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Abstract. It was shown by Araki and Woods that the infinite free Bose gas can be
described by states on the Weyl algebra; they conjectured a certain family of states para-
meterized by temperature and density to be the infinite volume limit of the Gibbs canonical
states. We show here that this conjecture is correct. We show that the volume dependent
canonical states are equicontinuous in the density by a detailed calculation and a com-
binatorial result that gives cancellations. This allows us to develop a method of Kac that
connects the canonical states explicitly with the grand canonical states which are more
easily controlled in the infinite volume limit.

In 1963 Araki and Woods [1] showed that the theory of states on the
Weyl algebra is a natural "quantum mechanics of infinitely many
degrees of freedom" appropriate for the infinitely extended Bose gas.
In this context, they conjectured a simple expression for the equilibrium
state of the infinite free Bose gas at arbitrary temperature and density.
In particular, their expression shows clearly the presence of the Einstein
condensate above critical density. But the reasons for their conjecture
were still based on the usual pre-quantum mechanical arguments of
Einstein, which should be extraneous because the Gibbs canonical and
grand canonical states of the finite Bose gas should simply converge in the
infinite volume limit. So in the present note we give a direct proof that
the Gibbs states do converge in the infinite volume limit. The canonical
states converge to the state conjectured by Araki and Woods.

The main idea for the proof of convergence of the canonical states is
due to Kac [2]. The infinite volume limit of the grand canonical states
is easily calculated and the grand canonical state is a linear combination
of canonical states at different densities. Kac showed that the coefficients
of this linear combination converge to a simple distribution (in the
infinite volume limit) which can be used to calculate canonical expecta-
tions from grand canonical expectations. Kac's work leaves open the
technical problem of showing convergence of the canonical states
themselves, but proves convergence of a wide class of linear combinations.
In the present note, a slightly wider class of linear combinations is proved
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to converge and an equicontinuity estimate is obtained to prove con-
vergence of the canonical states themselves.

Lewis and Pule [3] have given a definitive treatment of Kac's work
within the description of Araki and Woods. Following Kac, they began
with a finite gas in a container of arbitrary shape and boundary con-
dition, and they proved convergence of the grand canonical states.
(They did not identify the canonical state as such but they noted that
this state is related to the grand canonical state by the Kac density.)
For the convenience of the reader, we shall give this part of the analysis
also, but only for the case of periodic boundary conditions where it is
quite simple (because the one particle eigenvalues are exactly known).

§ 1. Introduction and Notation

As usual, let Fock space be the completed direct sum

00

#-= 0#-(«) (1.1)

where ^ ( 0 ) = C and ̂ {n) = ̂ ym((R3)n). Let Pn be the orthogonal projec-ym((R3)n)

tion onto #" ( π ) in IF. Let S> be the incomplete direct sum

®= 0 ®(^{n)^Zmp)C^. (1.2)
1 = 1 n = 0

Let the annihilation and creation operators be defined on Si for fe J^(1) by

$f(x)ψln+1\x,x1,...,xjdx

! , •••,*;,•••'*>.) ( ° m i t *j)>
Vn • j = i

where ψ(n) = Pnψ, for n ̂  0, and zero for n < 0. Then [«(/), a*{g)~\ = (/, g)I
on Θ and

Z ( / ) = y j {«*(/)+ *(/)} (1-3)

is essentially self-adjoint on 3). Let

(1.4)

The W(f) are unitary operators in J^ satisfying the Weyl relations

) W(f2)=W(f1+f2) expi- y Im(/ l f/ 2)l. (1.5)
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For computations the formula

4 "' " J x { \ j/2 '/J A I \]/2 ' /}' ( 1 > 6 )

valid on 3 in the sense of power expansions, is useful.
The concrete Weyl algebra 91 will be the operator norm closure of

the linear span of all W(f) under the important restriction that supp/
be compact so that W(f) is localized:

« = | Σ cj W(fj): cje C, f} e <Cm p(R 3)l o p (1-7)

Thus, 91 contains the so-called quasi-localized observables. (We could
consider 91 to be an abstract C* algebra; but this would complicate
notation. Thus we consider 91 as an algebra of operators on 3F\ but the
notion of state will be general.)

