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Abstract. An elementary proof of Araki's duality theorem for free fields is presented.
The theorem says that for a certain class of regions 0 in Minkowski space, the commutant
of tyi(0\ the von Neumann algebra generated by all observables belonging to measure-
ments within 0, is exactly 2I(O'), where 0' is the spacelike separated complement of 0.

1. Introduction

In the algebraic approach to quantum field theory the principle of
locality is expressed in the following way. There is a one to one cor-
respondence between regions 0 in space-time and von Neumann
algebras 2I(O), the local algebras. Let 91(0)' denote the commuting
algebra of 21(0) and let O' be the set of points which are spacelike
separated from 0. Then locality means that

An assumption stronger than locality is

This relation is called duality.
In recent investigations of Doplicher, Haag, and Roberts [6] 1 on

the connections between gauge group, superselection sectors and
irreducible representations of the observable algebra, duality plays a
crucial role. The importance of the duality relation in that work makes
it desirable to know whether duality holds in any quantum field theory
model. Araki [1,2] has shown that in a free field theory duality holds;
his proof seems to be rather complicated. The purpose of this paper is to
show that with some modifications it can be simplified.

It should be mentioned that there is an elegant proof of duality for
free fields in a publication by DelΓ Antonio [5]. However the methods
used there von Neumann's infinite tensor products of Hubert spaces -
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1 Resumes of that work can be found in Ref. [7] and [9].
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are very unlikely to be of much help in a non-trivial model. Whether this
same remark applies for our method as well has to be seen.

We sketch the idea of our proof. First we observe that in a free field
model (we restrict ourselves to the case of one free scalar field) the local
algebra 91(0) coincides with the time zero algebra 21 (0J, if 0 is a double
cone in space-time over the time zero region 0S, and 2I(0S) is the von Neu-
mann algebra generated by all bounded operators localized in the region
Os (see e.g. Ref. [8]). Thus we want to prove

where 0 is a region in 1R3 and ~0 is the complement of 0 in 1R3. Locality
gives us 2I(~0)c2I(0y, so we only have to prove

2I(0yc2l(~0).

We do so by showing that B e 91(0)' and C e 21 (~ 0)' implies [β, C] - 0.
Then 2I(O)'C(2I(~θyy = 2I(~0)" = 2I(~O), as 2I(~0) is a von Neu-
mann algebra. Without loss of generality we may assume that B is self-
adjoint. The main tool in our proof is aφ — π expansion of the operator B.
This means we want to write B as

B = Σ : φ ( f ί ) . . . φ ( f n } π ( g 1 ) . . . π ( g m ) : (1)

and the sum on the right hand side converges and is equal to B as a
bilinear form on D x D. D is the dense set of those vectors in Fock space
which have only a finite number of particles. In his proof of duality,
Araki uses an expansion of B as a sum of Wick ordered monomials in
creation and annihilation operators, the a — a* expansion, which in
principle is of course equivalent to the φ — π expansion. Nevertheless,
recovering Be 2t(~0) from an a — a* expansion is rather troublesome,
while in a φ — π expansion we only have to show that all the /f's and
gf f 's in (1) have support in ~0 to conclude that every single term on the
right hand side of (1) is affiliated with the von Neumann algebra 21 (~0).
This proves [5, C]=0 at least for operators Ce2l(~0)' which leave
the set D invariant. For a general operator C e 2Ϊ(~0)' we have to intro-
duce a regularized version Cε of C which can be shown to commute
with B. Then because Cε converges weakly to C, [£, C] = 0 follows from
continuity.

In section two we introduce spaces of test functions and list some of
their properties (Lemma 1). Then we introduce some Fock space notation
and give a precise definition of the local algebra 21(0). In section three
we prove duality (Theorem 1); the φ — π expansion is characterized in
Lemma 3. In an appendix we prove a technical lemma.
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2. Spaces of Test Functions, Fock Space

We denote by L2

r (L2) the space of real (complex) square integrable
functions on IR3. By μτ we denote the operator ( — A +w2)τ/2, which is
multiplication by μτ(p) — (p2 + w2)τ/2 in Fourier transform space.

