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Abstract. A method to solve Ising problems is developed giving all correlation func-
tions. As an example the one-dimensional nearest and next-nearest neighbour models have
been calculated explicitly.

Introduction

One of the basic problems in statistical mechanics is to understand
the phenomenon of a phase transition, i.e. why short range interactions
can act like long range interactions or to put it otherwise: why is the
cluster property destroyed? A quite logical approach to this problem is
to solve models, which exhibit a phase transition. The conventional way
is to calculate the partition function for a finite system, from which all
thermodynamical properties are derived. The phase transition only
occurs after taking the thermodynamic limit, because all thermodynamic
functions are analytic in the temperature for a finite system [1], whereas
the definition of a phase transition is that they should contain singular
points. If one wants a better understanding of the nature of the phase
transition it is necessary to know more about the equilibrium state of
the system (i.e. all correlation functions) than only its thermodynamics.
This knowledge can not be obtained from the partition function.

Up to now there is, except for the free gas, no complete description
of any model in statistical mechanics. In the following we will present
a method to calculate all equilibrium correlation functions of the simplest
models in statistical mechanics, namely the one-dimensional Ising models
with finite range interactions. The results for the nearest-neighbour and
the next nearest-neighbour model are given. This technique is based on
the topological and algebraic structure of the system. The system is
taken to be infinite right from the beginning and its equilibrium state is
obtained from the K.M.S. boundary condition [2]. We expect this
method to be independent of the dimension of the lattice; it gives a finite
closed set of algebraic equations for all finite-dimensional Ising systems
with finite range interactions with or without magnetic field. For the
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two-dimensional nearest neighbour model, however, the number of
equations is of the order 100.

The reason for discussing the one-dimensional next nearest neigh-
bour model is the fact that its algebraic structure is identical to that of
the two-dimensional nearest neighbour case.

Section I

The Hamίltonian of the n-Dimensίonal Ising Model Reads

σ\ are variables assuming the values ± 1. The summation indices i and a
run through the whole n-dimensional lattice; h denotes the applied
magnetic field. The interaction strength vu+a satisfies the following
conditions

3) Σviιi+a=V<co, Vindependent of i.
α

Changing to the lattice-gas representation

σf = 2( i- C ί

+

C i ) (1.2)

the following equivalent Hamiltonian is obtained

j Σ, (1.3)
i i,a i

where nt = cf ct. The operators c? and cf are the well-known paulion
operators satisfying

[cΓ,c l

+]+ = [ c l , c J + = 0 , [ c l , c l

+ ] + = l ,

ίci9 c/]_ = [c | f cj]_ = [cί c/]_ = 0, i+j.

The internal energy per particle u is given by

M = 2 ( F + / ι ) φ ί ) - 2 ^ M + f l ω ( n ί n i + fl)-(|F + /i), (1.4)
α

where the thermodynamic limit state ω is assumed to be invariant for
space translations. The advantages of the lattice-gas representation over
the original one are

i) all correlation functions are positive,
ii) a time translation is defined, i.e. the K.M.S. boundary condition

can be used [3].
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The time dependent operator cf

+ (ί) is defined as

(15)

with[adiϊ]x = [iί,x]_.
Using the K.M.S. boundary condition

ω{A(t-iβ)B) = ω(BA(t))

with A = cj and B = CjN, where iV = iV+ and [N, c/] = lN,nJ+J = 0
for all a + 0, it follows that

α> (exp J - 4β £ ,,,,+α n,+iIj n,tf) = ω((ί - nj) N). (1.6)

Putting N= Y[ nijc(ikφj) all correlation functions can be obtained.
k=ί

These correlation functions are coupled to each other through an infinite
number of Eqs. (1.6). The problem consists, as in Green function theory,
of solving this infinite hierarchy.

In Section II this is done for the one-dimensional nearest neighbour
model, while the one-dimensional next nearest neighbour model is
treated in Section III.

Section II

The One-dimensional Ising Model with Nearest Neighbour Interaction

In the case of the one-dimensional Ising model with nearest neighbour
interaction we have

Vi,i + a = J(δaΛ+
δa,-l) (2.1)

Eq. (1.6) reads now

e2β(2j+h) ω ( e χ p L_ 4βj(nj+ί + nj-j] njN) = ω((ί - n3) N). (2.2)

Defining H = e2β\ X = e~AβJ, Y = X - 1 and using the identity

ex»J = 1 + nj(ex - 1),

Eq. (2.2) can be rewritten as
Tj \ Tj y

— + 1 ω{njN) + — — [©(«,•_! tijN) + ω(njnj+1N)']
1 , (13)

HY
+ — ^ — ω{nj_1njnj+1N) = ω(N).
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Substitution of N = nj^ίnj+ ίN\ N = nj_1 N\ N = nj+ίN\ N = N' results
respectively in the following four equations

+ 12V), (2.4 a)

.injnj+1N
f)i (2.4 b)

_ίnjnj+ίN
f), (2.4c)

(2.4d)

HY HY2

H - — ω m . H + i N')-\ — ω ( n i _ i n i n i + - i N ) .
X J J x J J J

Define

J-f MY

ω(nj_1njnj+1N
r) ω(n/_1n/+1j!V

/)'

Φj(h " h) =
ω(njnj+1N') ω{nj+ιN

f)