A state on 91 is any linear function 91 ->C, denoted A-+(A} with the
properties

< 4 M > ^ 0 , <J> = 1, and s-+(W(sf)} continuous, (1.8)

for all A e 9ί, s e JR, and / e ^ ^ ( β 3 ) . It follows that

\<Λ}\S\\Λ\\ (1.9)

and <̂ 4*> = (A}. A state is determined by its generating functional

mp(R3) (1.10)

Furthermore, a functional E(f), fe^^omp(R3) corresponds to a unique
state < > so that £(/) = <W(f)y if and only if

£(/) = £ ( - / )

s-+E(sf) continuous

for all fje^Zmp(R% c^-eC, j = 1,2, ...,n, and sefl. So it suffices to
consider only the generating functional of a state.

Let V be the cube

V= LeR3: - y gx^y, i= 1,2,31. (1.11)

We also let F denote the volume

K = L 3 . (1.12)
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Let hy(x) be the characteristic function of VcR3- Let

UV 6 V (1.13)
av{k) = a*{V-*eikxhγ).

a*{f)J*γ V-ίf(k)a*v(k), ( U 4 )

in the sense of strong convergence on @, where

f(k)=$e-ik 'f(x)dx.

Let J^(F) c ̂  be the Fock space over #" ( 1 )(F), obtained by replacing R3

by F in (1.1). Write ω(k) for the one particle energy at momentum k:

ω(fc)=- |—, m = l . (1.15)

The Hamiltonian and number operator for the free Bosons in a periodic
box F are now defined by

Hov= X ω{k)a*{k)av{k)

Nv= Σ av(k)av(k)

on the domain Q). They are essentially self-adjoint in 3F(V) and in <F.
We now define the canonical state at arbitrary temperature β~x and

density ρ by the formula

ti(APere'^"n

if ρ V is an integer and in general by linear extrapolation:

<ΛYβ,Q,v = (ί-λ) <AyβtQuV + λiAyβ^v (1.18)

if ρx V < ρ2 V are consecutive integers and

ρ = (l-λ)ρx+λρ2, O^λ^ί.

We define the grand canonical state at temperature β " 1 and mean
density ρ by

(AzNve~βHov)

re-βHa^ (1.19)



States of Free Bose Gas 93

where z = z(V, β,ρ)e [0,1] is uniquely determined by the condition

g.c.

(1.20)
β,z,V

The expectations (1.17)—(1.19) define states on &(!F(V)\ the algebra
of all bounded operators on 1F(V\ which can be extended to states on
Jf(«^)D9I. The restriction to 51 is needed only in the limit F-+oo.

If the system is in the state < >^;|>, then the probability of finding
it in the state < >^ρ > F is just (Pρv}t,%v> i e. the grand and the canonical
states are connected by the formula

Let

= 0,y,y,...

n' = Π JL

so that (1.21) is written

<Λ>llί.v= $Kv(ρ,Q)<AyβιtttVdQ. (1.23)

We shall call Kv( ,ρ) the Kac density at volume V. Kac [2] found that
the V-> 00 limit of Kv is simply

\δ(ρ-ρ) if ρSQc(

0 if ρ<ρc(β)

( 1 2 4 )

where ρc(β) is the critical density:

) (1.25)ρc(β)
and

z dk

for z e [0,1]. Therefore, if the limits of the states exist, the canonical and
grand canonical states are the same below critical density, while above
critical density the grand canonical state is the Laplace transform of the
canonical states. Because we are considering only periodic boundary
conditions, we will be able to give an especially simple proof of this result
of Kac. This result is the governing idea in the proof of convergence
of the canonical states.
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The infinite volume limit of the canonical state as conjectured by
Araki and Woods, in terms of its generating functional, is

(L27)

1 1
e x p { " y f ^ ^

where zm ε [0,1] is the unique solution to

Q = G(z,β). (1.28)

The Bessel function

J0{2γ~z)= Σ -Λ-(-zy (1.29)
; = o

corresponds to macroscopic occupation of the ground state [1].
Finally, to complete the notation, we note that the infinite volume

grand canonical state will be given by

rβ, if QύQc(β) ( 1 3 0 )

§ 2. The Thermodynamic Limit

The main result of this note is the convergence of the canonical state
as the volume becomes infinite:

Theorem 1. For any β, ρ > 0 and f ε <«ίc

QO

omp(fl3),

for any sequence F-> oo. The convergence is uniform in ρ in any compact
subset of (0, oo). (See (1.18) and (1.27).;
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For the proof we will need a slight generalization of the corresponding
result for the grand canonical states:

Theorem 2 (Kac, Lewis-Pule). For any β,ρ>0 and 3

for any sequence V-+ oo. (See (1.19) and (130).)

