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Abstract. Expressions are derived for the mass of a stationary axisymmetric solution
of the Einstein equations containing a black hole surrounded by matter and for the
difference in mass between two neighboring such solutions. Two of the quantities which
appear in these expressions, namely the area A of the event horizon and the "surface
gravity"*; of the black hole, have a close analogy with entropy and temperature respectively.
This analogy suggests the formulation of four laws of black hole mechanics which corre-
spond to and in some ways transcend the four laws of thermodynamics.

1. Introduction

It is generally believed that a gravitationally collapsing body will
give rise to a black hole and that this black hole will settle down to a
stationary state. If the black hole is rotating, the stationary state must
be axisymmetric [1] (An improved version of this theorem involving
weaker assumptions is outlined in [2] and is given in detail in [3]).
It has been shown that stationary axisymmetric black hole solutions
which are empty outside the event horizon fall into discrete families
each of which depends on only two parameters, the mass M and the
angular momentum J [4—6]. The Kerr solutions for M4 > J2 are one
such family. It seems unlikely that there are any others. It also seems reason-
able to suppose that the Newman-Kerr solutions for M 4 > J2 + M 2 g 2 ,
where Q is the electric charge, are the only stationary axisymmetric black
hole solutions which are empty outside the event horizon apart from
an electromagnetic field. On the other hand there will be an infinite
dimensional family of stationary axisymmetric solutions in which
there are rings of matter orbiting the black hole. In Sections 2 and 3 of
this paper we shall derive formulae for the mass of such a solution and
for the difference in mass of two nearby solutions. These formulae

* Research supported in part by the National Science Foundation.



162 J. M. Bardeen et al.:

generalise the expressions found by Smarr [7] and Beckenstein [8]
for the Kerr and Newman-Kerr solutions. We show that the quantities
appearing in the formulae have well-defined physical interpretations.
Of particular interest are the area A of the event horizon and the "surface
gravity" K, which appear together. These have strong analogies to
entropy and temperature respectively. Pursuing this analogy we are
led in Section 4 to formulate four laws of black hole mechanics which
are similar to, but distinct from, the four laws of thermodynamics.

2. The Integral Formula

In a stationary axisymmetric asymptotically flat space, there is a
unique time translational Killing vector Ka which is timelike near infinity
with KaKa=—\ and a unique rotational Killing vector Ka whose
orbits are closed curves with parameter length 2π. These Killing vectors
obey equations

Kaιb = K[a.b], Ka.b = K[a;b], (1)

Ka;bK
b = Ka;bK\ (2)

Ka-'\=-R\K\ (3)

Kaib

b=-Ra

bK
b, (4)

where a semicolon denotes the covariant derivatives, square brackets
around indices imply antisymmetrization and Rab = Racb with

for any vector υa. Since Ka.b is antisymmetric, one can integrate Eq. (3)
over a hypersurface S and transfer the volume on the left to an integral
over a 2-surface dS bounding S:

\Ka bdΣah=-\RlKhdΣa, (5)
cS S

where dΣab and dΣa are the surface elements of dS and S respectively.
We shall choose the surface to be spacelike, asymptotically flat, tangent
to the rotation Killing vector Ka, and to intersect the event horizon [1]
in a 2-surface dB. The boundary dS of S consists of dB and a 2-surface
dS^ at infinity. For an asymptotically flat space, the integral over dS^
in equation (5) is equal to — 4πM, where M is the mass as measured from
infinity. Thus

M=\(2Ta

b-Tδ*)KadΣb+^- f K" >bdΣab, (6)
S 4 π dB

where
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The first integral on the right can be regarded as the contribution to the
total mass of the matter outside the event horizon, and the second
integral may be regarded as the mass of the black hole. One can integrate
Eq. (4) similarly to obtain an expression for the total angular momentum
J as measured asymptotically from infinity,

J - - J 1 bK aλa~ —— J K dλab. (I)
S °π δB

The first integral on the right is the angular momentum of the matter,
and the second integral can be regarded as the angular momentum
of the black hole.