We define 3?+ to be the set of vectors in D(μ1/2)nL2, equipped with
the inner product

where D(μί/2) is the domain of μ1/2 and ( , ) is the inner product in L2.
As μ1/2 is a closed operator, Jti?+ is a Hubert space. We denote by ffl_
the closure of L2 with respect to the norm | |/| |_ = | |μ~1 / 2/| |2> equipped
with the inner product ( f l 9 f 2 ) - =(μ~1 / 2/ι> μ~1/2/2) (<^± are fractional
Sobolev spaces of index ±1/2 and are usually denoted by ^|1/2(IR3)?

see e.g. [12].) Note that we have the following relations between JΊf+9

a) The identity map is a bounded operator from J^+ into L2, and
also from L2 into JfL .

b) The operator μ1/2 is an isometry of jΊf+ onto L2, and also of L2

onto j f _ .
Next we define local Sobolev spaces. Let O be a (not necessarily

bounded) region in IR3 with sufficiently regular surface. For the rest of
this paper we shall assume that the boundary dO of 0 is a piecewise
many-times differentiate (two dimensional) surface, and that 0 has a
nonempty interior intO. We define the following subspaces of Jf± :

(O) = {# e Jf+ , supp# c int O} ' , (2)

(μ-V2f,μl/2g) = 0 for all ge^+(~0)}. (3)

Using μ± 1 / 2 as an isometric operator from jf± onto L2, we define
subspaces of L2 by

jr+(0) = //2jf+(0), (4)

Jf_(0)-μ-1/2Jf_(0). (5)

Let jf and Jf' be two subspaces of L2. Then jf + JΓ; denotes
{f + g fe Jf, ^e Jf'}, and Jf 4- Jfr the closure of it. By {0} we denote
the set consisting of the null vector only. If we write Jf^ = JΓy

;, we mean
β *

JΓα = Jf; and Jf0 - Jf; (but neither JΓα - JT/ nor tfβ = jfy'), α, jS, 7, δ - +
or — . The following lemma describes some relations between the sub-
spaces Jf+(0) of L2.
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Lemma 1. Let O, O l 5 and O2 be regions in IR3 as above. Then

jr±(θ)-L = jrτ(-o), (6)

)={0}, (7)

0) = z£, (8)

JΓ± (OJ + JΓ± (02) = Jf± (Oj u 02) , (9)

Jf± (OO n Jf± (02) - Jf+ (Oi n O2) . (10)

We won't give a proof of this lemma. For general local fractional
Sobolev spaces < f̂ (0) relations similar to (6-10) are sometimes quite
complicated to prove, and not always true, see e.g. [3] and [13]; for the
special case of Lemma 1 a complete discussion can be found in [2].
We remark that (6) follows immediately from definitions (2-5), (7) follows
from the fact that μ is an "antilocal" operator, i.e. μf = g, and /e Jf+ (O)
imply that g never vanishes in the entire neighborhood of any point in
~O, see [2] and [11]; (8) follows from (6) and (7). Furthermore, (10)
follows from (9) and (6).

By 2F we denote the boson Fock space over L2, by Φ0 the Fock
vacuum, by En the projection operator onto the n particle subspace of 3F,
by D the set of all vectors in &* which contain only a finite number of
particles. For nonnegative integers r and s we set

o> /je.#L(0), Λ eJ f + (O), (11)
ί=ι j = ι

where
φ(f) = 2-1/2 f μ~ v*(k) f(k) (α(-fe) + α*(/c)) dfc

and

are the free boson field and its time derivative at time zero, smeared over
space with appropriate testfunctions / and g respectively.

The following lemma is easily proved by induction on / and using (8).

