
equivalent to) π; and π(9I(M))~ is a type I factor, when M corresponds
to a bounded region of IR3.

Proof. Let J>f0 be the representation space of π and x0 be a unit
vector in Jjf0 cyclic under π(9l) such that ρ(A) = <π(^)x0|x0> for each
A in 91. Then, with A in 9ί, ρ(A) = ρ(A) = (π(A) x01 x0>. Thus π191 com-
posed with restriction to [π(9l)x0] ^ unitarily equivalent to π. We
complete the proof by showing that [π(9X) x0] = Jf0.

Since ρ is locally Fock, π 19I(M)~ is normal [3; proof of Proposition 8]
for each M associated with a bounded region of IR3. Thus π(9I(M)) is
strong-operator dense in π(9I(M)~). With unions extended over all
such M, it follows that

[π(9I) x0] = [ v π(9I(M)) χ0] = [ v π(9I(MΓ) x0] = [π(9I) x0] = J 0̂ .

It follows, too, that π(9I(M))" - π(9I(M)~) is a type / factor.

3.3. Lemma. If 91 is the CAR algebra based on Jf, M is a closed
subspace of Jf, {/)} is an orthonormal basis for M, {g}} is an orthonormal
basis for 2tf QM, 9ί acts on J 0̂ in such a way that 9I(M)~ is a type I
factor and some vector state ωx restricts to an even state of 91 (M), then
there is a unitary operator U in 9ί(M)~ such that U2 = /, Ua(f) U = -a(f)
for f in M, Ua(g) U = a(g) for g in JtfQM, ana 91 (M)' Λ 9Γ is the weak-
operator closure of finite linear combinations of elements of 9I~ of the
form a'(gh}...a'(ghγ) and Ua'(gkί)...a'(gk2m+i).

Proof. Let E be the projection in 9I(M); with range [9I(M) x]. Since
9ί(M)~ is a factor, A^AE is an isomorphism of 9I(M)~ onto 9t(M)~E.
The unitary operator /-> — / on M gives rise to an automorphism αM of
9Ϊ(M). Since ωx\$ί(M) is even, ωx° αM = ωx\9ί(M). Thus y4x^αM(yl)x
extends to a unitary operator on [9I(M) x] which implements the mapping

1 We use v and Λ as well as u and n for unions and intersections.
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of 91 (M) E onto itself. Hence this mapping and αM extend
to automorphisms of 9l(M)"£ and 9I(M)~, respectively. Letting "αM"
denote, again, the extension to 9I(M)~ of αM, there is a unitary operator
U in 9ί(M)" which implements αM (since 9l(M)~ is a factor of type I).
Since alί(A) = A, U2 is a scalar; and we may assume that U2 = L

Since U is in 91 (M)", 17 is the strong-operator limit of a net {Ta} in
(the unit ball of) 91 (M). Thus U is the strong-operator limit of the net
&(Ta+UTaU)} of even elements of 91 (M). As each even element of
91 (M) commutes with 9t(^fθM), U commutes with 9ίpf©M).
Hence U implements the automorphism of 91 induced by the unitary
operator /-> - /, g-*g on jf, with / in M and 0 in tfQM. If <yΓ is the
weak-operator closure of the algebra of finite linear combinations of
elements of the form a'(gh)... a'(gJ2n) and Ua'(gh)... 0'(0/2 m +Λ then each
a'(f), f in M, commutes with yK; and yK £ 91 (M)' A 91". Moreover Λf
and 91 (M) generate 91" as a von Neumann algebra. If F is a minimal
projection in (the type I factor) 9I(M)~ and A is in 9I(M), then FAF = aF
for some scalar α. Thus, with B in J ,̂ FABF = FAFB = aFB. Since
finite linear combinations of products AB are strong-operator dense
in 91", F9ί~F is generated as a von Neumann algebra by F J f F ( = jVF)
and F9ί(M)"F(={flF}). Thus F9ΓF = ΛΛF. If T is in 9I(M)Ά 9Γ,
TF = BF, for some 5 in Jf. Since A'^A'F is an isomorphism of 9ί(M)'
onto 9I(M)'F; T= 5. Hence ^r = 2I(M)/ A 9t~.