ω(njNf) ω(Nf)

with ^ ' = 1 1 nu(h +i) a n < ^ Φj a s t n e s a m e vector with N' = 1.
1=1

Define next

1, D '̂l, Λ) Ψ(2,1 2 , 5)(*Ί> ' Z'/c)

V ( l , 3 ) 1 ^ 1 ? •••> ^ k ) V ( l , 7 ) ( Z l 5 •••? ? k ) V ^ ( 2 , 3 ) ( * l 5 • • • ' l f c ) V J ( 2 , 7 ) ( ϊ l 5 ' ? k )

• V ί l . ^ V ^ ' l J •••> ^fe) Ψ ( l , 8 ) \ h > •••? ^ k ) V ; ( 2 , 4 ) ( ί l > •••» * k ) V ( 2 , δ ) ! 1 ! ? ? Z k )

ω(n_1non1n2N') ω(n_1n1n2N
f) ωin^^Q^N') ω(n_1n1N')

ω(n_ίn0n2N') ω(n_1n2N
f) ω(n_1n0N

f) ω(n_ίN')

ω ( π 0 n 1 π 2 ^ ) ω(w1n2N
/) ω(nQn1N') ω{nγN')

Vω(nQn2N
f) ω(n2N') ω(n0N

f) ω(N')
k

1=1

and
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As can easily be seen the following properties, which are independent of
N\ now hold:

1) φj and φj(il9..., ik) satisfy Eqs. (2.4)

2)

3)

-V>(2,5)(*1> •••>**), Ψ(2,6)(h> Jk)-

Ψ(2,3)(h> •-"» h ) Ψ(2A)(iι> •••' z'i

• Ψ(2, 7)0l» ' ίk) Ψ(2,8)(il) 5 l'k)_

(2.5)

'(2.6)

The Properties 2) and 3) are a consequence of the topology of the lattice.
This topology was not present in φj and φj{ίl9..., ifc).

Because of the spatial invariance of ω, i.e.

Property 3) implies that φo{h — 1,..., ifc — 1) is contained in ψ(il9 ...9ik).
Consequently ψ(il9...9 ik) is contained in y;(3, h + 1,..., ik + 1) and
φ p ! + 1,..., ffc+ 1), independent of il9..., ik, which can be shown sche-
matically in the following way

ψ(39 h + 1, . . .,i k + l)

Define

^ ^ , ^ , 1^^ = ^(3,4, 5), and so on.
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This results in the following picture

(2.7)

The properties common to all u^ are
1. Each uψ is contained in two others.
2. Eqs. (2,4), (2.5) and (2.6) imply that only four of the sixteen com-

ponents of ι4l} a r e independent. The independent ones will be taken to
be 4°(1,1), 4°(1>3), 4°(2,1) and 4°(2, 3) (the notation for the com-
ponents of u^ is identical to that for ψ(iί9..., ik)).

3. The components of all uψ should be positive and smaller than one,
because they represent expectation values of positive operators with
norm 1.

Suppose the solution of scheme (2.7) to be uγ = vu u(2} = v2, uψ = v 3,.. . .
Taking only the above mentioned properties into account and noticing
the equivalence of all "vertices", other solutions can be constructed with
uί = v2,uί = v3,... and so on. Because of the linearity of the system (2.7)

is also a solution. This indicates that all solutions for u^
j

should belong to a class U of the following type

ί 1
U = <uI u = J] (XjUj, oίj ̂  0, Uj independent >.

{ j=i J
F r o m the above it is obvious that each u 5 obeys a relation

(2.8)
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There are n independent w/s, i.e. 4n unkowns (Property 2), and In1

unknowns αjf) and βf. Eq. (2.8) yields for each; eight equations (in prin-
ciple sixteen, but due to (2.4) and (2.6) these are dependent). Equating
the number of unknowns and the number of equations gives In2 + 4n
= 8n^>n = 2. This means that the class U is a two parameter family of
solutions. The elements of this class are described by u(p\ with p = (Pi,p2)>
where p1 and p2 denote the parameters. In this notation scheme (2.8) reads

u(p')

u(p) —< < ^ Vp, where p' and p" depend on p . (2.9)

^ u(p")

Using twice Eq. (2.6) scheme (2.9) is equivalent to

In order to rewrite Eqs. (2.10) in terms of the real unknowns u{ίί)(p),
M(i,3)(j>)> w(2,i)(p) a n d W(2,3)(P) Eqs. (2.5) and (2.6) have to be used. It

easilyfollows «(1,1)(p) = M ( 1 , 3 ) (p ') , (2.11a)

, (2.11b)

1,1)(/>'), (2.11c)

(2.11 e)

(2.111)

u(ly3)(p") + HYuaΛ)(p"),

"). (2.1 lh)

Define ^ I,I)(P) M(2,I)0»)

«(l,3)(ί») "(2,3)^)

Only the real unknowns appear in u'{p). It follows directly from the
EqM2 11)that E s ί : s t ι

c2

(2.12 b)

(2.12c)

10 Commun math Phys , Vol. 29
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where cί9 c2, c3 and c4 are arbitrary. We select as parameter c2 and c 4, i.e.

i, p2) = αi^pi + α (

1

2)p2 ,

> Pi) = α(2

where the linearity of the functions cx and c3 is implied by the form of
the class 17. The αj° have to be determined by the requirement that
u'(p'), u'{p") and u'(p) all belong to the same class U, i.e.

and
Vp', 3p such that u'{pf) = u\p)

Vp", 3p such that u'(p") = u'{p).

