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Abstract. The investigation of purifications of factor states has been carried on. It is
shown, that any factor state ω of a C*-algebra admits at most one purification ώ, so one
can introduce the purification map φ : φ{ω) = ώ. It turns out, that the Powers and St0rmer
inequality is valid in this general situation.

0. Introduction

Let 21 be a C*-algebra and 21° be an opposite algebra. It means, that
2ί° is a C*-algebra and that an antilinear, multiplicative, *-invariant
isometry of 21 onto 21° is given. The image of an element a e 21 will be
denoted by a e 2ί°. As in [7] we introduce

where the tensor product is taken in the sense of the C*-algebra theory
(it includes a suitable completion such that 21 becomes a C*-algebra).
We shall assume, that 21 contains the unity 1 and shall identify any element
a e 21 with T (x) a e 21. This way 21 becomes a subalgebra of 2Ϊ : 2ί C 21.

In what follows, we shall consider only such states of C*-algebras,
which give rise (by G.N.S.-construction) to representations in separable
Hubert spaces.

Let us recall (see [7]), that a state ώ of 21 is said to be j-positive iff

αe2t (0.1)

Any such state is j-invariant i.e.:

ώ(J(a)) = ώ(ά) (0.2)

for any a e 21. In the above equationj denotes the antilinear, multiplicative,
*-invariant, involutive (i.e. j2 = id) mapping

j:2Ϊ-+2I
introduced by the formula
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Let ώ be a state of 21 and let πz denotes the representation of 2Ϊ
induced by ώ. We say, that ώ is an exact state, iff {πδ(α® 1): ae 21} is
weakly dense in the von Neumann algebra of all operators commuting
withπ 5(ϊ<g)α)forallαe2I.

We proved in [7], that any factor state ω of 2ί can be extended to an
exact,y-positive pure state of 2ί. Any such extension is called a purification
of ω. Now we shall prove, that any factor state ω admits at most one
purification. Therefore we can introduce purification map φ, denoting
by φ(ω) the only purification of a factor state ω. It turns out, that

\\φ(ωi)-φ(ω2)\\2^4\\ωi-ω2\\

for any two normalized factor states ω1 and ω2 of 21. This inequality
generalizes the finite dimensional case result of Powers and St0rmer
(see Lemma 3.1 of [4]).

1. The Main Theorem

All the results announced in the introduction are implied by the
following theorem.

Theorem 1.1. Let ω1 and ω2 be two normalized (i.e. 0^(1) = 1 = ω2(l))
factor states of a C*-algebra 21 and let ώ1 and ώ2 denote their purifications.
Then

| | ώ 1 - ώ 2 | | 2 ^ 4 | | ω 1 - ω 2 | | . (1.1)

Before the proof, we have to analyse the structure of representations
of 21 induced by exact, j-positive, pure states. Let ώ be such a state, π be
the representation induced by ώ, H be the carrier Hubert space of π.
Von Neumann algebras generated by {π(T(χ)α): a e 2ί} and
{π(a ® 1): a e 21} will be denoted by sd and stf' respectively. Note,
that, due to the assumed exactness of ώ, s$' coincides with the commutant
of sd, so our notation is justified.

sd is a factor. Indeed, since n is an irreducible representation, J / U /
is an irreducible set of operators and sd n srf' — (sd u sd')1 = {B(H))r = {λl}.

By using (0.2) one can easily prove, that mapping j is implemented
by an antiunitary involutive operator, which will be denoted by J. It
means, that J2 = I and

Jπ(ά)J = π(j(ά)) (1.2)

for any a e 2ί. Setting a = T ® a we have

Jπ(T®α) J = π

It shows, that
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Therefore J is an exchange involution (see [7]) for (J/ , st'\ Let us recall,
that a vector x' e H is said to be (J/ , J)-positive iff Jx' = xf and

(x'\AJAx')tO (1.3)
for any i e ^ .

