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Abstract. We construct a simple model which exhibits some of the properties discussed
by van Hove in his study of the Pauli master equation. The model consists of an infinite
chain of quantum oscillators which are coupled so that the interaction Hamiltonian is
quadratic. We suppose the chain is in equilibrium at an inverse temperature f and study
the return to equilibrium when a chosen oscillator is given an arbitrary perturbation. We
show that in the limit as the interaction becomes weaker and of longer range, the evolution
of the chosen oscillator becomes a diffusion equation. Moreover we give an explicit example
where the evolution of the chosen oscillator has the Markov property and where the Pauli
master equation is exactly satisfied.

§ 1. Introduction

We consider a linear chain of quantised harmonic oscillators inter-
acting by a quadratic Hamiltonian in very much the same spirit as
Ford, Kac and Mazur [1]. However, instead of taking a finite number
(2N + 1) of oscillators and going to the limit N — oo, we take an infinite
number of oscillators from the beginning, with an interaction which has
a cut-off depending on a parameter 4> 0, and go to the limit as 2 —0.

We let the Hamiltonian of the system be

H,=H,+H,, (1.1)
where
Hy=3 ) pi+o’qr: (1.2)
and S _
HI.).: Z :airf)—nqmqn: (13)
For the time being we suppose only that a{* are real coefficients satisfying
Y lai< o (1.4)

for all 2> 0. The operators p,, and g, are supposed to satisfy the commuta-
tion relations

[(1"15 pn] = iémn; [q"t’ qn] = [prm pn] = 0 * (1'5)
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We let 1 )
G = VZ jne”"%o 0)do; pn=l—/—2:n- J"ei""no(ﬁ)dH (1.6)
so that .
=% [ 1m0 + 0 ¢o(0)*: dO (1.7
and _n
H ;= j :B,(0) po(0)*: dO (1.8)
where _"Oo
B0)= Y dfem (1.9)

m= — oo

is a real, continuous, periodic function on [ — &, 7].
We now suppose that

[B; ()|<~2— (1.10)

for some constant ¢ < w? which is independent of 1 and 0 and define
={w?+2B,0))". (1.11)

For the present we drop the parameter A for notational simplicity, and
start making the above remarks more precise.

We take as a test function space M the real Hilbert space of all square
integrable functions f on [—m, 7] such that f(—0)=f(0) almost
everywhere. For any real index « we define the bounded self-adjoint
operator C*: M — M by

(C) () = {C(O)}"f (0). (1.12)

For any f,ge M we let a*(f) and a(g) be the smeared creation and
annihilation operators realised on Fock space, so that

La(f), a*(@)={f.g>1: La(f), alg)] =[a*(f), a*(9)]=0. (1.13)

We define the smeared ficlds at time zero by

1 A .
bolf1= 5 aCT ) alC ), (1.14)
Tolg) = ﬁ (a*(Clg)— a(C' g)} (1.15)

and note that the Hamiltonian H is given by

H= j C(0) a*(0) a(0) dO (1.16)

-7



Diffusion for Weakly Coupled Quantum Oscillators 311

which it is not difficult to give a precise meaning as a self-adjoint operator
on Fock space. As in [1] we then find that the time ¢ fields are given by

b(f) =" o(f) e = Po{cos(C) [} +me{C7 sin(Cr) [}, (117)

m(g) = e mo(g) o™ M = — 7o {C sin(Ct) g} + po {cos(Ct) g} . (1.18)
The fields are easy to define as self-adjoint operators and we write
U(f.g9)=explido(f) +imy(9)] (1.19)

so that these unitary operators satisfy a form of the Weyl commutation
relations.

We should now like to define the equilibrium state at the inverse
temperature ff as ¢ = ke "#" but this is not possible in the Fock representa-
tion because H has continuous spectrum. We overcome this difficulty
by making use of expectation functions for the canonical commutation
relations as in the paper of Araki and Woods [2]. They show that if
E;: M x M —C is defined by

E,;<f,g):exp[—2<c ! oth(ﬁc)jf> L <Ccoth(ﬁ2C>J,g>

then there is a representation of the canonical commutation relations
over M with cyclic vector €, such that

Ey(1.9)=<U(1.9) 25, Q). (1.20)

We take this as the expectation function defining the equilibrium state
at the inverse temperature f3, noting that it satisfies the K.M.S. condition
with respect to the time evolution [3]. In particular at zero temperature

E (f.g)=exp[—%[ICT f1* =1 CPgll*] (1.21)

and the representation may be realised on Fock space.