3.4. Lemma. // 91 is the CAR algebra based on Jtf, 9ί acts on Jf0,
M 1£M 2g ••• gMrt are subspaces of Jf 5wc/z ίΛaί SΪ(M, )~ w a ίĵ pe I
factor and ρ is an even vector state ωx \ 91" of 91", ί/ien the product ρx

relative to the orthogonal decomposition {Λ^ 9...9Nn9J^Q Mn} of 3^, where
Nj^MjQMj^i (M0 = 0), coincides with the restriction ρ® to 91 of the
product of the normal states cox|9I(Mn)', ρl Λ^i, ...9Q\^n, where Λ/i
- 9I(M1Γ anrf .̂ = 9I(M7._1)

/ A 3I(M7Γ,j = 2, ...,n.

Proo/. Of course ρx and ρ® agree on 9I(M1). Suppose they agree
on 9t(My). From Lemma 3.3, J/}+1 is generated linearly by products
af(g1)...a'(g2m) and Uja'(g1)...af(g2m + 1) with ^ in Nj+1. I f/ 1 ? . . . , / n

are in MJ9

S x ( a ' ( f 1 ) . . . a ' ( f n ) a ' ( g 1 ) . . . a ' ( g 2 m ) )

= β x ( a ' ( f 1 ) . . . a ' ( f n ) ) ρ ( a ' ( g 1 ) . . . a ' ( g 2 m ) )

= ρ ® ( a ' ( f ί ) . . . a ' ( f n ) a ' ( g 1 ) . . . a ' ( g 2 m ) ) ,
and

Q*(a'(f1)...a'(tta'(g1)...a'(g2m+1))

= Q x ( a ' ( f 1 ) . . . a ' ( f n ) ) ρ ( a ' ( g ί ) . . . a ' ( g 2 m + 1 ) )

= 0.
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Now Uj is a strong-operator limit of even elements, so that
Uja'(g1)...a'(g2m+1) is a strong-operator limit of odd elements. Thus

= 0 = ρ®(a\f1)...a'(fn)Uj)ρ(Uja'(g1)...a'(g2m+1))

= ρ ® ( a ' ( f ΐ ) . . . a ' ( f n ) a ' ( g 1 ) . . . a ' ( g 2 m + 1)).

Thus ρ® and ρx agree on 9ϊ(Mn). The argument just given applies, with
ffl QMn in place of Nj+l9 to show, now, that ρ® and ρx coincide on 91.

3.5. Lemma. // {<%„} ( = 0*) is a family of mutually disjoint bounded
regions in 1R3 with union <%, Mn is the subspace of L2(1R3) (=^) corre-
sponding to %! v ••• v ^π, M corresponds to %, ρ is an even locally Fock
state of the CAR algebra 91 based on Jjf, 91 acting on J 0̂ is the repre-
sentation engendered by ρ and ρ = ωx \ 91, ρ® is the product of ωx \ 91 (MJ',
ωJ(9I(M/Λ9I(Mj + 1)~), j=0, ...,rc-l, and 9IΠ is the C*-subalgebra
of 91 generated by 91 (Mn) and 91 (Jf QM); then (ρf) is w^ -convergent
on 91, the norm closure of V 9I~, to a state ρf , and ρ® ( = ρ® 1 91) coincides

n

with Qp, the Powers factorization of ρ relative to the orthogonal de-
composition (3? ©M, NlyN2, ...} of Jf , where Nj = MjQMj_1.

Proof. With ρx the Powers factorization of ρ relative to ΛΓ15 ..., Nn,
Jf ΘMW, we have ρf = ρ x , from Lemma 3.4, where ρ® = ρf|9I. Now
ρ^ and ρx agree on 9In. Thus ρ® |9tm is an extension of ρf |9IΠ, when
n<m. From Lemma 3.1, ρ® is normal; and, as it is the unique normal
extension of ρf from 9ί to 9I~, ρ® 1 9I~ is an extension of ρ® | Sϊ~, when
n<m. Thus (ρ®|2ϊ) is w*-convergent to a state ρ| on 91. Since ρ||9In

= ^?|9Iπ = ρπ

x |9ϊM = ρJ|9In and V 9tn is norm dense in 91; ρ® = ρ||9l

= £i

3.6. Proposition. // φ is α quasi-free state of the CAR algebra 9ί
bαseJ on ffl and {Ma} is an orthogonal decomposition of ffl, then φx ,
the factorization of φ relative to {Mα}, is a quasi-free state.

Proof. The value of the truncated n-point function of φ x is a sum
of the values of the truncated rc-point function of φ restricted to the sub-
spaces Mα, from the definition of φ x and [5; Lemma 5. 16]. Thus the
truncated n-point functions of φx vanish for n > 2; and φ x is quasi-free.