One can introduce a time coordinate t which measures the parameter
distance from S along the integral curves of Ka (i.e. t.aK

a = 1). The null
vector la = dxa/dt, tangent to the generators of the horizon, can be
expressed as

la = Ka + ΩHKa. (8)

The coefficient ΩH is the angular velocity of the black hole and is the
same at all points of the horizon [9]. Thus one can rewrite Eq. (6) as

M = f (2Ta

b - Tδb

a) K
adΣh + 2ΩHJH + - 1 - f laibdΣab, (9)

where
S 4 π dB

8π /B

is the angular momentum of the black hole. One can express dΣab as
l[anb]dA, where na is the other null vector orthogonal to dB, normalized
so that nja= — 1, and dA is the surface area element of dB. Thus the
last term on the right of Eq. (9) is

ί- \κdA9

4π j
where κ= —la;bn

alb represents the extent to which the time coordinate
t is not an affine parameter along the generators of the horizon. One can
think of K as the "surface gravity" of the black hole in the following sense:
a particle outside the horizon which rigidly corotates with the black
hole has an angular velocity ΩH, a four-velocity va = vt(Ka + ΩHKa), and
an acceleration four-vector va

;bv
b. The magnitude of the acceleration,

multiplied by a factor 1/z/ to convert from change in velocity per unit
proper time to change in velocity per unit coordinate time ί, tends to K
when the particle is infinitesimally close to the event horizon.

We shall now show that K is constant over the horizon. Let mfl, ma

be complex conjugate null vectors lying in dB and normalised so that
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mama= 1. Then

κ;am
a=-(laibrflb)ιcm

c

= -la.bcn
albmc -la;bn

a.Jbmc - la;bn
alb

;cm
c.

Since la is a Killing vector, la bc = ^dcbJd The normalization of the null
tetrad on the horizon, from which

Qab =-nJb- lanb

is used to put the second term in the form κla;cn
amc. The third term is

— κla.cn
amc as a result of the vanishing of the shear and convergence

of the generators of the horizon, la.bm
amb = 0 = la.bm

amb. Thus

κ]am
a=-Rabcdl

amblcnd. (11)

But on the horizon
0 = (la]bm

am%cm
c

= Rdabcl
dmambmc (12)

dabc

ldmb + RabcdRabcdl
amblcnd.

By the Einstein equations Rbdl
bmd = 8πTbdl

brnd.
If energy-momentum tensor obeys the Dominant Energy Condition

[10], Tbdl
b will be a non-spacelike vector. However Tbdl

bld = 0 on the
horizon since the shear and convergence of the horizon are zero. This
shows that Tbdl

b must be zero or parallel to ld and that Tbdl
bmd = 0.

Thus κ.am
a is zero and K is constant on the horizon.

The integral mass formula becomes

\-Tδb)KadΣb + 2ΩHJH+~A, (13)
s 4π

where A is the area of a 2-dimensional cross section of the horizon.
When Tab is zero, i.e. when the space outside the horizon is empty,
this formula reduces to that found by Smarr [7] for the Kerr solution.
In the Kerr solution,

^ v

1/* ^zz __

J 2 ) 1 / 2 ) . (16)

For a Kerr solution with a zero angular momentum, the total mass is
represented by the last term in equation (13). As the angular momentum
increases, the surface gravity decreases until it is zero in the limiting
case, JH = M 4 . The mass is then all represented by the rotational term



Laws of Black Hole Mechanics 165

2ΩHJH. The reduction of the surface gravity with angular momentum
can be thought of as a centrifugal effect. When the angular momentum
is near the limiting value, the horizon is, in a sense, very loosely bound
and a small perturbation can raise a large tide [11].

3. The Differential Formula

In this section we shall use the integral mass formula to derive an
expression for the difference δM between the masses of two slightly
different stationary axisymmetric black hole solutions. For simplicity
we shall consider only the case in which the matter outside the horizon
is a perfect fluid in circular orbit around the black hole. The differential
mass formula for rotating stars without the blackhole terms is discussed
in [12]. A treatment including electromagnetic fields, which allows the
matter to be an elastic solid, is given in [6].