After some trivial calculations we find

u[p) =

Pi Pi

Pi P 2
(2.13)

where

α+ =
•(fl- l)2-f-4HY]>

Substitution of (2.13) into scheme (2.9) enables us to express p' and p"
in terms of p:

pf = LlP, (2.14a)

p" = L 2 />. (2.14b)

The matrices Lγ and L 2 are given by

Up till now scheme (2.7) has been solved as far as the common
properties of u^ are concerned. To determine the state completely the
specific properties of uψ must be taken into account. Once we know ut

all t4ι) follow from repeated applications of Lx and L2 to the p of u1.
Denoting uψ by uip^X the vector uγ is obtained by observing that
uψ = uί9 i.e. L2pί = p 1 ? and M1(2, 8) = 1. One finds

(2-16)
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where
-1

x y =
The correlation functions of ut are given by

ω{nj-1nJnj+ίnj+2) = a.3

±y±, (2.17a)

(2.17 b)

(2.17 c)

(2.17d)

\a\y±, (2.17e)

(2.17f)

ω(nj) = y ± . (2.17g)

Both for ferromagnetic (J>0) and antiferromagnetic (J<0) inter-
actions α+ has to be taken. This is due to the fact that

1. J > 0 results in α_ > 1. This is not allowed because of e.g.

2. J < 0 results in α_ < 0. This is not allowed because of the positivity
of the correlation functions.

This concludes the calculation of the correlation functions.

The knowledge of the correlation functions ω(Πj) and ω(njΠj+ι)
suffices to determine the thermodynamic properties of the system
(formula (1.4)). After some calculations the usual results are obtained.

The Ground State (/?-• oo)

(1) J > 0 ; / z > 0 ; all correlation functions (2.17) are zero (α+=0,
y + = 0 ) .

(2) J>0;h<0; all correlation functions (2.17) a r e o n e ( α + = l,

y+ = i)
(3) J < 0; h > O l ω(Πj) = j, ω(njnj+2) = h a ^ other correlation func-

(4) J < 0 ; h<0;\ tions of (2.17) are zero (The state is spatially
invariant!).

Taking h = 0 and afterwards /?->oo yields.

(1) J > 0 , all correlation functions have the value \.
(2) / < 0 , ω(ΐij)= \, ω(njΠj+2) = j, all other correlation functions of

(2.17) are zero.
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The Cluster Property

The question whether the system clusters or not is answered by
investigating

li λ2^

Because the system does not exhibit a phase transition the cluster
property should hold, i.e.

hmt^)

2 = ω(nJ)u1. (2.18)
n —* oo J

Proof.

lim ttfΆ = lim Άpψ = lim Π2Lλ px .
M->OO «->oo n->oo

According to Bellman [4]

(z? ΨΌ)

lim A nUιχ= — — ψ0 ,
H-+00 \Ψθ> ¥ Ό /

where ψ 0

 a n ( 3 Vo a r e given by

= λψθ9

iJ ψ'o = λψ'θ9 where Lτ is the transposed of L

and 2 is the maximal eigenvalue of L. In our case λ — 1

Substitution results in

lim u^l\ = a2

+ y\ Γ+\=y+Pl= ω{n^uγ. Q.E.D.
n-»oo \ 1 /

Section III

The One-dimensional Ising Model
with Next Nearest Neighbour Interaction

In this case we have

vu + a = JΛδatl + δa^1) + J2(δat2 + δat^2). (3.1)

Substituting (3.1) into (1.6) yields
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Defining H = e2βh; Xλ = e~A^\ X2 = e-*βj2; Y ^ ^ - l ; Y2 = X2-1
Eq. (3.2) passes into

ί H \ H Y f-f V

ω{N) = l—— + ί)ω(nJN)+—^ω(nj_2njN)+ -^-ω{fι nN)
\ A 1 A 2 / A 1 ^ 2 ^ 1 ^ 2

MY

+ ^

HYY H Y Y
ΛXΛ2

χ2 Λ , ^

(3.3)
HYY HYY

ί 2 ω(w j-1w jw/ + 2Aί r)+ 1 2 ω(njnj+1nj+2N)

H Y2 Y HY Y2

χ

1

γ

2 ω(nj_2nj_ίnjnj+1N)+ χ

ι

χ

2 ω(nj_2nj_1njnj+2N)

IT y y2 rr y2 y

V 2 ω(nnnnN)+ x 2

1 A 2
ω(nj_1njnj+ίnj+2N)

ί Λ 2

To generate a scheme analogous to the one previously discussed we take
respectively

N = nj_2nj_1nj+ίnj+2N
/; ΛΓ = n/_2Πi/_17i/+1JV'; N = nj_2nj-ίnj+2N';

N = nj-.2nj+ίnj+2N'; N = nj_ίnj+1nj+2N'; N = nj_2πj.1N
f;

N = nj_2nj+ίN
f N = nj_2nj+2N'; N = nj_1nj+ίN';

N = nj_ίnj+2N'; N = nj+1nj+2N
f; N = n^2N

f;

N = nj_1N'; N = nj + 1N'; N = nj+2N'; N = Nr,

which results into the following sixteen equations

2nj_ίnjnj+ίnj+2N'), (3.4a)

.1njnj+iN
/)