§ 4. A Space-factoring Property of Primary Locally Normal States

A primary, locally normal state ρ of the CAR algebra 91 enjoys
a "clustering property". A slight generalization [3; Proposition 13] to
type I funnels of a result [6; Theorem 2.5] of Powers states that: if &0
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is a bounded region of ΪR3, ε > 0, and A is in the unit ball of 9I(00)> the
CAR subalgebra of 91 corresponding to &Q, then there is a bounded
region (9 of 1R3 containing 00 such that \ρ(AB) - ρ(A) ρ(B)\ < s for each B
in the unit ball of 9I($')> where & is the complement of G in IR3. A stronger
result, in the direction of space-factorization, would state: ||ρ|2ϊ0 ~~ £o ||
< ε, where 9I0 is 9I(.$0

U ®') and Qo *s tne product of the restrictions of ρ
to 91 (00) and to 9I($') (We need no longer distinguish between the
Powers product QQ and our "commutative" product ρ®). This result
is proved in the proposition which follows. (It contains Derek Robinson's
extension of the clustering property [7; Theorem?] in which A is not
preassigned; but not Erling St0rmer's result [8; Theorem] for the case
of ITPFI factors.)

4.1. Proposition. // 91 is a C* -algebra acting on the Hίlbert space jjf,
x is a cyclic unit vector for 91, and {J?a} is a funnel of type I factors on ffl
with union norm-dense in 91; then 9Γ is a factor if and only if

\\ωx l^fl ~~ ωx \^a\\~^ 0? for eacn flo> where 9ία is the von Neumann algebra
generated by J/ao and J{'ar\^Ά~ and ω* is the factorization of ωJ9I~
relative to JίaQ .

We prove this proposition with the aid of the following lemmas.

4.2. Lemma. // Jί is a type I factor acting on a Hilbert space 3f
with commutant Jί' (of type I), 3$ is a von Neumann subalgebra of Jί,
and ($a) is a decreasing net of von Neumann algebras in Jί' with inter-
section ^o, then

Λ (/ \ \

Proof. Viewing 93 (JΓ) as 93 (̂ f ) (g) 93 G?Γ ) with M as 93 (Jf)®/ and
JΓ as I®S&(3#")\ we may view 33(Jf)(χ)^fl as the set of those m x m
matrices with entries in $a which yield bounded operators when acting
on the m-fold direct sum of 3?' with itself. Thus

^®^0g Λ (Λ®Λβ)( = /)g»(Jf)®Λ 0= A
α α

Now, ^®^fl commutes with 9K ®1\ and 93pf)®^0 commutes with
ό Thus / commutes with both, and, hence, / commutes with

ό It follows that /^(Si'®^)' = St®StQ [9; Theorem 12.3];
so that

4.3. Lemma. // {Jί^ is a directed family of von Neumann algebras
acting on J f , Jta ζ Jίa> if a' ̂  α, and ω is a normal functional on I V JtX'
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such that ω\ (Λ Jt^\ = 0, then lim \ω\Jίa\ = 0. /ft particular, if Λ ̂ α

= {λl} and ω1,ω2 are normal states of J V ^fll^ lim ||̂  — ω2)|./C|| =0.

Proof. Since the unit ball of each ̂ α is weak-operator compact and ω
is weak-operator continuous on it, there is an operator Aa in it such that
ω(Aa) = \\ω\Jΐa\\. Now {Aa} has a subnet {v4fl,} weak-operator con-
vergent to some A. Since {Jta} is directed inversely by inclusion,
Aε f\ Jίa. Thus 0 = ω(A) = limω(^βO = l imω|^ίr α J. As {Ma} is

cofinalin { f̂l} and \\ω\Jΐa\\ ^ |ω|^ f l/|| if a'^a, lim
α

Proof of Proposition 4.Ϊ. If # is the center of SI~ , then

for clearly, ̂  is contained in this intersection, while the reverse inclusion
follows, at once, from the fact that 9Γ is generated by {Jta}. From
Lemma 4.2, Λ 9Iα - {J(ao9<g}". If 9Γ is a factor, <β is the algebra of

scalars, and Λ 9lα = JίaQ. Since ωx | 9Γ and ω* agree on JtfttQ, Lemma 4.3

applies; and ||ωx 1 9ϊβ - ωx

x |«ίj -^ 0.
Assume, now, that \\ωx 9ία-ωx |fflίβ | | ^>0. If Ce^7 and ^06^flo,

Ce Λ (̂  Λ (2Γ); so that ωx(^0C) = ωx(A0)ωx(Q. As V ̂ α is weak-

operator dense in 91 ~, ωJC(>lC) = ωJC(^4)ωA.(C), for all /I in 91" and C
in #. As x is cyclic for 9Ϊ~, it is separating for .̂ Thus ^ = {/I/}.