The relation between the canonical and grand canonical states,
given by the limit of (1.23), is

<W(/)>Γff = ί *(<?> 0) <W(f)>c

β,ρdρ . (2.3)

With the Kac density K given by (1.24), (2.3) is a simple Laplace trans-
form above critical density and it holds by definition below critical
density. This relation is useful for calculations. For example, it is trivial
to calculate the reduced density matrices in the grand canonical state
(see e.g. [3]); whence they are obtained in the canonical state via (2.3).
This was the explicit context of Kac's work [2]. (Kac's version of Theo-
rem 2 asserts convergence of the grand canonical reduced density
matrices.)

3. The Grand Canonical State and the Kac Density

We need to calculate ζW(f)}f^tV and (PρV}
gβ',%v which appeared

in (1.21). We denoted the latter as a distribution of δ functions by Kv(ρ, ρ)
in (1.22). It has the Fourier transform

kv(ξ,ρ)= Σ e-iβξ<Pev>ΐXv=(eiξήg

βlv (3.1)

Using (1.6), (1.14) and the commutation relation between a(f) and «*(/),
one obtains

(3.2)

with L L

Kv(ξ,ρ)= ΠΠ T
ψz* l-ze-βω{k)ev

where z is determined by the condition (1.20). (This calculation can be
carried out as a trivial generalization of the calculation given in the
appendix of [1].) The object of this section is to determine the F->oo
limit of (3.3) and (3.2).
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From (3.1) and (3.3) we obtain

NV C- 1 _

which makes the condition (1.20) explicit.

Lemma 1. Uniformly in ze [0,1]

l L ^ G(β) S^
fcΦO

The proof is simple. For example, if we omit from the summations all
terms indexed by k: kι = 0 for some i = 1,2, 3, then the sums are just the
integrals of positive step functions that converge to the integrand of the
right side monotonically from below. The z uniformity is clear since the
step functions approximate the integrand uniformly in z and k outside
an arbitrary neighborhood of the origin. Similarly, the omitted terms
approximate two- and one-dimensional integrals with LΓ1 and LΓ2

factors; so their contribution converges uniformly to zero. This would
not be valid if the ground state k = 0 contribution were present at z = 1.
This lemma is more complicated if general volumes V with general
boundary conditions are considered [2, 3].

Now, by (3.4) and (1.20), z is determined by the condition

κ V 1-z V k ^ z 3 e^-z

fcΦO

Since G{z, β) is strictly increasing in z e [0,1], we have by the lemma the
possibility of only two cases: For F-> oo,

(I) z ^ z o o < l , - L _ L - - > 0 , if ρ<ρc(i5)
K 1 — z

1 z ( 1 7 )

(II) z->Zoo = l, — - ^ - - - > ρ - β e , if ρ ^ (

where zω is determined by (1.28): ρ = G(zx,β) in case (I).

Lemma 2 (Kac). For each ρ and uniformly in ξ in bounded sets

Kv(ξ,ρ)-+K(ξ,ρ) (3.8)
where

(I) ρ<ρc(β)
(3.9)

which is the Fourier transform of K(ρ, ρ) given in (1.24).
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Proof (Kac). The proof uses only (3.7). Write

1-z ί l-ze'βωeiy 1
Kv(ξ,ρ)= Γ e x p - Σ I n — - = , 5 — L (3.10)

1 fcΦO

The first factor converges uniformly in bounded ξ:

1 -
l - z / \ ς 2 F j U l - ί ρ - ρ ^ i ξ } " 1 , (Π).

Similarly, the second factor converges to

which can be seen by expanding elγ about zero and the log about 1.
Now we come to the last factor in (3.2), which is the exponential of

1 ze~iψ 1 °° -in^-

O 17 ^-' £-*
1-ze v ~ r fce-^zs " - 1

fcΦO

By (3.7), the first term converges to

0, (I)
•4 —

and, as in (3.5), the remaining terms converge to

t|2 " f c

uniformly in bounded ξ. If we combine this with Lemma 2, we get the
following generalization of Theorem 2:

Theorem 2'. For any β,ρ>0, fe^^omp(R)3, and any sequence V-+ oo

( 3 Π )

Ί , (I)

uniformly in bounded ξ. (See (3.7).,)
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4. Convergence of the Canonical State

Theorem 2' is actually a statement about the Fourier transform of
Kv(ρ,ρ) (yV{f)Yβ,a,v We obtain by a trivial calculation that

and from (1.24) and (1.27) that

J e-'^K(ρ, ρ) <W(/)>,.β dρ = [right side of (3.11)] . (4.2)

So (3.11) asserts convergence of (4.1) to (4.2) uniformly in bounded ξ:

(κv < w(f)yβt rγ (ξ)Mκ< w{f)yβy © (4.3)

(with Q fixed). Since, by (1.9), |<If(/)>J, β ,κl^l and \Kv( ,ρ)=\,

\{Kv<W{f)yβtVy (ξ)\ ̂  1. Therefore if h e &\R% we have from (4.3) that

Γh(Kv<W(f)YPιVY^Γh(K<W(f)yβγ. (4.4)

From this we obtain the following:

Lemma 3. For allβ,ρ>0 and any sequence V->oo,

j h(ρ) KV{Q, ρ) <W{f)yPtQιV dρ - J h(ρ) K{ρ, ρ) <W{f)YβiQdρ (4.5)

if h has Fourier transform h e 5£x (or if h=l).

The proof that the canonical states converge will be based on
Lemma 3, which we have obtained by the method of Kac, together with
the next lemma which we will prove in § 5.

Lemma 4. Given β>0, fe^omv{R\ and [α, 6] C (0, oo), there is
a constant C such that

•wf)yβ,β.v (4.6)
dρ

for a.e. ρ e [α, b~\ and all V.

Now we can replace Kv by K in Lemma 3 if h e ^ ( [ α , fe]):

J h(ρ) K(ρ, ρ) (W(f))^v dρ^ j h(ρ) K(ρ, ρ) < W(f)yβtt dρ . (4.7)

In fact, with Fv(ρ) = <W(/)>|,β > κ, since \KV\ S I

\S{Kv(ρ,ρ)-K(ρ,ρ)}h(ρ)Fv(ρ)dρ\ =

ί J \Kv(-ξ,ρ)-K(~ξ,ρ)\-\(hFvY(ξ)\^+2 J \(hFvY(ξ)\^+2 J \(hFY(ξ)\^
-R λ Ί l \ξ,\>R Z 7 Γ
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The second term is dominated by

— ( f \l + ξΓ2

π \\ξ\>R

where the second factor is V-uniformly bounded by Lemma 4 and the
first factor is arbitrarily small for R large enough. The first term is
arbitrarily small for V large enough by Lemma 2 and the fact that

In case (I): ρ^ρc(β), K(ρ,(ϊ) = δ{ρ — ρ), we have immediately from
(4.7) that

( f β . (4.8)

In case (II): ρ > ρc(β), we can choose h so that

g(ρ) = K(ρ,ρ)h(ρ) (4.9)

for any given # e ^£ m p ((ρ c , oo)). So from (4.7) we have the weak con-
vergence

ί 9(Q) <W(f)Yβ,ρ,v dρ -> J g(ρ) <W(f)Yβ,ρdρ . (4.10)

Finally, for j8>0, /e<i?£m p(R3), and [α,b]c(0, oo) fixed, we have

by the inequality \(W{f)YβiQ,v\ ύ 1 and Lemma 4 that the family of

functions (W(f)}c

β>ρV is precompact in the uniform topology of ^([α, b~\).

By (4.8) and (4.10) the only possible limit point is (W(f)}c

β>ρ and this

proves Theorem 1.

§ 5. The Equicontinuity Estimate

In this section we will prove Lemma 4.
Using (1.14) in a straightforward calculation (see e.g. [1] for the main

part of it), we obtain

ιτ\rΉe e e H y) p.i)

= Σ
{Σn(k) = N}I

= Σ
{Σn(k) = N}

-

k

Γ
k)} k\j(k)

j(k)l2

where k ranges over Z 3 , N = ρV, the first sum is over all functions

of k that are non-negative integral valued with sum iV, the second sum
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is over all non-negative integral valued functions j(k) ^ n(k\ and Lt is the
Laguerre polynomial of order /. By (1.6), the definition of canonical state
in (1.17) and (1.18), and (5.1), the inequality (4.6) of Lemma 4 becomes the
inequality

y-βω{k){n(k) + *

Γ Σn(k) = N \ LI k
ίΣm(k) = F

Λ2N

Σ
Σn(k)=N

or

CQ_

N

ΓTe~βω(k)g(k) y

k (Σn(k) = N^

(5.2)

Q

^\~2N

- π
<

,U

N

'nm\2N

Y Π e~βω(k)9ik)

(5.3)

ln(k

where the first sum is over all functions g of k that are non-negative
integer valued with sum 2N + 1. So it suffices to prove, for given g, that

Σ
ίn(d)=iVl L ft

ί

2iV
\f(k)\2 )-Y[Lφnik)

Q

2JV
(5.4)