A perfect fluid may be described by an energy density ε which is a
function of the particle number density n and entropy density s. The
temperature θ, chemical potential μ and pressure p are defined by

θ=ψ-, (17)
ds

μ = ! 1 > (is)
on

p = μn + θs~ε. (19)

The energy momentum tensor is

(20)
where va = ( — ubu

b)~1/2ua is the unit vector tangent to the flow lines and
ua = Ka + ΩKa, where Ω is the angular velocity of the fluid. The angular
momentum, entropy and number of particles of the fluid can be expressed

-\T>hk»dΣa,

and
f nvadΣa respectively.

When comparing two slightly different solutions there is a certain
freedom in which points are chosen to correspond. We shall use this
freedom to make the surfaces S, the event horizons, and the Killing
vectors Ka and Ka the same in the two solutions. Thus

δKa = δKa = 0 (21)
and

δKa = habK\ δKa = habK\ (22)
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where hab = δgab = - gacgbdδgcd. Then

δla = δΩHK\ (23)

δla = habl
b + gabδΩHKb. (24)

Since the event horizons are in the same position in the two solutions,
the covariant vectors normal to them must be parallel,

δlίalb] = 0, «5n[V i = 0 . (25)

Also, the Lie derivative of δla by /* is zero, (δla).b? + δlal".b = 0. Therefore

lal;bn
(26)

;bla

= i(δla\bd
anb + n"lb) + δΩHKa.Jan

b.

As δla is proportional to la on the horizon, (δla).bnfmb is zero. Thus

δκ=-i(δly + δΩHK"blan
b

.blan
b.

To evaluate δM, we express the mass formula derived in the previous
section in the form

M = f (27V + ~ R%) KadΣb + 2ΩHJH +~A. (28)
5 oπ 4π

The variation of the term involving the scalar curvature, R, gives

R)hcd + 2hchl{{cd γ9a) lc,d]ήa (29)
But

2h{c.^
dKa = 2(Kahψ^ - K"h^a% , (30)

using hcd.aK" + hadK
a.c + hacK

a.d = 0. One can therefore transform the
last term in (29) into the 2-surface integral

- ~ j (Kahιf d] - K"hιf a]) dΣad. (31)
^ π dS

The integral over dS^ gives — δM and, by Eq. (27), the integral over dB

gives -~^A-2δΩHJH.
4π

The variation of the energy-momentum tensor term in (28) is

2δ f Ta

bKadΣb = - 2 J Ωδ{Ta

bKadΣb} + 2δ f PK°dΣa

+ 2 J uaδ {(ε + p) (- ucudgcdy
1 wβXbdΣ5}.
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Therefore
2δ J TbK«dΣb = f TcdhcdK

adΣa + 2$ΩδdJ

+ 2\μδdN + 2\θδdS,

where δdJ = — δ{TbKadΣb} is the change in the angular momentum of
the fluid crossing the surface element dΣb,

= δ{n(-uau
ayll2KbdΣb}

is the change in the number of particles crossing dΣb,

δdS = δ{s(-uau
a)'1/2KbdΣb}

is the change in the entropy crossing dΣb,

μ = (-uau
a)1/2μ

is the "red-shifted" chemical potential, and

θ = {-uau
a)1/2θ

is the "red-shifted" temperature. Thus

δM = J ΩδdJ + f μδdN + J θδdS + ΩHδJH Λ-^-δA. (34)
8 71

This is the differential mass formula.
If an infinitesimal ring is added to a black hole slowly, without

allowing any mattex or radiation to cross the event horizon, the area
and the angular momentum of the black hole are constant and the matter
terms in the Eq. (34) give the net energy required to add the ring. Since
ΩH and K do change to first order in the mass of the ring, the change in
MH = 2ΩHJH

JrκA/4π must be taken into account in the integral mass
formula of Eq. (13).

4. The Four Laws

In this section we shall pursue the analogy between black holes and
thermodynamics and shall formulate four laws which correspond to and
in some ways transcend the four laws of thermodynamics. We start with
the most obvious analogy:

The Second Law [1]

The area A of the event horizon of each black hole does not decrease
with time, i.e.

δA>0.
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If two black holes coalesce, the area of the final event horizon is greater
than the sum of the areas of the initial horizons, i.e.

A3> Aι

Jr A2.