Lemma 2. For any region OCR3 as above (J ^rs(O) is a total set
r + s^l

in (J En3f. The set (j 3?rs(0) is total in &.
n ̂ l r,s

A set is called total if its linear span is dense.
Finally we define the local algebra 9I(O) to be the von Neumann

algebra generated by {eίφ(f)eiπ(9\ fe ^f_(0\geJe+(O)}. Note that we
do not exclude unbounded regions O.



Duality for Free Bose Fields 5

3. Duality

The following theorem states the main result of this paper (Araki [2,
Theorem 4]).

Theorem. Let 0, Oly O2 , be regions in 1R3 as above. Then

9 (12)

Sl(01)V8I(02) = 81(0^02), (13)

(14)

Λ 2l(02) denotes the intersection of the two algebras, SΪOΛ) V 2I(02)
stands for the von Neumann algebra generated by the set theoretical
union of the two algebras. The theorem states that there is a one to one
correspondence between the lattice structure in the set of regions O and
the lattice structure in the set of local algebras 21(0).

For a proof of the theorem we note that (13) follows immediately
from (9) and the continuity of eiφ(n and eiπ(9) in the test functions / and g
respectively. Eq. (12) follows from (13) and (14). Thus we have only to
prove (14) which is the duality relation.

According to the introduction we should take a self-adjoint operator
B e 2ί(θy and then show that [£, C] = 0 for all C e 2l(~ O)'.

It is well known that for any bounded operator in 3F an a — α* and
thus a φ — π expansion exists, see e.g. Ref. [1] or [4]. What is important
to us is to see that the φ's and π's occuring in the expansion (1) of B are
all affiliated with 2I(~0) and thus commute with C.

Lemma 3. Suppose B = B* e 2Ϊ(O)'. Then there exists a sequence of
(unbounded) symmetric operators {Bi}ieΈ+ with common domain D,
mapping D into itself, such that for i e TL+ — {0, 1, 2, .. .}

(I) Ek(CBt - BiC)El = 0 for all fc, / e Z+ and all C E 2I(~ O)'.
(II) EkBiEl = 0 if k + 1 < i or \k-l\> i, bounded otherwise.

(in)

Remark. Of course the B^s are homogeneous Wick ordered
polynomials in φ(f) and π(g) of order f this will yield (II). (I) says that

00

[Bi, C] - 0 as bilinear forms on D x D, while (III) says that B = £ Bm

as a bilinear form on D x D.
We prove Lemma 3 by inductive construction of the operators Bt and

by verifying (I— III) at each step.
α) In order to construct B0 we define
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As we have assumed B to be self-adjoint, it follows that B00 h E0 2F is
multiplication by a real number bQ. We define the operator B0 on 2F
to be multiplication by b0. Then (I-III) are obviously true for i = 0.

β) Now we assume that we have already constructed operators
B0,B19 ...,£„_! with all the properties stated in the theorem. In order
to construct Bn we define for k = 0, 1, . . . π,

-"Σ β}En_k. (15)
i = o /

We need the following three lemmas.

Lemma 4. Let A = φ(f) or π(g) with fztf- (0\ ge^+ (0\ Then for
any Φ, Ψ e D

AΦΛB- Σ
\ \ ί=0 / / \ \ i=0

Proof. We have

n-ί

~iλA ΦΛB- ^Bi\Ψ\ = φΛB- ^ BλeiλAΨ, (16)
\ i = 0 / / \ \ i = 0 / /

because eiλA e 5I(O)C 3I(^O); and thus commutes with 5621(0)', and
H-l

with 5] j^ by (I). Since A is defined on D and maps D into itself, the
i = 0

lemma follows if we take weak derivatives with respect to λ on both sides
of (16) and set λ = Q.

Lemma 5. For /c^O, 1, ... n, f/ie operators Bkn_k are uniquely
determined by BQn.