(3.4 b)
j-.1njnj+1nj + 2N'),

_1njnj+2N
f)

N')
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ω{nj^2nj+1nj+2N
/) = (HX2 + l)ω(nj_2njnj+ίnj+2N

f)
(3.4 α)

+ HX2 Yt ω(nj_2nj_ίnjnj+1nj+2N'),

ω(nj-1nj+ίnj+2N') = (HX1 + 1) ω(nj_ίnjnj+ίnj+2N')

+ HXίY2ω(nj_2nj_ίnjnj+1nj+2N'),

ω(n j_2πJ _1iV
/) = (H + 1) ω{nj.2nj-1njN

f) + HY2 ω{nj-.2nj-ίnjnj+2N
f)

(3.4f)
+ HY1ω(nj_2nj_ίnjnj+ίN')+HY1Y2ω(nj_2nj-1njnj+1nj+2N'),

(3.4g)

ω(Πj_2nj+2N')

I i i v \ HX Y
= ——^- + 1 )ω{nj_2njnj+2N')+ ~-ω(nj.2njnj+ίnj+2N

f)
\ A i I Λ i

Lω{n._2nj_in.nj+2N') (3.4h)

IT ΛZ γ-2

φ 1

uy \ TJ v y
i + l ] ω ( n n n i V / ) + ^

Γ + l]ω(n J-1n Jn J + 1iV)+
A2 I Λ2

ζ y

y 2

Λ 2

ω(nj-.2nj-1njnj+2N') + HYλY2 ω(nj-2nj-.1njnj+ίnj+2N'),

r) = (H+ί) ω(njnj+1nj+2N
r) + HYX ω(nj_1njnj+1nj+2N

/)
(3.4k)
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( rr \

— - + 1 )ω{n^2njN')+ -^~^ω(nj_2njnj+2N')
HY1 , HYX

X l X ί (3.41)
H γ i γ 2 , MΛ HYiY2

rr y2 rj y

( rr \ rj y

— - + 1 U ( n j _ 1 n j N 0 + - - ^
A 2 / A 2

F7 y My
2 2

try y rj y

^ ^ ω { n n n n N ^ +

(3.4m)

rr y y ΓΓ y y
^ L o j ( n n n n N / ) +

ω(nJ +1JV')= ( — +l)ω(n /π / + 1ΛP) +

Λ2

J-f V

Γjy rj y

ω ( n n n Λ / r / ) + 1ω(n

(3.4n)
rr y y rr y2

-Λ_2 - ^ 2

HYίY2 , Λ m H ^ ί

( M \ My

— + 1 ω(n}nj+2N') + -—^ω(njnj+1 nJ+2N')
Λ i I Λ i

HY1 < «« ffY2
1 ,/-f y Ή y y

ω ( n W w n i V / ) + M

„„„ (3 4 ° )

y M y^1 y
φ-^ω(nj-_2nj_ίnjnj+2N

r)+—^—^-



144 G. Vertogen and A. S. de Vries:

HYί

HY,Y2

xxx2
HYi

EYX

-ω(njnj + 2N) + - ^ -

HY2 , Λ m , HYtY2

HYί

xtx2

1nj+2N')

(3 4p)

ι~ω{nj_2njnj+ιnj+2N') +
TJ γ

Λ1Λ2

 A 1 A 2

)—^ω{nj_2nj_1njnj+1N')+ ι 2 ω{nj_2nj_1njnj+1nj+2N').

ω(nj.2nj^ίnjnj+ίN
f)

ω(nj_2njnj + ίnj + 2N
f)

ω(nj_ίnjnj+1nj+2N
f)

ω(nj_2njnj+2N
/)

ω(nj-1njnj + ίN
f)

ω(nj^ίnjnj+2N
f)

ω(njΠj+1nj+2N
f)

ω(nj.2nj+1N
f)

ω{nj^2nj+2N')

ω(nj_ίnj+1N
f)

ω(nj_1nj+2N
f)

ω{njΠj+2N')

ω(njN')

ω(nj+ίN')

ω(nj+2N')

ω(N')

with N' = Y\ nu (ίι Φj); φj is defined as the above mentioned expression
1 = 1

with JV' = 1.
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Analogous to the nearest neighbour case we define

ψ(h h) = (Φo(3> h~ **)> Φo(h h))> hΦ0,1,2, 3 ,

where the components of ψ(i1 ... ik) are given by

Ψd,n)(h -'-h) = Φo&h -.- i]k)(w)

Ψ(2,n)(h .-.ίώ = Φθ(h -.. ίfc) (W)

with n denoting the nth component of φo(..., ix ... ik\ e.g.

145

Again ψ = (φo(3),φo).