Lemma 1.1. Let xeH be such, that the state

ώ(α) = (x|π(α)x) (1.4)

is j-positive. Then x = λx', where λ e C 1 , |λ| = 1 and x' is (^, J)-posίtive.

Proof. Remembering, that π is an irreducible representation and
taking into account (1.4), (0.2) and (1.2) we get

Jx = μx

where μ eC 1 and |μ| = 1. Let A be a complex number, such that λ2 — μ.
Evidently \λ\ = 1 and J=λ~ί. We put x' = Xx. Then x = λx' and one
can easily check, that Jx' — xf.

To end the proof, we have to show, that (1.3) is satisfied by any operator
Ass/. Since {π(T® a) : α e $1} is dense in sd (with respect to the strong
operator topology), we may assume, that i4 = π(ϊ®α). We have:

{xf I A3 Ax') = (x' I AJAJx') = (x | A JA Jx)

= (x\π(Ί®a)Jπ(ϊ®a)Jx)

= (x|π(T®α)π(α(8)l)x)

= (x I π(a® a) x) — ώ(ά® a)

and (1.3) is equivalent to (0.1). Q.E.D.
We shall also need the following

Lemma 1.2. Let π be a representation of a C*-algebra 33 acting in a
Hilbert space H, & be a von Neumann algebra generated by π(93), f be a
weakly continuous linear functional defined on&. Then f°π is a linear
functional defined on 33 and

Proof. The lemma follows immediately from Corollary 1.8.3 of [1]
and the Kaplansky density theorem. Q.E.D.

Proof of the Theorem. We shall consider two cases:
I. States ω1 and ω2 are not quasiequivalent. Then (see [2])

IIωi ~~ω2ll = 2, whereas \\ώ1 — ώ 2 | | ^ 2 and (1.1) is satisfied.
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II. States ωγ and ω2 are quasiequivalent. Then (see [7], Theorem 1.2)
purifications ώ1 and ώ 2 give rise to the same representation of $ί. Let π
be this representation. Then

ωi(α) = (xi|π(α)x1)
and

ω2{ά) = (x2\π(ά)x2)

where xt and x2 are normalized vectors belonging to H (we use the
notation introduced before, in particular H is the carrier Hubert space
of π).

Setting in Lemma 1.2 1B = %f(A) = (xί\Axί)-(x2\Ax2) and re-
membering that π is an irreducible representation of $ί (so & = B(H)
coincides with the algebra of all bounded operators) we get

| | ώ 1 - ώ 2 | | = sup \(x1\Axί)-{x2\Ax2)\.
AeB(H)
\\A\\£1

The right hand side of the above formula is equal to the trace norm
of operator \xί){x1\ — \x2)(x2\ and can be easily evaluated. We obtain

ωi-ώ2\\=2]/rl-\(x1\x2f. (1.5)

We know, that ωί and ω2 are restrictions oϊώ1 and ώ2 to subalgebra
Φ. Therefore setting in Lemma 1.2 33 = 1̂ and f(A) = (xί\Ax1)

— (x2 \Ax2) we get J> = sd and

l l ω i - ω 2 | | = sup | (x 1 | ^x 1 )-(x 2 | i 4x 2 ) | .

According to Lemma 1.1 vectors xi and x2 are (s/, J)-positive modulo
complex factor of modulus 1. We shall prove in Section 3, that for such
vectors, the expression on the right hand side of the above equation is
larger than 2(1 — \(x1 |x2)|). Therefore

| | ω 1 - ω 2 | | ^ 2 ( l - | ( x 1 | x 2 ) | ) . (1.6)

Taking into account (1.5) and (1.6) we have:

Q.E.D.

2. The Modular Operator

Let stf be a factor, J be a positive exchange involution for (stf, s/')
and y be a ( J / , /(-positive separating and cyclic vector. For reader's
convenience we recall the basic facts concerning the so called modular
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operator A assigned to y (see [6] and [7]). This is a selfadjoint, positive,
invertibe (i.e. 0 is not an eigenvalue of Δ) operator such that:

1° {By: Be J / } is a core of Δ* and

A^By = JB*y, Bed.