4.4. Lemma. // 9ί αcίingf 6>π Jf zs a representation of the CAR algebra,
x is a cyclic unit vector for 9ί, ωx 91 is a primary, even, locally Fock state
of 91, {Ma} is a net of subspaces of L2(1R3) directed by inclusion, V Maa

is dense in L20R3), each Ma corresponds to a bounded region of 1R3, M'a
is the complement of Ma in L2 (1R3), 9Ifl = 91 (Mflo + Aζ)~ , and yί0= Λ 9Iα ,

Froo/. From the hypothesis that x is cyclic for 91 and ωx \ 9ί is even, the
main automorphism of 91 [determined by the mapping «'(/)-> «'( — /)]
is implemented by a unitary operator on 3? and extends to an auto-
morphism α of 91". Since ωJ9ϊ is primary, as well, 9I~ is a factor. Thus
Λ (9I(Mαy Λ 91") consists of scalars. (We make use of the fact that

V 91 (Mα) is strong-operator dense in 9ί~ for this.) Let UQ be the unitary

operator in 9I(Mαo)~ described in Lemma 3.3. Note, for this, that 9I(Mflo)~
is a type I factor - from Lemma 3.2 and the fact that ωJ9I is a locally
Fock state. Referring to elements of 9Γ fixed or transformed to their
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negatives by α as "even" or "odd" elements, respectively, L/0 is even and
commutes with 91 (M )̂. From Lemma 3.3, (2l+(Λ^) + U0 9I_(Λζ))" (= 9ΪJ
commutes with 2ϊ(Mαo)~ when α0<α, where 91+(M) and 9Ϊ_(M) refer
to the subsets of even and odd elements of 91 (M), respectively. In addition
9Ϊα is a von Neumann algebra which, together with 9I(Mαo)~, generates
9Ϊβ (as a von Neumann algebra). Writing "9I0" for " Λ 2ίfl", Lemma 4.2

applies; and Λ 2Iα = {9I(Mαo) v 9Ϊ0}". The proof is complete when we
a>ttQ

show that 9ί0 consists of scalars. _
If Γ is an even element of 9I0, T e 9Iα for each a > a0 and

T = ^(T+ α(T)). Now α is weak-operator continuous on 2ί~; and the
mapping A-+%(A + a(A)) maps 91+ (M'a] + U09ί_(A£) onto 21+(Λζ). It,
therefore, maps 9Ifl onto 2I+(Λ0-. Thus Γegi^M^ (g2I(Mβ)' Λ 2Γ)
for each a Ξ> α0. It follows that T lies in the center of 9Γ and is a scalar.

If T is odd, similar use of the mapping A-+? (A—a(A)) yields that
Γe[/02I_(M<;Γ for each α^α0. Thus C/0Γe9ί_(M;)~. We complete
the proof by showing that Λ 2t_ (Mά)~ = (0). If A is a self-adjoint

α>αo
operator in this intersection, A is odd. The set of elements in 2l_ (M^)~
with which A anticommutes is weak-operator closed in 2I_(M^)~.
On the other hand, A anticommutes with 2l_ (M), where M is a subspace
of M'α corresponding to a bounded region of 1R3. As v 2L(M) is weak-
operator dense in 2I_(ΛQ~, 4 anticommutes with 2l_(Mβ)~ and, in
particular, with itself. Thus ,4 = 0.

4.5. Proposition. // 9ί is the CAR algebra over Jf (=L2(1R3)), (MJ
is α net o/ subspaces of ffl, directed by inclusion, corresponding to bounded
regions with union 1R3, ρ is an even, locally Fock state of 91, 9Iα is the C*-
subalgebra of 91 generated by 9ί(Mflo) and 91 (Jf ©Mα), αwd ρα

x

0 w ίte
factorization of ρ relative to 9I(Mαo); then ||ρ|9ϊα — ̂ a0|9lfl|| -^0, for each
α0, if and only if ρ is primary.