This establishes the analogy between the area of the event horizon
and entropy. The second law of black hole mechanics is slightly stronger
than the corresponding thermodynamic law. In thermodynamics one
can transfer entropy from one system to another, and it is required only
that the total entropy does not decrease. However one cannot transfer
area from one black hole to another since black holes cannot bifurcate
([1, 2, 3]). Thus the second law of black hole mechanics requires that the
area of each individual black hole should not decrease.

The First Law

Any two neighboring stationary axisymmetric solutions con-
taining a perfect fluid with circular flow and a central black hole are
related by

SM = -£- δA + ΩHδJH + J ΩδdJ + J JiδdN + J θδdS .

It can be seen that —— is analogous to temperature in the same way
8π

that A is analogous to entropy. It should however be emphasized that

—— and A are distinct from the temperature and entropy of the black hole.
8π

In fact the effective temperature of a black hole is absolute zero.
One way of seeing this is to note that a black hole cannot be in equilibrium
with black body radiation at any non-zero temperature, because no
radiation could be emitted from the hole whereas some radiation would
always cross the horizon into the black hole. If the wavelength of the
radiation were very long, corresponding to a low black body temper-
ature, the rate of absorption of radiation would be very slow, but true
equilibrium would be possible only if there were no radiation present
at all, i.e. if the external black body radiation temperature were zero.
Another way of seeing that the effective temperature of a black hole is
zero is to note that the "red shifted" effective temperature θ of any matter
orbiting the black hole must tend to zero as the horizon is approached,
because the time dilatation factor (— uaua)

112 tends to zero on the horizon.
The fact that the effective temperature of a black hole is zero means
that one can in principle add entropy to a black hole without changing
it in any way. In this sense a black hole can be said to transcend the
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second law of thermodynamics. In practise of course any addition of
entropy to a black hole would cause some increase in the area of the
event horizon. One might therefore suppose that by adding some mul-
tiple of the area to the total entropy of all matter outside the event horizon
one could obtain a quantity which never decreased. However this is
not possible since by careful management one can arrange that the area
increase accompanying a given addition of entropy is arbitrarily small.
One way of doing this would be to put the entropy into two containers
and lower them on ropes down the axis towards the north and south
poles. As the containers approach the black hole they would distort
the horizon. The shear or rate of distortion of the horizon would be
proportional to the rate at which the containers were being lowered.
The rate of increase of area of the horizon would be proportional to the
square of the shear, [2,11], and so to the square of the rate at which
the containers were being lowered. Thus by lowering the containers
very slowly, one could ensure that the area increase was very small.
When the containers reach the horizon, they would be moving parallel
to the null vector la and so would not cause any area increase as they
cross the horizon.

In a similar way the effective chemical potential μ tends to zero on the
horizon, which means that in principle one can also add particles to a
black hole without changing it. In this sense a black hole transcends
the law of conservation of baryons.

Continuing the analogy between and temperature, one has:
8π

The Zeroth Law

The surface gravity, K of a stationary black hole is constant over the
event horizon.

This was proved in Section 2. Other proofs under slightly different
assumptions are given in [6, 2].

Extending the analogy even further one would postulate:

The Third Law

It is impossible by any procedure, no matter how idealized, to reduce
K to zero by a finite sequence of operations.

This law has a rather different status from the others, in that it does
not, so far at least, have a rigorous mathematical proof. However there
are strong reasons for believing in it. For example if one tries to reduce
the value of K of a Kerr black hole by throwing in particles to increase
the angular momentum, one finds that the decrease in K per particle
thrown in gets smaller and smaller as the mass and angular momentum
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tend to the critical ratio J/M2 = 1 for which K is zero. While idealized
accretion processes do exist for which J/M2 -> 1 with the addition of a
finite amount of rest mass ([13, 14]), they require an infinite divisibility
of the matter and an infinite time. Another reason for believing the third
law is that if one could reduce K to zero by a finite sequence of operations,
then presumably one could carry the process further, thereby creating
a naked singularity. If this were to happen there would be a breakdown
of the assumption of asymptotic predictability which is the basis of many
results in black hole theory, including the law that A cannot decrease.

This work was carried out while the authors were attending the 1972 Les Houches
Summer School on Black Holes. The authors would like to thank Larry Smarr, Bryce
de Witt and other participants of the school for valuable discussions.
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