It is known, that

2° {B'y : B' e s4'} is a core of A ~^ and

Δ-*B'y = JB'*y B1'es/'.

3° JΔSJ = Δ~S for any selR1.

4° A defines an one-parameter group of automorphisms of si\

We shall frequently use these properties of the modular operator
without any special reference.

Let A e si. It turns out, that {By : B e si] is a core of A^A*. Now we
are going to prove this statement, which will play an important role
in the next section. We start with the following lemma, which is a slightly
improved version of a Schwartz lemma (see [5], Chapter II, Section 2,
Lemma 4).

Lemma 2.1. Let y be a cyclic and separating vector of a von Neumann
algebra si CB(H) (the latter denotes the algebra of all bounded operators
acting in a Hilbert space H) and xe H. Then there exist a bounded operator
C and a selfadjoint operator K such that:

1° Ces/.Kis affiliated to si.
2° yeD(K)andx = CKy.
3° {A'y : A e si'} is a core of K.

Let us recall, that a selfadjoint operator K is said to be affiliated to si iff

W'KW'1=K (2.1)

for any unitary operator W e si'. If this is the case, then all bounded
functions of K belong to si.

Proof. Since y is a cyclic vector one can find operators An e si such
that

~ n2

For any z e H we put

I N I i 2 = N I 2 + Σ n'\\(An + ι-An)z\\2.
n = ί

Let D = {ze H: |||z||| < oc}. It is seen, that D endowed with norm ||| |||
is a Hilbert space and that {A'y : A' e si'} C D. By Do we shall denote the
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III |||-closure of {A'y. A' e si'}. Evidently Do is dense in H. Therefore
(see for example [3], Chapter VI, Theorem 2.33, p. 331) there exists
a positive selfadjoint operator K such that

D{K) = Dθ9 (2.2)

| |Kz| | 2 = INII2, z€D0. (2.3)

It is seen, that the graph topology of Do induced by K coincides with
the topology given by norm ||| |||. Therefore {A'y: A' e si'} is a core of K.

We have to show, that K is affiliated to si. To this end, we note,
that K is the only positive selfadjoint operator satisfying (2.2) and (2.3)
and that Do and ||| ||| are invariant under all unitary operators W e si'.
Therefore (2.1) follows.

K~λ is a bounded operator (indeed \\Kz\\ = \\\z\\\ ^ ||z||) and evidently
K~ι e si. For any w e H w e have K~1ueD0 and

= l n

It shows, that sequence AnK~1 is strongly convergent. Let
C = s-\imAnK~1. Then Cesi and

x= lim Any= lim A^'^Ky^CKy Q.E.D.

Now we can prove the main result of this section.

Lemma 2.2. Let sd be a factor, J be an exchange involution for
(si, si') and A be the modular operator assigned to a separating and cyclic
(si, J)-positive vector y. Then for any As si : (By : B G si} is a core of
A^A*.

Proof. Let xe D(A^A*). We have to find a sequence (Bn)n=12,...
of elements of si such that

x = \imBny, (2.4)

A^A*x = limΔ*A*Bny . (2.5)

For any B' e si' we have:

= {A*x\B'*y) = (B'x\Ay).