§ 2. Evolution of a Finite Subsystem

We study the evolution of the finite subsystem consisting of the
oscillators indexed by N(1), ..., N(n). To do this we let e, € M be defined by

1
e, (0)= - IO .1
Van
and let L be the n-dimensional subspace of M generated by ey, ..., ¢
The projection P of Monto Lis given by

n*

Pr=Y (fede. 22)

21 Commun math Phys., Vol. 27 r=1
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We suppose that just before time t =0 this finite subsystem has been
given an arbitrary perturbation, and study its return to the equilibrium
state. This is done most conveniently in the Heisenberg representation.
We describe the evolution of the Weyl operators for all non-negative
times t by the equation

0, {Ux, y)} =M{™MU(x, p) e (2.3)

where x, ye L and M denotes the operation of taking the expectation,
with respect to the thermal equilibrium state, of all expressions involving
the field operators for the oscillators other than those indexed by
N(1), ..., N(n). (The operation M will be described with more precision
in Section 4, but its application in this context causes no difficulties.)

The following lemma makes hardly any use of the properties of
our particular model and can be studied in a much more general context.
This has been done, from a rather different point of view, by Lewis and
Thomas [4, 5].

Lemma 2.1, a,{U(x. »)} = U(x,, ) exp[ — 4r,] (24)
for all x, y € L, where
x,=Pcos(Ct)x— PCsin(Ct) y, (2.5)
y,=PC 1sin(Ct) x + P cos(Ct) y, (2.6)
C
r= <C‘ ! coth (g) &, €,> + <C coth (%—> N 17,> , 27
¢, =cos(Ct) x—Csin(Ct) y— x,, (2.8)
n,=C 1sin(Ct) x + cos(Ct) y — y,. (2.9)

Proof. We first note that P&, = Py, = 0so that &, and », do not depend
on the states of the oscillators indexed by N(1), ..., N(n). Simple calcula-
tions show that

{0 (x) +mo (1)} e = ho(x,) + o () + Do(E) + (1))
MU, y) e M =Ulx, p) - UE,ny) - (2.10)

SO

Our prescription for the operation M now yields

at{U(xa Y)} = U(xt’ .Vr) Eﬁ(én ’1:) (211)

which is the expression given by the lemma.

We now return to the consideration of how the interaction depends
on the parameter A. Our first assumption, that the interaction becomes
weaker as /— 0, is formulated precisely in the following lemma.
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Lemma 2.2. Suppose !irr(l) B,;(0)=0 for almost every 0€[nn]. Then
forallt>0andall x,ye L

lima; {U(x, y)} =Mt U (x, y) ¢~ et (2.12)

the limit being taken in the strong operator topology.

Proof. By our assumptions leading up to the definition of C,(6)
in Eq. (1.11) we see that C,(6) is uniformly bounded, uniformly bounded
away from zero and converges almost everywhere to w. Repeated use
of the Lebesgue dominated convergence theorem now leads to

x;=limx, ,=xcoswt — yw sinwt, (2.13)
i=0 >
y,=limy, ,=xo~'sinwt +y coswt (2.14)
is0” ™
and li 0 (2.15)
so that T = '

lim o, {U(x, )} = Ulx, Vo)
= et U(x, y) e ot

For computational convenience we transform the above equations
to complex form. We define

z=w Yx+inty (2.16)
Z,=e"%z. (2.17)

so that

The lemma suggests that as the interaction becomes weaker its effect
on the evolution of the system becomes negligible. However, this need
not be true. What can happen is that as 1—0 the rate of the interaction
becomes slower, but if one waits long enough the cumulative effect need
not be negligible. Mathematically the reason the above lemma is not
conclusive is that the convergence is not uniform with respect to time.

In order to investigate this further, we introduce a new time parameter
7 and suppose t is a function of t and 4, namely

t=2"21. (2.18)

Compare van Hove’s change of time scale [6]. Before studying the
limiting behaviour of the system as A—0 we must remove the free part
of the evolution.

The condition of the following lemma gives information about the
asymptotic form of the interaction as A—0. The function F need not be
bounded since only bounded functions of it appear.