= N <Σn,k) =

Σ i,
(Σn(k) = NΊ

where Φ is an arbitrary bijection

(Σn(k) = N)
Φ:

\n(k)£g(k)j
(5.5)

(Note that n^g — n was such a bijection.)
We shall prove in the Combinatorial Proposition below that there

exists a bijection (5.5) with the property that for every function n there
is a fcπ such that

ίn(k) = Φn(k)

\n(ko)+l =
(5.6)
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Also, we will show, for N sufficiently large (depending only on a
bound on ρ\f(k)\2\ that

(5.7)

Using (5.6), we rewrite the left side of (5.4):

Σn(k) = N

By (5.7), this is dominated by the right side of (5.4) since ρ ^ a > 0. So to
complete the proof we only need to establish (5.6) and (5.7).

To prove (5.7) we notice that the Laguerre polynomials of order Z,

- Σ (5.8)

have the following properties:

as /-> oo, as entire analytic functions.

«τ
for any d^OJ^n, and n ^

Z+l

^ const, z G [0,

(5.10)

(5.11)

(5.12)

for any d > 0, Z ^ n, where the constant depends on d. The convergence

(5.9) is clear and (5.12) follows from the convergence of the derivatives;

also (5.11) is well known. We check (5.10): Since \J0(2]/z)\ < 1 for z > 0 ,

—
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for z 6 [ε, d]. Choose ε > 0 so that LA — I > - 1 and —— Jo(2 ]/z) < — -
\ / / dz v 4

for ze [0, ε]. From the convergence of the derivatives of (5.9), we have

for sufficiently large / that -—-LA—) < , ze [0, ε]. Therefore, since
dz \ I I 8

1,(0)-1, ^ 1 for ZE [0, d] and l^lo(d). Finally, for the finitely

many cases l<lo(d), we choose no(d) sufficiently large so that \Lt(z)\ ^

for z e 0,
no(d)\

Finally, (5.6) is given by the following proposition. We make a trivial
change in notation and consider sequences rather then functions on

Combinatorial Proposition. Given a non-negative integer N and a
sequence of non-negative integers g = {go,gi, •} such that Σgt = IN + 1,
let

There exists a bijection Φ:Sg-^S'g with the property that

for all {no,nί9...}eSg.

Proof. The proposition is trivial if there are only one or two non-zero
g/s and it is easily checked if JV = 0,1,2. We shall give a proof by induction
on N and the number of non-zero #f's.

For notational convenience suppose that the non-zero g s are

{0o>0i> >0, } Let

k[h~]l= {{fe, aί9a2,..,
 aj-i, 1} 0 ^ f l ; = 0i> Σat = h, ateZ} ,

j - i

given integers fc, A, and Z. Let G Ξ ^ g. = IN Jtl — g0 — gj.ln this notation

we have

sβ= U
0^N-k-l<G

S'g=

0<N-k-l+
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Let

U 0olN-0o-t]t\v( U k[.N-k]U

U ffo[tf-0o-*+l]ίW U
Ok

O^N-k-l+ί^G

Then

All of the above unions are disjoint (i.e., the sets involved are pairwise
non-intersecting). We shall use induction on j to show that there exists
a bijection Φ: S^]-+S'g

{1) with the property (*) and induction on N to
show that there exists a bijection Φ: Sg

2)-+S'g
{2) with the property (*).

Let φ(1) and φ(2) be mappings of sequences given by

Let

So # ( 1 ) has only / — I non-zero entries and g{2) corresponds to N—ί.
Now, by using the above representations of Sf} and Sg

{<x) as disjoint
unions, it is easy to see that

are bijections (α = 1,2). For example, it is clear that

Φ{ί)'.( U 0 o [ t f - 0 o - i ] Ϊ W U ^
I

and
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are bijections while the images give the disjoint union

= u

By the inductive hypothesis, there exist correspondences

with the property (*). We will show that the property (*) is preserved
under 0 ( α )~ 1; so we will obtain the desired correspondences

with the property (*). This is trivial in the case α = 2. For the α = 1 case
we note that corresponding elements in S^D and S'gu) can only belong
respectively to

and go + iiN-go-l+Γ\09

and go + llN-go-l+ϊ]0

or
(J klN-k]0 and (J
k

In the first two cases, φ ( 1 ) ~ 1 acts by removing / or /— 1 from the 0 th entry
and placing Z or / — 1 in the /th entry, and one can see that the property (*) is
preserved. In the third case, φ ( 1 ) " 1 is just the identity operation.
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