Consider the following subsets of y ^ ... ik)

Ψ{i,p)(h ---h) Ψ(i,t)(h ••• h)

Ψ(2,P)(h " h) Ψ(2,t)(h - Λ )

Ψii,q)(h ---h) Ψ(i,u)(h - h)

Ψ(i,P+i6)(h ••• h) Ψ(i,t + i6)(h ••• h)

Ψd,r)(h -Λk) Ψ(i,v)(h --h)

Ψ(2,q)(h ••• h) Ψ(2,u)(h - ίk)

(p,q,r,s) (' : \
A(t,u,v,w)\ιl ••• ιk) —

^ ( 1 , ^ + 1 6 ) 0 * 1 ••• l'k)

Ψ(2,r)(h •" h)

^ ( 2 , ^ + 1 6 ) 0 * 1 ••• i k ) Ψ { 2 , u + lβ)Vl ••• i k

Ψ(2,s)(h ••• W ^ ( 2 , w ) 0 l ••• h)

Ψ ( 2 , r + 1 6 ) ( h ••• ΪJk) Ψ { 2 , v + 1 6 ) ( h ••• ϊfc

0 1 ••• ̂ /c)

Translating properties (2.5) and (2.6) of the nearest neighbour model
we find

x{l±i:V2)(h- ik)==ΦΛ-λί1...ik), (3.6a)

(3.5)

Z(ib,i3,i5,i6)0'i ... ik) — ΦΛh -" h) (3.6 b)
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Again the topology of the lattice is responsible for these properties.
Define

u1 = ψ; u{2) = xp{4)\ ui

3

1) = ψ(4,5); u{^) = ψ(4,5,6)\ arid so on

If we use Eq. (3.6 b) then, because of the assumed spatial invariance of
the state ω, i.e. φ^ ... ik) = φ0(i1 — l,...,ik— 1), the following scheme
results again.

(3.7)

Repeating the arguments used in the nearest neighbour model we
find that the solution class U is an eight parameter family denoted by
u(p). To solve is therefore

" (3.7a)

Because of the Eqs. (3.4) and (3.6) not all components of u(p) are
independent. The independent ones are chosen to be

"(i,9)(p); w ( ί s l l ) (p); u(iΛ4)(p)

In terms of u(ij)(p) Eqs. (3.4) read

(i.is)

u{U 1 9 ) = (HX2 + 1) uiiι3) + HX2 Yxu{iΛ),

(3.8a)

(3 8b)

(3.8c)
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u ( ί > 2 0 ) = (HX2 + 1) u(iΛ) + HX2 Y,«(t>1), (3.8d)

i Y2u(iΛ), (3.8e)

) , (3.8g)

, 2 ! HX2Y1

%,24)= h p - + 1 K,8)+ Ϋ "(ί,4)+ γ %,3>
1 I * ' (3.8 h)

_(HX1 \ HXtY2 r 2
M(i,25)— ^ I" 1 M(i,9)Ί ϊ ; U(i,5)H T; M(ί,2)

(3.8 i)

2«(U)> ( 3 ' 8 k )

H \ HY2 HYi HY1
U(i,28)= \~^ I" 1 ] U(i,12) H ^ W (i,8) "̂  ^ W(i,7)~l ^ W(ΐ,6)

1 x x (3.81)

)Λ "I 77 w ί i 1 ̂  ?

_ HY2 HYX HY2
U(i,29)~ H ^ ^ 1 ) W(£,13) H γ W(i,10)"l ^ W ( i ,9)+ v

 U(i,6)
U y ^ 2 ^ 2 X 2 (3.8m)

HY1Y2 HYi HYχY% HY1Y2
^P " ( i 5)+^Γ^W( i 3)+^ U{U2)+—— U(t

P ^ ^ U ( t Λ ) ,
Λ2 Λ2 Λ2 • Λ2

H λ HY2 HYί HY2
M ( i 3 0 ) = + 1 % + «+ U +(i,30)= TΓ + 1 % 1 4 ) + v «(i,ll)+ Y U(i,9)+ y M(i

2 7 2 (3.8 n)

H \ HY1 HYX HY2

+ 1 Wi,15)H γ U(ί,U)~\ v W(ΐ,10)~l γ
γ v γ

-1 / -Λ-1 Λ i A-i

, (3.8o)
HYt

2Y2

"tf,3)+—Ϋ «(U)



148 G. Vertogen and A. S. de Vries:

H \ HY2 HY1

• ! U(£,16) + v γ U(i,15 +v γ U(i,15) + γ v

 W(i,1
ίΛ2 Λ ί Λ 2

HYί HY2

HY? HYj
U + ) HV V ί1''9)"1" V V W(^8)"Γ v γ w(i,7)"T" v v

 u(i,6)

HY*Y HYY2 HYY2 ( 3 8 p )

, HY1Y2 . ,
Λ 1 Λ 2 A 1 A 2

where by w(ί(Λ is meant u{iJ)(p). These relations hold for all p and i = 1,2.
The Eqs. (3.6) together with (3.4) yield the remaining ones needed to
express all w(ί ̂ (p) in the real unknowns u{k 0(p) (k = 1,2; / = 1,2,4, 5, 7,9,
11,14).

These equations are

uilt3) = (HX1X2 + l)u{1Λ)9 (3.9 a)

M ( l t 6 ) = (HX2 + 1) W ( l f 2 ) + HX2 Ytu(U1), (3.9b)

tt(if8)=(flΓ^i + l)"(i i4) + ί ί-Y 1 y 2 tt ( l f l ) , (3.9c)

«(i,io) = {HX1X2 + 1) M(lf 5 ) , (3.9 d)

%Λ2)=(f f+l)"( i i 7) + » n % , 4 ) + ffl2"(i,2) + H y 1 y 2 t ι ( l i l ) , (3.9e)

M =(HX + 1 ) M + i ί X F i i , (3.9f)

U ( 1 , 1 5 ) H # * 1 + 1)%,11) + # * i y 2 % , 5 ) , (3-9 g)

^(1,4)

(3.9k)

X 2

 t 1 ' 1 ' '