Proof. Let / ίe^f_(0), ^eJf+(0), 'FeJ^. Then for O ^ r ^ / c ^ n

flπ(^) Π <P(fd'.*o,Bkn-kΨ
ι = l i = r + l

1 = 0

k 1 n-\

Y[ φ(fi)ΦQ, IB — Σ B
\ ί=l i=r + l \ i = 0

using (III),

Π Φ(Λ) Π ^
ί=0 / i = r + l i=l
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by Lemma 4,

ί = r + l i = l

again using (III),

= (ΦQ9B0nΨ
f)9 (17)

where

*" = = Π φ(ft)fl^(fft) En-kΨ.
i=r+l

Thus we get the matrix elements of Bkn_k between a total set of vectors
(Lemma 2) from matrix elements of B0n. As Bkn_k is a bounded operator,
Lemma 5 follows.

Lemma 6. Let Φ e 3Fr>n~r(O)for some r e {0, 1, ... n}. Then (Φ0, B0nΦ)
is real

Proof. In Eq. (17) we set fc = n, Ψ = Φ0, and

* = :Π"(Λ) Π
f = l ί = r + l

Then we get

which proves Lemma 6.
Now we are prepared to construct Bn out of B0n and to finish the

proof of Lemma 3. The restriction of B0n to En 2? is a bounded operator
mapping En^ = (L2)®sn, the symmetrized w-fold tensor product of L2,
into the complex numbers <C. By the Riesz representation theorem it is
given by a kernel B0n(xl9 ... xn) e (L2)®5". Lemma 6 says that

= Imf£ 0 n (x 1 , . . .x I I ) Πθy / 2 Λ)W Π (^"^ΛW^i...^,
i = l i = r + l

for all /iG^LίO), ^eJf+(O) and all r = 0, 1, . . .n. This implies that
for all r = 0, 1 ...n,
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where we have used (4) and (5). In other words

r odd

Im£0π(x;, . . .xJeSym f) [(jf+(O))®r(χ)(jr_(O))®n~'']1, (18)
r even

where Sym is the symmetrizer from (Z2)®" to (L2)®sΠ.
The proof of the following lemma is based on Lemma 1 and is given

in the appendix.

Lemma?. Sym Π [(Λr

+(O))®r®(Jf_(0))®l |-Π1

r odd
(even)

QVTTI Ϋ"* (^ (r^(~)\\®s(5?)(^ (~ΩV\®n~s Π9)

s even
(odd)

where Σ ̂  denotes the closure in L2 of the set of all linear combinations
veJV

of vectors in Jfv, veN. Let {μ~1/2/v} and {μ1/2gv} be complete ortho-
normal sets of vectors in Jfl(~O) and in Jf+(~0) respectively. Then
/ve.3f_(~O), gvE3P+(~0), and (18) and (19) allow us to write

Re BO „(*!,...*„)
s rz

-Sym lim V Y c s Π (μ1/2gv) (xt) Π (μ~ 1 / 2/ v)(Xi),
ρ-^OO ^̂  ^ a£K J. 1 ^« u » V l / \ ι/ i i \ι ^ v t / \ ι/

seven v ι = l ι = s+l

Im^o^X!,...^)

= Sym lim X Σc.ϊβ Π O^VJW Π (Ai~1 / 2/».)W, (20)
s odd v i = 1 i = s + 1

where v = (v 1 , . . . vπ), and the csvρ are real coefficients. Note that the

infinite sums and lim converge in (L2)®" norm. The ρ limit is necessary
ρ-»oo

because the subspaces of (L2)®" which occur in Σ, Eq. (19), are not
mutually orthogonal.