We may assume, that x = CKy, where C and K are such as in
Lemma 2.1. Then

(B'yI JA*A*x) = (B'CKy\Ay) = (KB'y\ C*Ay).
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Remembering, that {B'y: B' e sd'} is a core of selfadjoint operator K,
we get C*Aye D(K) and

= JΔ*A*x. (2.6)

Let Kn = fn(K), where fn(λ) = mm{λ, n}. Then Kne sd and for any
ueD(K) we have

We shall prove, that (2.4) and (2.5) are satisfied by sequence Bn = CKn.
Indeed

x = CKy = lim CKny

and taking into account (2.6)

Δ*A*x = JKC*Ay = lim JKnC*Ay

# M ) * y - lim zJM*CKπy Q.E.D.

3. ( J/, J)-Positive Vectors

In this section we investigate properties of (sd, /(-positive vectors.
We shall find, on what terms a vector of the form Ay (where A e sd and y
is a separating and cyclic ( J / , /(-positive vector) is J-invariant
(Lemma 3.1) and is ( J / , J)-positive (Lemma 3.3).

Any vector defines a state of so. The main problem solved in the
section (see Lemma 3.5 and Theorem 3.1) is following: Can the difference
(or the sum) of two ( J / , /(-positive vectors be estimated in terms of the
difference of the corresponding states of sd. We shall find an interesting
estimate. We saw in Section 1, how this estimate entered the proof of the
Theorem 1.1.

In the following lemmas $£ is a factor, J is an exchange involution
for (stf, s&'\ y is a separating and cyclic {sd', /(-positive vector and A
is the modular operator assigned to y.

Lemma 3.1. Let Aesrf. Then the following conditions are equivalent:
(1) Vector Ay is J-invariant i.e. JAy = Ay.
(2) Operator AΔ^ is symmetric.
(3) Operator AΔ^ is ess selfadjoint.

Proof. (1)=>(3). For any Besd we have

AA^By^ AJB*y - AJB*Jy = JB*JAy .

Assume, that Ay is J-invariant. Then
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Remembering, that {By: Bestf) is a core of Δ* and Δ^A* (Lemma 2.2)
and that Δ*A* is a closed operator, we have:

(3)=>(2). It is obvious.
(2)=>(1). Assume, that AΔ* is a symmetric operator. Then

AΔ±C(AΔψ = A*A* and

= JAΔ±y = JA*A*y = Ay Q.E.D.

Lemma 3.2. Let A e s^ be such that AΔ^ is a symmetric operator.
Then there exists a selfadjoint operator A e sd such that

AΔ^CA^A. (3.1)

Proof. For any ueD(A~^) and v e D(A^) we have:

iι|| \\v\\

Setting Διλu and Διλυ instead of u and v respectively, we get

\(Aiλu\AAiλv)\£\\A\\\\u\\\\υ\\9

\(Δ-* + iλu\AΔ*+iλv)\^\\A\\\\u\\\\Ό\\.

The maximum principle of the holomorphic function theory shows
immediately, that

\(A-~su\AΔsv)\^\\A\\ \\u\\\\v\\

for all complex s such that O ^ R e s ^ ^ . It means that for any such s,
there exists a bounded operator As such that

(A-~su\AAsv) = (u\Asv) (3.2)

for all u e D{A '*) and v e D(A% In fact (3.2) holds for all vectors u e D(Δ ~~s)
and υeD(A% since D(Δ~*) and D(A*) are cores of zl~s and As re-
spectively. Evidently s-+As is a weakly holomorphic mapping and for
s = iλ (where AelR1) we have: Aiλ = Δ'iλAΔiλes/. Therefore Ase^
for all s. We put

A = A±.

Let i; 6 D(A% Setting s = ̂  in (3.2) we have:

(d-*u|ΛΛ*ι;) = (M|it;) (3.3)

for all u e D f Γ 1 ) . It means, that AΔ*veD{Δ~*) and



On the Purification Map 63

Hence AveD{Λ% veD(#i) and

So, inclusion (3.1) is proved.
For any υ e D(A^) we have Δ*υ e D(Δ*)nD(Δ - i ) and (3.3) shows, that

{Δ*υ\AΔ*v) = (υ\AΔ*υ). (3.4)

According to this formula, A is selfadjoint iff AΔ* is symmetric. Q.E.D.
Let Au A2e stfbQ such that Ax A^ ̂  0 and A2zl^ ^ 0. Then, in virtue of

(3.4): Ax ^ 0 and A2 ^ 0. We have:

Since the product of two commuting positive bounded operators is
positive, we get

(A\A)^0 (3.5)

An operator A is said to be definite iff A ^ 0 or A ^ 0. Let A and A'
be selfadjoint elements of a factor and its commutant, respectively.
One can check, that A A' is a definite operator iff both A and A are
definite.