Proof. Passing to the representation of 91 obtained by applying the
GNS construction to ρ, we may assume that 91 acts on J>f0, ρ is an even,
vector state ωJ2I of 91, x is a cyclic unit vector for 91, and 9I(MJ~ is a
type I factor. Applying Lemma 3.4, ρ^^ρ®, and ρ 0̂ is the restriction
of a normal state ρfl

x

0_of 9Γ to 91. Now ρfl

xJ9I(MαoΓ = ωJ9l(MfloΓ;
and Λ 9ί~ = 2ϊ(Mαo)~, if ρ is primary (from Lemma 4.4). Lemma 4.3

a>ao

applies, in this case, and

Ik I2ta - <?£,! «U = K i««~ - & I®; Ik o.
If the preceding limit is valid for each a0, Proposition 4.1 applies,

since {9I(Mfl)~} is a funnel of type I factors for 2I~ and 9I~ is the von
Neumann algebra generated by 2l(Mαo)~ and 9I(MJ/Λ9I~. Thus ρ is
primary.
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§ 5. States With No Long-Range Correlations

Proposition 4.5 assures us that ||(ρ- ρx)|9I(00 v 0)|| tends to 0,
for a fixed bounded region &0 of IR3, as the distance d(@0, Θ) between $0

and & tends to oo, where ρ is an even, primary, locally Fock state of the
CAR algebra 31 and ρx is its factorization relative to 9ϊ($0). This norm
will depend in general not only on the separation between $0 and &
but also on the shape and location of &0. It appears, however, reasonable,
from the physical point of view, to limit attention to the class of states
for which the dependence on Φ0 may be eliminated. We introduce a
function δe(d), called the modulus of decoupling for the state ρ, defined by

δρ(d0) = sup {||(ρ - ρx)|2ί(0! v Θ2)\\ : 0 l 9 (92 bounded regions of IR3,

where ρx is the factorization relative to 91 (&±). Note that δe is bounded
by 2.

5.1. Definition. If (5ρ(d)-»0 as d->oo, we say that ρ has no long-range
correlations.

This suggests the study of states of 91 for which δρ has a prescribed
rate of decay (at oo). The discussion which follows leads to Theorem 5.5
which is concerned with states ρ for which δρ(d) = (9([logd]~(1+a}}
with a > 0.

5.2. Lemma. // ρ is an even state of the CAR algebra 91, ρ has no
long-range correlations, {̂ }} is a set of mutually-disjoint, bounded regions
of IR3, 9t; is 21 (̂  v - • - v^}), ρ? is fλe factorization of ρ relative to
{<9ll9 ...,%}, and d/+1 is f/ie distance from <%J+1 to % v ••• v^},

Proo/. It will suffice to establish

for self-adjoint elements ^4 of the form £ Alk...AjkAj+lk in the unit
fc = l

ball of 9ί7 +1, where ylήfce9I(^J), since ρ — ρj+1 is hermitian and
such elements form a norm-dense subset of the self-adjoint elements
in the unit ball of 9Iy+1. If τ is a state of 9Ϊ7 , from [5; Lemma 5.3],

m

τiai/ΦρlSIO^ +i) is a state of 9Iy+1. As -/^ £ ̂ 1Λ...^
Λ = l

it follows that
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so that Σ Q(Aj+ ίk)Alk... Ajk is self-adjoint and
Λ = l

Thus

ρ(Aj+lk)Alk...Aj.

(**)

On the other hand,

- Σ (##*)

Combining (**) and (***), we have (*), completing the proof.
We describe, now, a paving ^((rn)9 (dn)) of R3 depending on the

choice of two sequences (rn) and (dn) of monotonically increasing positive
numbers. Lemma 5.3 below describes conditions on (rj, (dn) under which
0>((rn),(dn)) is a lacunary paving. Let sn be ^(rn-rn_^1). We assume that
dn<sn. The construction proceeds as follows. Let Cn be the cube with
edge length rn9 center at the origin and edges parallel to the axes of a
Cartesian coordinate system in 1R3. Let un be the greatest integer not
exceeding rjsn. Place u2 cubes of edge length sn on one face of Cn (with
edges parallel to the Cartesian frame) and remove the cubes near the
four edges of that face. Proceed, a face at a time, placing u2 cubes and
removing those along edges not on faces already considered. In this
way, we place at least 6u2 — 12ιιn(=cn) such cubes in Cn\Cn_1. Now
remove cubes until exactly cn remain in Cn\Cn^ί. Since (rn/sn)— 1 ̂  un

Shrink each of these cubes to one of edge length sn — dn keeping the center
fixed and the edges parallel to the coordinate axes. The smaller cubes,
in total, constitute the paving ^((O>(*U) Let ^wι, ...,^ΠCw be the
cubes in C^XC,^.