21
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Lemma 2.3. Suppose lir% 272 B,(0) = F(0) almost everywhere. Then for
all x,ye L
)liff(l)e_m"’%,t{U(x, )} et =U(x", yPyexp[— 5] (2.19)

the limit being taken in the strong operator topology, where

x® =P cos (i F) X — Pw sin (L F) Vv, (2.20)
W w

Y9 =P~ sin (f_ F) x + P cos (i F) v, (2.21)
w w

wzam{égyw”mwkwwwa+me—mwwn.am>

Comment. The complex form of these equations is
29 = Pexp [i -z F} z, (2.23)
1)

= coth (22 (1212 - 1. 224

Proof. Direct calculations show that

g_iH"toth {U(X, y)} eiHOt = U(ul,ta v).,:) eXp ["‘ %ri,t] (225)

where
U, =X, cos{wt)+y, ,wsin(wt), (2.26)
U= — X0 tsin(wt)+y;, cos(wt). (2.27)
We have to show that
,h_r,% u; , =x9; }gré v =y7, (2.28)
%i_r’r(l) Fao=r7. (2.29)

Substituting from Egs. (2.5) and (2.6), with the parameter A re-introduced,
into Eq. (2.26) yields

u, ,={Pcos(C;t) x— PC,sin(C,t) y} cos(wt)
+{PC; ' sin(C,t) x + cos(C,t) y} w sin(wt)
=Pcos(C,;t—wt) x— Pwsin(C,t — wt) y
+ Psin(wt) (C; 'w—1)sin(C, 1) x
+ P cos(wt) (w— C,)sin(C,t) y .

The last two terms of this equation converge to zero in norm as A—0
uniformly in ¢, the proof involving use of the Lebesgue dominated con-
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vergence theorem. Also

lim P cos(C,t — wt) x
-0

= lim Z Z e, {x, e,y {cos(C,;t —wt) e, e,>
1 s=

/=0 p=

=2 Y elxe) 11m—— j c0s(C,(0) t — wt) eNGI=INDC g9
r=1 s=1

= Z Z e,{x, €> j cos (i F(9)> PINGO=INGE 1
r=1 s=1 o w

i

Z Z e, {x, e <cos <j~ F) e,, er>
r=1 s=1 ®

chos(iF)x.
w

This and similar calculations yield Eq. (2.28). Now

r/l,t = <C; ! COth < B2C/ ) gik,ta é/l,t> <C) COth ( ﬁg )’7/ t> ’7/ t>

zwqcoth(ﬁz‘i) IE, —{-wcoth(ﬁ )i!m:”z

+ ] BED ot cotn B2, o a0
-

—T

C; 1(0) coth

[c,.y(e) coth —ﬁ%@ — wecoth —ﬁz‘”—} I, (02 do.

Since &, ,(0) and 5, ,(0) are bounded uniformly in 4, t, 0 and since C; *(6)
are bounded uniformly in 4, 0 and converge almost everywhere to w* !,
the third and fourth terms of the above equation converge to zero
uniformly in t as 21— 0. Also
o &P ol
=u"cos(C,t) x — C, sin(C,t) y —x; |1
+o||C; 1 sin(C,1) x + cos(C,t) y— y, ,|I?
=" H{[lcos(C;1) x = C; sin(C;1) yI* — l1x,,. 1}
+o{]|C; ' sin(C;1) x + cos(C;0) yII> — [y,
=o x| +olyl* — o™ x,02 — oyl
+{wC;?* —w ) sin?(C,t) x, x)
+2{wC; ' —w™*C,)sin(C,t) cos(C;,t) x, y)
+ w1 C? —w)sin*(C,0) y, y) .
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The last three terms converge to zero uniformly in t as 1 — 0. Finally
@~ Hxzd? + oyl
=0 Hu > + o v, )7

so substituting t = 4721

limr; = lim coth < bo ) (o™ HIxI2+olyl? = o™ ug,J? — o u, %]

—Coth<ﬁ2 )[w_lllxi(2+w|(y‘i —o HxO2 - oy?°]

making use of Eq. (2.28).
We now write

Uk, p)} = U, y©) exp[ — 317] (2.30)

where x, y € Land x©, y_ ) are defined asin Lemma (2.3). The quantum
system is said to exhibit Markov behaviour if
ya+t:yayr (231)

for all o, 7=0. This will not generally be true, but there exist a variety
of interactions for which it does hold, one being provided by the following
theorem.