Lemma 3.3. Let Aesό. Then Ay is {sd, J)-positive if and only if
AΔ* is definite.

Proof. We may assume, that AΔ^ is symmetric. For any B e sd we
have:

JBAy - JBJAy - A JBy - AΔ*B*y - A^AΔ^B^y .

Setting in this equation £* instead of B and making use of relation
Δ^By^JA^B*y we get

and

Therefore

B*);) (3.6)

= {Δ*B*y\JAJAΔ*B*y).

Assume, that AA^ is definite. Equation (3.4) shows, that A is also
definite. Therefore either i ^ O and JAJ^O or i ^ O and j i j ^ O . In
both cases JAJA^O and (3.6) shows, that Ay is (<$/, J)-positive.

Conversely assume, that Ay is {sd, J)-positive. Then equation (3.6)

shows, that JAJA ^ 0 and A must be definite (note, that A and JAJ
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belong to factor sd and its commutant si' respectively). Equation (3.4)
shows now, that AΔ* is definite. Q.E.D.

In what follows, R(X) denotes the range of an operator X. Let us
note, that for any bounded operator A : R(AΔ^) is dense in R(A).

Lemma 3.4. Let Aesd be such that AΔ^ is symmetric. Then there
exist operators A+ and A_ belonging to s4 such that

A = A+-A_, (3.7)

A + Δ*^0 and A_Δ*^0, (3.8)

R(A+)±R(AJ. (3.9)

Proof. In virtue of Lemma 3.1, AΔ* is ess. selfadjoint. Let

AΔ*= J λdE{λ) (3.10)
- oo

be the spectral resolution of AΔ^. Then

(Δ*A*AΔ±)* = j \λ\dE{λ). (3.11)
— oo

It can be proved (see [7], Section 3), that the operator standing on the
left hand side of (3.11) is of the form £ # , where Besd. Let

Then (3.7) is fulfiled. By using (3.10) and (3.11) we have:

A + Δ*c]\λ\dE(λ),
o

A_A^C j \λ\dE(λ),
— oo

hence (3.8) is proven. Moreover the above equations show, that
R{A + Δ*)lLR{A-Δ*) and (3.9) follows. Q.E.D.

The following lemma may be compared with Lemma 4.1 of [4].

Lemma 3.5. Let AuA2ejrf. Assume that AίΔ*}£θ and A2Δ^^0.
Then

sup \(A1y\WAiy)-(A2y\WA1y)\^\\A1y-A2y\\2

Wejrf

H W Ί I ^ l

Proof. Let ω(W) = (A1y\WA1y)-{A2y\WA2y).

We have to find an operator Wesd such that \\W\\ ^ 1 and

ω(W)^\\(Aι-A2)y\\2. (3.12)
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Let A = A1 — A2and\QtA+, A_ be operators introduced in Lemma 3.4.
We shall prove, that (3.12) is satisfied by operator

W = E+-E_ (3.13)

where E+ and E_ are projection operators projecting onto R(A+) and
jR(,4_) respectively.

One can check, that for selfadjoint W:

= {{Aι+A2)y\W(A1-A2)y).

Assume, that Wis given by (3.13). Then

W{AX - A2) = (E+-E_)(A+-A_) = A+

and therefore
) = ({A1 +A2)y\{A+ +A_)y).

It is seen, that

{(Aί+A2)y\(A++A^y)-2(A2y\A+y)-2(Aιy\A_y)

= {(Aί-A2)y\A+y)-{(A1-A2)y\A_y)

= ((Aί-A2)y\(A+-A_)y)=\\(A1-A2)y\\2.