), (3.91)
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H , Λ , HY, , HY2
"(2,2)

(3.9 m)

"(2,12) ~ \~χ- + lj"(2,7) + —y "(2,4) + ~ ^ "(2,2)

\ HYt tfy2

"(2,16)— v + 1 "(2,14) H r; "(2,11) "I T; "(2,9)

E±Yl_
2

Λ ' ( l , 5 )

Using Eq. (3.6 b) scheme (3.7 a) is equivalent to

= "(1,14) (

"(1, 3

«(1,5)(P) = "(1,11) OP') » "(1,13)(P) = «(2,14)(P') »

"<l,6)(/0 = «(2,9)(P') » "(1,14)(P) = «(2,27)(P') »

= "(2, 3

= " (2,11)

"(2,2)(P) = W(2,5)(P") » «(2,10)(P) = "(1,14) (p") ,

"(2,3)(/>) = "(l,9)(P")> W(2,11)(P)=W(1,27)(P")>

"(2,4)(P) = «(1,21)(P") > "(2,12)(P) = W(2,25)(P") >

"(2,5)(P) = W(1,11)(P") , "(2,13)(P) = "(2,14)(P") ,

"(2,6)(P) = W(2,9)(P") ? "(2,14)(P) = "(2,27)^0 ,

"(2,7)(P) = "(2,21)(P'/)? " ( 2 , 1 5 ) ( P ) = " ( 1 , 3 O ) ( P / / ) ?

"(2,8)(P) = "(1,25)(P") , "(2,16)(P) = "(2,30)(P")

(3.

"(2,15)= —ΪF 1" 1 «(2,U)H ^ "(2,5) H γ "(1,11)

, (3.9 o)

y "(1,5),

y "(2,5)+ -^Λ«(l,14)+ γ "(1,11) (3.9p)
A Λ A
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Substituting (3.8) and (3.9) into these equations we obtain them in terms
of the "real" unknowns:

(HX1

(HX2 + l)u( l i2)(jF) + HX 2 7 t i ι ( l t υ (p) - u ( 2 i 9 ) (p0,

/ H X
(HX1 + l)uaA)(p) + HX1 r 2 u ( l l ) ( p ) = — -

V2

+ HY1Y2uaΛ)(p'),

+ 1 W(2,9)(P ) + Ϋ W ( 2 > 5 ) ( p ) + U(2j2)(p )
Xl Xl

Λ2

(HX2 + l)M( l i9)(j») + i/X 2 Yi Md,5)(|») = "(2,14)00 ,

v ! U(2,3)(|»0 + H Y2 u(2A)(p')

HY1Y2u(2Λ)(p'),

HY2 t n HY1 , n HY2 f Λ i ϊ F i ^
—ί; "(1,11)(P)+ — ί ^ "(1,9)00+ -^^«(1 ,7)(P)+ ^ "(1,5)00

Λ 2 Λ 2

 A 2 A 2
rrτ^2 ijy y rjv γ

^ " W + 2 " ( f θ +
2
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HX1

i Y2 , ... H Xi Yo

A 2

Λ 2 Λ l (3.10)

nγ^γ2 HYi
A ?

HXtY2 . . HXXY
^ M ( P ) + ^ J

{HX1 + l)w(2,5)(p) + - » ^ Y2uiU5)(p) = u(U14)(p"),

if .\ . . ffϊl , . HY2
+ 1 \Ui2t7)(p)+ — ^ - W ( 2 j 4 ( ) +

A
+ 1 \Ui2t7)(p)+ ^ W ( 2 j 4 ) ( p ) + Γ

A2 / A2 A2

HX1Y2 , n HXxΎl
+ y «(2,2,(P") + y "(2,1,(P") ,

Λ2 Λ2
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(Jϊ

"(2,1

Ί«(2.5)(P) + HY2uilι9)(p)

+ HYίY2 u{lt5)(p) = u(2> 14)(/»"),

W ( 2 , 5

M-w(i,ii)(p)

Γ
Λ2

H

%2

HY2

A2

HY?

Tj "y

LJ y y 2 / TJ

IT TΛ

(3-

Because we only want to consider the "real" unknowns we define

u'{p) =
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Eliminating u'(p) from Eqs. (3.10) we get

153

(HX,X2

(HX1X2

(HX2

C6

Yi

c4

(3.12)
(HX2 + l)c£) + HX2Yίc2

1)

(HX2

ί1X2 + l)c 4

1 ) (HX2 + ϊ)c$)-

where c[ υ (i = 1,..., 8) is still arbitrary. Repeating the procedure for (3.11)
in combination with (3.10) gives

c5

(3.13)

c 8

where

and C; (i = 1,..., 8) are arbitrary.
Substituting (3.12) and (3.13) into the right hand side of respectively

(3.10) and (3.11) the following expression for u'(p) emerges:

«'(!») =

M\ f(c3,
c 4

c 8

g(cs,

Cx)

c5)

c 3, Ci)

Cs)_

(3.14)

Commun math Phys., Vol. 29
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Choose the following parameters

Pi = cψ\p2 = 4 1 } ; Ps = 4 υ ; P4 = 4 υ ; Ps = c3;p6 = c4;pΊ = c7;p8 = c8.