Theorem 2.4. There exists an interaction ai) depending on A such that if

B,(0)= Y alen? (2.32)

n= —o

1in(1)/l'zB,1(0)=kcot|9| +h (2.33)

then

for all 0 (—n, ) except 0 =0. The quantum system consisting of any
single oscillator exhibits Markov behaviour for this interaction in the
limit 4—0. The quantum system consisting of any pair of oscillators does
not generally exhibit Markov behaviour.

Proof. We define
B,(0)=/*k cosO{1 + A* — cos?0} ' + A*h (2.34)
where k and h are arbitrary real numbers. Since B,(6) is continuously
differentiable and periodic its Fourier coefficients satisfy Eq. (1.4) for all

A>0. Since
[BA(O) < Alk| + 22| .

Eq. (1.10) is satisfied at least for A sufficiently small. Eq. (2.33) may be
easily verified.
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We first treat the case of a single oscillator. We take e(f) = (2n)~ * and
let L be the one-dimensional subspace of M generated by e. Eq. (2.23)

becomes 20— f(1)z (235)
where
f(r)= <exp [iiF} e, e>
w
L T e iikcot|0|+iih]d() (2.36)
2n w W
T T
= exp L—ajh—|k|—w-}

by elementary calculations. It follows that

¥ = coth (%@) 2|2 {1 —exp

Eq. (2.30) may now be verified by direct calculation.
We now consider the system consisting of a pair of oscillators. We let

— 2K %]} (2.37)

3 1 . 3 einﬂ

/2’ |/2n
and let L be the subspace of M generated by e; and e,. If an arbitrary
vector z € L is written in the form z =z, e, + z, ¢, where z; e C then

Zgr)zfﬁ(f) zi+ fi2(1) 2,

(T
" Fle,e,
i }eje>

= | exp[iikcot101+iih] e;(0) e,(0)do .
w w

-T

e;(0) e,(0)

where

o= (exo

In case i = this has already been calculated. Also

do.

ith| " T
e i — kcot|0] +i
w]_j,,eXp[_lw cot|0] +in0

1
fi20)=f2,1(1) = ﬁeXP

This can be calculated in terms of elementary functions if the oscillators
have an even separation. If n = 2m one obtains

k 21lk
Wy (2 g

mao
where L _ | is the symbol for a Laguerre polynomial. It is clear that the
system does not then have Markov behaviour.

Ji2(t)= —

ith r]kl}
) 1)
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§ 3. The Pauli Master Equation

Throughout this section we consider exclusively the particular
interaction defined in Theorem 4.2. Moreover we take the system to
consist of the single oscillator chosen in the proof. In order to proceed to a
derivation of the Pauli master equation we fix the Hilbert space on which
the Weyl operators corresponding to the chosen oscillator act. Let
A = I?(IR) and let

{pole) f} ()= "xf(x), (3.1
{mole) [} (x)=—iw' f'(x). (3.2)

Then define
U(x, y)=exp{ixpy(e) + iymy(e)} (3.3)

for arbitrary real number x and y. Let V denote the space of all self-
adjoint trace class operators on . If an operator ge V' has spectral
decomposition

o 9]

0= Y W&®4, (3.4)
n=1

where {&,}7, is an orthonormal basis of # and if we define the trace

norm by

lel= 3 il (3.5)
n=1

then V becomes a Banach space under the trace norm [7].

The following proposition transforms the results of the last section
into the Schrodinger representation. Its proof involves some general
abstract arguments which we postpone to the next section, but the
crucial semigroup property is a consequence of the calculations already
performed.

Proposition 3.1. There exists a strongly continuous one-parameter
semigroup of linear maps T,: V -V defined for all Tt =0, such that

(i) if 0= 0 then T ()2 0; (3.6)
(ii) tr[T. ()] =tr[o] for all ge V; (3.7)
(iii) tr[T:(e) Ulx, y)] = trley{U(x, y)i] (38)

forallx,yelR,1=20and ge V.

We comment that such semigroups have been extensively studied
in the context of quantum stochastic processes [8-10] and that the zero
temperature case of this semigroup occurred in [117].

This proposition is a lot stronger than the Pauli master equation as
described by van Hove [6]. In this context the Pauli master equation
only describes the energy density evolution while this proposition allows
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calculations concerning the time evolution of the distribution of any
state with respect to any observable.