In virtue of (3.5):(A2y\A+y)^0,(Aίy\A_y)^0 and (3.12) follows.

Now, we can prove the following, very important

Theorem 3.1. Let sd be a factor, J be an exchange involution for
(j/, .$#') and x1? x2 be {si\ J)-positίve vectors. Then either

sup | ( X 1 | ^ J C 1 ) - ( X 2 | F ^ X 2 ) | ^ | | X 1 - X 2 | | 2 (3.14)
West

\\W\\Z1

or
sup | (x 1 |Wx 1 )- (x 2 | ^x 2 ) | ^ | | x 1 +x 2 | | 2 . (3.15)

We<srf

\\W\\Zl

Proof. Let ω be a faithful normal state of s4 such that

ω t d M ^ M x J 2 (3.16)
and

ω(A* A)^\\Ax2\\2 (3.17)

for any A e sd. For example one can choose an orthonormal basis (en)
of the Hubert space and put

ω(A) = (xι\Axι) + (x2\Ax2)+ ξ -\(en\Aen).
n = l U

The state ω can be represented (see Appendix) by a separating and
cyclic (J</, J)-positive vector y:

= (y\Ay).
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Relation (3.16) means, that WAx^l S \\Ay\\. Setting in this inequality
JA'J instead of A we get \\Άxι || ^ \\Άy\\ for all A' e stf'. Therefore there
exists a bounded operator Aγ such that AγA'y — Axι. One can easily
prove, that A1 e sd. Moreover setting A = I we get

x1=Aίy.

In the same way, starting from (3.17) we can prove, that

2

where A2 is an element of sέ'.
Let A be the modular operator assigned to y. In virtue of Lemma 3.3

operators A1A^ and A2A* are definite.
Assume for an instant, that these operators are positive. Then

Lemma 3.5 leads immediately to relation (3.14). In the general case
we have ε1A1A^^0 and ε2A2A^^0 (where ε l 5 ε 2 = ± l are suitably
chosen). By using Lemma 3.5 we get either (3.14) or (3.15) depending
on the value of εx ε2. Q.E.D.

Assume now, that || xx || = 1 = || x21|. Then

\\xx-x2\\2^2{\-\{x,\x2)\)

and we immediately get

ŝup | ( x 1 | W x 1 ) - ( x 2 | ^ x 2 ) | ^ 2 ( l - | ( x ί | x 2 ) | ) . (3.18)

Let us note, that both sides of the last relation remain unchanged,
when xλ and x2 are multiplied by complex number of modulus 1.

Corollary. Assume, that x1=λίx[ and x2

 = λ2x'2, where x[, x'2 are
normalized (sd', J)-positive vectors and λί,λ2 are complex number of
modulus 1. Then relation (3.18) is fulfύed.

Appendix

In [7] we proved (see [7], Theorem 2.2), that any normal state of a
standart von Neumann algebra sd can be represented by a (sd, J)-
positive vector, where J is a suitably chosen exchange involution for
(sd, sd'). Now, we shall slightly improve this result.

Theorem A.I. Let sd CB(H) be a von Neumann algebra and let J be
a positive exchange involution for (sd, sd'). Then any normal state ω of sd
can be represented by a (sd, J)-positίve vector yeH:

ω(A) = (y\Ay), Aesd.
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Proof. At first we use Theorem 2.2 of [7]. It says, that there exist a
positive exchange involution J' and a ( J / , J')-positive vector yf such that

for any Ae s$. We know (see [7], Theorem 2.1), that J ' = VJV"1 where
K is an unitary element of J / ' . Let y=V~ίy/. One can easily check,
that y is ( J / , J)-positive. Moreover

for any y4 e s4. Q.E.D.
If ω is a faithful state, then evidently y is a separating vector. Since J

maps separating vectors onto cyclic vectors, y is a cyclic vector.
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