Evidently u'(p") spans a bigger class than u'(p')\ u'(p') and u'(p") should

belong to the same class U. Enclosing u'(p') in u'(p"\ i.e. Vp', 3p" such that

w/(Jp
/) = "/(p") we find

Φi,p2>P3,P4>Pi>P2,P3,P4) = c(i1)(Pi,P2,P3,P4) (* = 1,2,5,6). (3.15)

Eq. (3.15) implies immediately the following form of w'(p).

Pz
4

PΊ

8

4

1=1

P4
4

1=1

Σ(A + A
1=1

8

ί = l

Pδ
8

ι + dPι Σ C/Pi
Z = l

8

ι + dPι Σ A Pi
ϊ = l

(3.16)

where the coefficients Al9 Bh Cx and Όx (/=1, ...,8) still have to be
determined. It is essential to note that we have assumed that the para-
meter dependence of ct is linear (Compare the nearest neighbour model).

Contrary to the nearest neighbour case we will not enclose u\p") in
u'(p) but substitute form (3.16) of u'{p) into scheme (3.7a), i.e. into
Eqs. (3.10) and (3.11), which should hold in the following sense

(1) V/>', 3p such that (3.10) are satisfied,

(2) V/Γ, 3p such that (3.11) are satisfied.

This procedure is followed because it shortens the calculations. The
coefficients At, Bh Cι and Dι (1= 1,..., 8) are completely determined by
this process. Afterwards the same relations yield L1 and Ll9 which give p'
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and p" in terms of p by p' = Lγp and p" = L2p. The rather lengthy and
tedious calculations result in:

A
±
 = Λ

2
 = A

3
 = Λ

4
 = A

Ί
 = Λ

8
 = 0; A

5
 = B

Ί
; A

6
 = B

S
;

J5
χ
 = B

2
 = B

3
 = B

4
 = B

5
 = B

β
 = 0

where the coefficients BΊ, B8, DΊ and D8 have to be determined from the
equations

(1) B9DΊ ^

(2) D8DΊ = {H+1)D7+HY2B7

(3) BΊ

(4) DΊ

The matrices L1 and L2 are given by

T -
J^1 -

2 =

where the 2 x 2

A

{HX1X2Λ-

0

_HX2Y1A

"0

HX±Y2Λ

0

_HY1Y2A

1)A

0

0

0

HY2

matrix /L has the

0

0

/I

(HX2 + l)

A

0

/I HYXA

form

0

0

0

A 0

Λ)A

0

0

A

(H +

0

0

0

0_

-

ί)Λ_

Λ =

1 0

Take an arbitrary u^ with parameter set p from scheme (3.7). Observe that
there exists a sequence p\ p", p% ... such that

p' = LlP, p" = LlP', p' = LίP", etc.
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Looking only at the first two components this is equivalent to

or

with

Pi

•t etc.

Ό 1

DΊ D8

Because all components of all uψ should be positive A 1 satisfies the
conditions of the Perron-Frobenius theorem and therefore by Brascamps

lemma [5], is the eigenvector of A 1 belonging to the largest

positive eigenvalue. This gives p2 = λpt with λ2 = DΊ + λD8.
Consider again an arbitrary u^ with parameter set p; there exists

always a parameter set p' such that p' — L2p or

Because p'2 = λp'1 it directly follows Pe = hp5. In an analogous way
P8 = λpΊ, P4. = λp3. Combining these results with Eq. (3.17) one finds
immediately

u'(p) =

Pi

P3

K(λ)Pl

K(λ)p3

λp3

λ2

Pl

λ2p

Ps

Pi

K(λ)p5

K(λ)pΊ

λpΊ

λ2p5

λ2pΊ

(3.18)

with

and where λ satisfies the equation

λ4 - (H + 1)λ3 - H Yt λ
2-(H+ ί)HX1 Y2λ-H2X1Y2

2 = 0. (3.19)
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Using the same arguments as in the nearest neighbour case it follows that
one must select that root of (3.19) which is bigger than one. This is
always possible. To determine uί it is sufficient to note that uί=u{

2\
i.e. L2p1 =/>!. This results in

Pi λpi

K(λ)Pl λ2p1

K(λ)Pί λK(λ)Pl

^Pi λ2

Pl

K2(λ)Pl λ2K(λ)Pl

λK(λ)Pί λ3

Pί

λ2

pl λ3

pι

With the aid of the Eqs. (3.8) and (3.9) u1 can be calculated. It follows

Ui(l, 1) = ω(n_2n_j n0n1 n2n3) = px,

Wi(l? 4) = ω(n_2 n0n1 n2 n3) = ux(l, 2),

ut(ί9 5) = ωin^iΐiQnίn2n3) = λpx,

, 7) = ω(n_2n0n1 n3) = K2(λ)p1 ,

1, 9) = ω(n_1n0n1 n3) = λK(λ)p1,

11) = ω(n0nίn2n3) = λ2p1,

12) = ω(n_2n0n3)

K2(λ) + HYX K(λ) + HY2K(λ)

14) = ω(nonίn3) = λ2

15) = ω(n0 n2 n3) = M ± ( 1 , 14),
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, 8),

, 20) = ω(n_2ni

, 21) = ω(n_ίn1 n2n3) = 1^(1, 9),

ί)HX2 Y1+HY2(HX1X2 +

23) = ω(n_2nί n3) = w^l, 12),

+ -K(λ) +

Xo

P i

M ^ I , 26) = ω(n_1 n2 n3) = u^l, 13),

ux(ί, 27) - ω(w! n 2 w3) = A3/?!,

Λ 2

( J - + 1 j A2 X(λ) + - ^ Λ A2 + ^ JC2(A)
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31) -ω(n2n3) = λ4p1,