Now we define the operator Bn. For Φ e D we set

1/2 s n

Csvρ : Π π(@v) Π φ(fv) '• & > (21)

5 /2"\ 1 / 2

where [s/2] is the entire part of—. The coefficient —- (— l)[s/2] is

chosen such that B0nΦ = EQBnEnΦ. The limit ρ->oo and the infinite sum
over v in (21) converge strongly. The operator Bn, defined by (21) is
certainly a symmetric operator, defined on D and mapping D into
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itself. Property (I) of Lemma 3 holds for i = n, because on D, Bn is the
strong limit of a sum of operators which are all affiliated with 9ί(~O)
and thus commute with Ce 2I(~0)' in the sense of (I). Property (II)
follows immediately from the explicit formula (21) for Bn. Finally (III)
holds for k + / < n by the induction assumption; for k + l = n and k = 0
the relation follows from our construction of Bn, namely

For k φ 0 we use Lemma 5 to go back to the case k — 0.
This completes our analysis of the φ — π expansion and the proof of

Lemma 3.
Obviously for a C e 2I(~ 0)' which maps D into itself, Lemma 3 shows

that [JB, C] = 0, whenever B e 2I(O)'. For a general C e 2l( ~ O)' we follow
the idea of Araki [1, Section 9]. For fe=l, 2, let Ψk = AkΦQ, where

Ak = f [ π ( g k i )

Let ξε(λ) be a positive C$ function with support in \λ\<ε and with
I £εμ) dλ = 1. Then we define

It is easy to show that for an arbitrary vector θ, ]¥kεθ is in the domain of Ak

as well as in the domain of Ak, and Wk converges strongly to 1 as ε | 0.
Obviously Wkε e 9X(O)C 8l(-O)' and thus Ce9I(-O)' implies

ΞSlί"0)'- Lemma 3, property I gives us for all ΪEΈ +

and we want to sum both sides over i and to replace Σ Bt by B. We first
replace C by CE= WlεCW2ε. We get

(A, Φ0, CβB^2 Φ0) = (A, Φ0? Bi <CBA2 Φ0)

But in (22) summation over f and substituting B for Σ^ is allowed,
because for any

Σ(βiφo,φ)= Σ fi
i = 0 j =
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using (II) of Lemma 3,

= Σ (EjBE0Φ0,Φ)
7=0

using (III) of Lemma 3,

\ j = o

-+(BΦ0,Φ) as N-+CO.

Thus we get from (22)

Due to the strong convergence of Cε to C in the limit ε J, 0, and because
the set of all Ψk's is total in 3F (Lemma 2), it follows that B and C commute.
This completes the proof of duality and thus of our theorem.

Note added in proof. As was pointed out by Prof. E. H. Wichmann the last argument
of our proof (regularization of C) can be avoided. Namely Lemma 3 already implies that
(Φ0,[β, C]Φ0H# for Be 21(0)' and Ce2ί(~0)'. It is then immediately clear that
(Xi #o> [#> C] A2 Φ0) = 0 for all A^A2E 2I(O), which proves [5, C] - 0, as [AΦQ, A e 2ί(0)}
is dense in J^ by a theorem of Reeh and Schlieder.
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pleasure to thank Professor J. Glimm for proposing this work and for helpful remarks
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Appendix

Proof of Lemma 7.
We denote jf± (O) by K± and L2

r by K. Then it follows from Lemma 1
that

K+ + K_ = K+ + Ki = Ki 4- K_ = KL

+ + KL_ = K, or equivalently

Ki n K1: = Ki n K_ = K+ n Xi - K+ n K_ = {O}. (A 1)

Let P+ be the projection operator onto K+.

Lemma A1 (Araki [1, Lemma 4.1]). There exists a unique, closed
operator φ from K+ into K\ with domain Dφ = P+K_, range
Aφ = (ί — P+)K_ and graph Gφ = K_. Dφ and Δφ are dense in K+ and K^
respectively.

Proof. We define φ on P+ K_ by φP+ x = (l — P+)x,xe K_. Assume
Dφ = P+K_ is not dense in K+. Then there is an xeK+ such that
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O = (x, P+ y) = (P+ x, y) = (x, j;) for all y e K _ and thus xeKi . But
K+ nXί = {0} by assumption, therefore x = 0, and Dφ is dense in K+.
The proof for Δφ is similar, and the rest of the lemma is obvious.