We estimate the volume in Cn\Cn_i not covered by ^πl, ...,^ncn.
It comes from two sources: the volume not covered by the larger cubes,

- s3 (6(rA)2 - 24(rJsJ + 6) g ί2s2

n rn

where μ is Lebesgue measure (volume) in 1R3, and the gaps introduced
by shrinking each of the cubes. Each face of a cube is moved in ^dn

(parallel to itself) in this process, so that the volume loss introduced
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in this way for each cube is less than 6s* (^dn); and the total volume
uncovered in this Way is less than 3cns*dn^l&r%dn. In total then, with

5.3. Lemma. If(rn-ι/rn)-^ 1, (<4/sn) -̂  0, and (sn) is monotone increasing,
then ^((rn),(dn)) is a lacunary paving of IR3.

Proof. Let r0 be 0. From (2), μ(<T Λ Cn)/μ(Cn) ^Σ gkΣ hk, where
k = l / /c = l

9k = ̂ slrk + ΐ^rldk + 2sl and hk = skrl_^rl -r^^ Since (#k) and

( n I n \

Σ 9k Σ hk}-?®-
k = l I k=l I

If 5B is the ball in R3 with center the origin and radius %rn, then

(αn + &„)/(! + en) = μ(WΛCn)/μ(Cn)Ί?l, where αn = j/(Φ Λ Bn)/μ(Bn),
bn = μ(®Λ(Cn\Bn))/μ(Bn), and en = μ(Cn\Bn)/μ(Bn). Since α n^l and
bn ̂  en ̂  1 |1 + en - (an + bn)\ = ί-an + en-bnΊfQ; and, thus, an -? 1.

If Br is a ball in R3 with center the origin and Bn_1 ξ.BrζBn, then

μ(Br) = μ(Bn) μ(Bβ_1) μ(Bn)

Since the diameter of <%nj is not greater than |/3 sw, the outer distance
of ̂ j is not less than \rn_ {, and 2sπ/rn _! -̂  0, we conclude that ̂  ((rj, (dj)
is a lacunary paving.

From the discussion following Definition 2.1, the paving

^no((rn)>(^n)) obtained from ^((rn),(dn)) by excising that portion in
Cπo_1 is, again, a lacunary paving.

5.4 Lemma. // ρ is an even state of the CAR algebra and ρ*0 is its
factorization relative to 0*no((rn), (dn)), then

|(e-e;)IWo)N Σ cΛ(^-ι) (3)
j = no

Proof. Let 9Inj be 9I(^ol v ••• v ^nl v ••• v Wnj) and ρ^ be the
factorization of ρ relative to {^nol, ...,^nj }. In the process of shrinking
the initial cubes in Cπ\Cπ_ l 5 the distance between these cubes becomes dπ

while the distance to cubes in Cπ_1\Cn_2 becomes ^(dn_l+d^. Since
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(dn) is monotone increasing, each cube in Q\Q_1 is a distance at least
dn_1 from all other cubes of the paving ^((O>(dJ) Thus

l i fe -<?ίU)l®«>2|| ,̂(4,0-1)
Repeated application of Lemma 5.2 yields

-<?«„) I «U,N Σ W4-ι)

Since V 9InCn is norm-dense in 9l(ΦWo), (3) follows.
n2ϊ HO

For convenient reference, we collect some formulae and limits before
beginning the proof of our main theorem.

' (logx)2

It follows from this that

Thus
x/logx is increasing when x ̂  3 ,

and χ _ j

x-1 xlog—;Γ~
ΞΠ 1 1 / -t \ /1 \ /1 / -t \\ " ~logx log(x-l) (log x) (log (x- I)) log(x-l)

as x-^oo.
log(x-l)

Hence
ex/logx

--* 1 as

dx(logx)2 (logx)

It follows that

x/losx

gjc/logjc

is increasing when x > 8 . (6)
(logx)2

X > log (- eX/l°gX ^ - x ~ (2 log (log x^log x

logx ~ \(logx) 2/ logx

X
^ — when x ̂  30.