^ +H + ̂  + -§^ + l)λ2K(λ)
1 A 2 A l ΛίΛ2

H*γί

Λ1

A 2

= u1(l, 11),

tt!(2,4) = ω{n.2nς)nγ n2) = u^l, 9),

Mi(2, 5) = ω(n_! ̂ 0^!n 2) = M ^ I , 11),

MX(2, 6) = c φ _ 2 n _ ! n0) = w i ( ^ 2 7 ) >

2,7) = ω(n_ 2 n o n 1 ) = w1(l, 14),

2, 8) = ω(n_2n0n2) = u^l, 25),

t*!(2, 9) = ω(n_! n0Πi) = M ^ I , 27),

ux(2910) = cofn.^o n2) = 1^(1,14),

MX(2,11) = ω(n0 nί n2) = w^l, 27),

Mi(2,17) = ω(n_2n_1n1 n2) = 1^(1,10),

+HY2+ ——
Λ

ίΛ2 Λ
2
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Ul(2,18) = ω(n_ 2 n_ 1 n 1 ) = M1(l, 14),

1^(2,19) = ω(n_2n-.1n2) = u1(l, 13),

ux(2,20) = ω(n_2n1 n2) = ux{\, 13),

Ml(2,22) = ω(n_ 2 n_1) = u 1(l, 31),

Uj (2,23) = ω(n_ 2n 1) = u1 (1,16),

= M1(l, 16),

1 A 2

ΓT y

l, 30) + —-φ-(Yx + 2Y2) Ul(U 27)

1 2 1 2

The last equation determines p x in terms of A.

In the absence of a magnetic field, i.e. H=l, the roots of Eq. (3.19) are

K2 = e~βJl[coshjδΛ ± [sinh2 βjx +

A3 4 = e~βJl[sinh β̂ J x ± [cosh2βj1 - e~4βj2γ~] .

These roots have a great resemblance with the roots obtained by the
transfer matrix method (see e.g. [6]). The thermodynamics of the system
can be derived from the internal energy per spin
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The cluster property assumes here exactly the same form as in the nearest
neighbour case. For h — 0 it can easily be checked since ω(wj) = \.

Section IV

Summary and Remarks

The presented method can be summarized as follows: We divide all
correlation functions into groups u%\ such that the internal relations due
to the K.M.S.-condition are the same for each u%\ and in such a way that
they fit into some kind of "infinitely repeating" scheme ((2.7) and (3.7)).
Now we distinguish the properties of uψ into specific properties and
those common to them all.

For the moment neglecting the specific properties, we observe that
each uψ has the same "pedigree". As shown in the preceding sections
this implies that all uψ belong to a finite class (7, which can be determined
from studying one unit of scheme (2.7) or (3.7). The specific properties
of ux are used to select for each uψ the suitable element from the class U
(by means of the matrices Lγ and L2).

About the number of parameters needed to describe the class U, or
equivalently the number of independent vectors in that class, it should
be remarked that, in the next-nearest neighbour case, the class U is
essentially a four-parameter family as follows from Eq. (3.18); whereas
equalizing the numbers of equations and unknowns yields an eight-
parameter one. However, as it is impossible to select at the outset the
four correct ones, the last approach is preferable.

Besides the number of parameters in the next-nearest neighbour case,
the roots of Eq. (3.19) need some comment. It is easily seen that, excepting
the case J2 > 0 h ̂  0, one and only one root of (3.19) exists, which is bigger
than one; a necessary requirement for the solution. In the case J2>0
h^O there exists a "critical" temperature βc, determined by

e-2βch jre-4rβcJ2= I

such that we have for
1. β < βc one root bigger than one;
2. β = βc one root equal to one and one root bigger than one;
3. β > βc two unequal roots bigger than one.

Because of the desired continuity of the correlation functions (in
particular of the internal energy) the biggest root must be taken. This
ambiguity in the choice of the roots for β > βc strongly suggest that the
method is also applicable to systems which exhibit a phase transition
like the two-dimensional model.
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To conclude this section we will make some remarks about extending
the method to more-dimensional models.

In the case of the one-dimensional models treated here it can be
shown that there exist subsets vίCul9 υ2Cu{2\ v3Cu^\ etc., such that
scheme (2.7) or (3.7) changes into

This simplified scheme is analogous to the procedure of the transfer
matrix method [6], although they differ in the quantities coupled to each
other. These "simplified calculations" are still a lot more complicated
than those performed with the transfer matrix method, but they supply
again the knowledge of all correlation functions, whereas the transfer
matrix method yields the thermodynamical functions only.

It is clear that for more-dimensional models, where the number of
next-nearest neighbours is greater than the number of nearest neighbours
of a point, the simplified version of the method cannot be used. The
method presented in the preceding sections has been constructed to
conquer the very difficulties of the more-dimensional lattice.

In the case of the two-dimensional Ising model with nearest neighbour
interactions (with or without magnetic field) the topology of the lattice
leads to a fanlike scheme analogous to (2.7) or (3.7); the number of
coupled equations turns out to be very large (of the order of hundreds).
The work on finding explicit solutions of these equations is still in
progress.
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