The operator φ has a polar decomposition [10, p. 334] we write it as
φ = t/α1/2, where α = (φ*φ)1/2 is a nonnegative, self-adjoint operator
in K+ and U is an isometry from K+ onto X + . In fact α is positive
definite since φx = 0 implies xeK+nK_ and thus x = 0. Nevertheless
the spectrum of α is in general not bounded away from zero, which means
geometrically, that for any ε>0 there are elements xeK+, yeK_,
such that the angle between x and y is smaller than ε. To handle this
difficulty, which of course only occurs in infinite dimensional Hubert

00

spaces, we use the spectral decomposition α = j λ dE(λ) of α to de-
o

compose α. We define projection operators E(n) in K+ by

n'1 n+1

E(n}= J dE(λ) + J dE(λ), neZ'+ = {l,2,-}.
(n + l)-1 n

oo

Obviously £jE(w) = l and E(lI>E<m> = 0 if rcφm, on X+. Using the iso-
i

metry U : K+ ->Xi5 we define projection operators F(n) in K by

Again F(n) - 1 and F(w) F(m) - 0 if n Φ m, on K.
i

We define

Hence K+ - 0 K($, etc.
« = ι

By φ(n) we denote the restriction of φ to jfC("}, i.e. on K+

φW = (UE(n) I/

where we have used the fact that α commutes with E(n\ By construction
φ(n} maps K(ί onto Ki(n} and has a bounded inverse. The graph of φ(n}

is K™. Let Pί} be the projection (in K(n)) onto K(r?. We define
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Obviously for each neΈ'+, Q($ is a bounded idempotent operator in K(n\
Q(n) + β(n) = 1? Q(») g(n) = Q(n) ρ(n) = Q and g(n) £<„) = K(n)f Note fl^ ̂

we defined Q+ in the big space K, it would have become an unbounded
operator, as φ has not a bounded inverse.

Geometrically Q(J£ is the (nonorthogonal) projection onto K(+}

along K™.
Now we introduce tensor products. We define inductively

H(r)± -H(r-l)

Note that

Sym#(,)±=Sym £ I
sodd
(even)

SymH ( r ) ±=Sym £ I
seven
(odd)

and Lemma 7 follows from

Lemma A2. For allreΈ+, H^ + = H(r)±.

Proof. Obviously the lemma holds for r = 1. Now we assume it has
been proved for r = 1, 2,... s — 1. Before proving it for r = s, we use the
projection operators F(n} to define (for nteZ+, i= 1,... r)

(r) ± .

Of course H(r} = 0 H(n l9 ... nr) and Jϊ(r)± = 0 H±(n^ ... nr).
πι, nr Mι, rϊr

We also need tensor products of the operators Qfg. We set β +
= Q("° and define inductively

It follows by induction that <2 + (rc1? ... rcs) is a bounded, idempotent
operator in H(nl9 ...ns) with

and Q + ̂ i ... ns) + Q-(n1 ... ns) = 1 on H(n1, ... ns). Geometrically
Q±(nl9 ... ns) projects onto H±(nl9 ... ns) along H^(nί9 ... ns).
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Now we compute

= φ L±(π1 ;...n s)
W l . . lls

where

^ll ) + H(ιι 1,...n s_ 1)(g)

Obviously H±(n1, ... n s )cL ± (n l 5 ... πs). Let now xeL ± (n 1 ? ... ns). Then

= β±(n 1,.. .n s)xeH±(n 1,.. . ns) ,

where l/ l sandlw ι...n s_1 are the identity operators on K(ns) and H(nί9 ... ̂ -J
resp. Hence L+0?! ... ns)c H+(nί ... ns). We conclude that L±(n l 5 ... ns)
= H+ (nx ... ns), which proves

H(t)±= © H±(π1...n s) = fir(s)±.
«!,... Ws

This proves the lemma for r — s and thus for all r eΈ+.
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