2 logx
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Thus
ex/logx

oo as x->oo. (8)
(log*)2

5.5. Theorem. // ρ is an even state of the CAR algebra 91, f-xχ, is
the one-parameter group of time automorphisms of 91 generated by the
free Hamiltonian, ρ is the quasi-free state of 91 with the same two-point
function as ρ, δρ is the modulus of decoupling of ρ, and if δQ(d)

=@([\ogd]~(ί+a}) with a positive, then \(ρ - ρ) (at(A))\ ^ 0 as ί-»oo, for
each A in 91.

Proof. By hypothesis there are positive constants d0 and k such that
δρ(d)^k(\ogd)~(1+a} when d0^d. Given a positive ε, let dn_ί be

en/logn/(logn)2. Choose rc0(>30) such that dno_ί>d0 [see (8)],
<«+i)
n - < V2 logn, when n ̂  rc0 [see (5)], and

Let rn be r w _! +(logπ— l ) d n _ ι when n^n0; and let r^.i be 0. From
(6) and (8), (dn) is monotone increasing and tends to oo as n— >oo. Thus
the same is true for (rn) and (rn — rn_l). From (5),

dn _ I logn

~ z7i^" logπ-1 "̂  '

From (4) and (6),

"
^n/logn _ ^no/logno _ f

- logj-l ί / log ί_ »γ logx-l
= 2 " "= 2

Thus

= 7 = ,,(w-l)/log(n-l) ^«o/log«o "̂  '
'n - 1 ^ — ^

From Lemma 5.3, 0*((rn), (dn)) is a lacunary paving. Since

1 en/logn yr(1+a} ̂  k i
 n

,(logπ) 2// - \21ogn,
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from (7); it follows that

v * (A \^*ι v / r Λ 2 / 2 1 ° s n V + α

Σ cA(^-ι)^6k Σ 1 —I l"~τr~)

-2 4 ky, k—iv^-1 ί-2^

From Lemma 5.4, ||(ρ- ρx)|2I(^)|| ̂  ε, where ρx is the factorization
of ρ relative to ^((rπ), (dn)).

In order to show that |(ρ — ρ)(αf(v4))|-) 0 as £->oo, for each ^4 in 91,
it will suffice to prove this for each A in some (norm-) total family (since αr

is an isometry of 21 onto 21). We may assume that A = a' ( f ι ) . . a'(fn),
where A and each a ' ( f ) have norm 1. From the definition of a quasi-

free state, there is a polynomial pn in variables such that, for each

quasi-free state τ of 21 and each set {hl9...9 hn} of n functions in L2 (1R3),
τ (a' (hi ) . . . a' (hn)) = pn (τ (a' (hj) a' (hk))) (j < k). By (uniform) continuity of

(")
pn on bounded sets in 1R 2 , given a positive integer m, there is a positive ε

<— J such that |pn(α jk)-pΛ(αjk)| < — provided \ajk\ + \a'jk\^4 and

l f l j /c~ α }/c l < ε f°r all j,k(j<k\ Choose 0*((rn),(dn))< as above, corres-
ponding to this ε (and to α for the modulus of decoupling of ρ). Let ρ x

and ρx be the factorizations of ρ and ρ relative to ^((rn)9(dn)).
Find gj corresponding to /), as in Lemma 2.2, such that H^ — fj(t)\\2

->0. Then \\Bt-At\\-+Q as ί->oo, where Bt = ά ( g ί t ) . . . a f ( g n t ) and

At = at(A). There is a positive ί0 such that \(ρ — ρ)(At — Bt)\< — , if

t ̂  ί o . Now £t is a norm-limit of a sum of products of elements of grade
two or less - each vanishing outside some ύHnj. Hence ρx (Bt) = ρx (Bt).
From Proposition 3.6, ρx is quasi-free, so that

Since

\(Q-βx )(a'(gjt) a'(gkt))\<ε
and

|ρx (α'(^,) α'(gM))| + \Q(a'(gjt) ά(gk,))\ ^4;
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we have

g ε + Irf (α'fo,,) a'(gkt))) - pn(ρ(a'(gjt} a'(gkt)))\

= ε + \pn(ρx (a'(gjt) a'(gkt))) - pn(ρ(af(gjt) a'(gkt)))\

_2_
m

Thus |(ρ - ρ) (At)\ < — , if ί ̂  £0

 and \(Q - Q) (Λ)l ->0 as ί->oo.
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