To derive the Pauli master equation we take the usual harmonic
oscillator Hamiltonian, namely

Hy =3 {n(e)’ + o’ p(e)’ — w} (3.9)
and let {e,} =, be its normalised eigenvectors, so that
Hye,=nwe,, (3.10)

forn=0,1,2,... We start by describing the evolution under T, of states
o of a particular form.

Proposition 3.2. Let o, € V be defined for all s>0by
=(l—e3?) e sHo, (3.11)

56

Then foralls>0andt=0

Whei‘e 7—:[(95) ZQS(‘[) (312)

o h<w82(T)> —2|k|1‘/w coth (%) 4 (1_g*2|k|1/w) coth (%/)l> (313)

For all s>0
lim T,(0,) = o, (3.14)

T
the limit being taken in the trace norm.

Proof. We quote a formula proved in the appendix to [2], namely

1
tr{o,U(x, y)] =exp | — T coth (%S—) {0 ' x* +wy?} (3.15)

and use it to make the following calculations.

tr [T;:(Qs) U(X, y)] =1r [_s ,I{U(X, y)}]

1
=trlo, U(x(r)’ Y] exp [__ T r‘”}

1 1
= exp —Icoth< 5 ){a) x(”2+wy“’2}—Zr“)]

1 1
= exp ——4~coth< 5 ){0) 'x2 + wy? }e“z'kl”m—zr‘”l

1
=exp|— —4—coth ( wsz(r)> {1 x? +wyz}}

=1tr[o, U(x, y)].
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Since linear combinations of the operators U(x, y) are strongly dense in
ZL(#), Eq. (3.12) follows. Eq. (3.14) is a consequence of the result

lim s(1)= . (3.16)

In order to state the Pauli master equation we note that the positive
normalised states which commute with H,, are precisely those which can
be written in the form

M8

0= 9, e,®e, (3.17)

n

1]

0

w0
where g, 20 forallnand ) ¢,=1.
n=0
Theorem 3.3. If ¢ is a positive normalised state which commutes with
with H, then T.(0) commutes H,, for all T =0, so that

T(0)= ) oVe,®¢, (3.18)
n=0

o0
where 9P 20 and ) oY =1. The coefficients o can be calculated from
the equation =0

o’'= Y P, (3.19)
n=0

where PS) are the coefficients of a continuous time classical Markov
process. This process is ergodic and for all integers m, n we have

lim PO = (1 — ¢ Po) e~mbo (3.20)

Proof. The first statement of the theorem is a consequence of the fact
that linear combinations of states of the form g, given in Proposition
(3.2) are dense in the space of all states which commute with H,. The
remainder of the theorem is then no more than a translation of the
results we have obtained into the language of classical probability
theory.

We commented earlier that before going to the limit A—»0 we had
to remove the free part of the evolution, and this was done in Eq. (2.19).
If one is only interested in the evolution of the energy density then this
is not necessary because the free evolution does not affect the energy
density. This modification makes our result more obviously similar
to that obtained by van Hove [6].

The equations we have obtained for a quantum oscillator have already
been studied by Schwinger [12], but he did not justify them by reference
to the dynamics of an infinite system.
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§ 4. The General Framework

We discuss finally the calculations of the earlier sections from a more
general point of view. The purpose of this is to clarify the nature of the
operation M introduced in Section 2, and to prove Proposition (3.1).
The abstract setting consists of an adaptation of a part of the theory of
quantum stochastic processes to a C*-algebra context.

We let # be the C*-algebra of the canonical commutation relations
over the real Hilbert space M, so that U : M x M — 4 is a map such that
U(f,, f)is unitary for all f,, f, € M and

U(f1,/2)Ug1-92)=U(f1 + 91> f2 +g2)exp %(<f2>g1> —{f1,920)] (4.1)

and Z is the norm closure of the linear space generated by all U(f, g)
where f,ge M. It has been shown by Slawny [13] that this algebra is
independent of the representation of the canonical commutation rela-
tions chosen. If ¢ is a state of 4, then ¢ defines a map

E,:MxM-C 4.2)
Eyf.9)=<¢.U(f.9))- (4.3)

This map is called the expectation function of the state ¢ and completely
determines ¢. It was shown by Araki and Segal [14, 15] that these
expectation functions can be characterised by simple algebraic pro-
perties which we do not write down here.

Now let L be an n-dimensional subspace of M and let .«/ be the
associated C*-subalgebra of 4, so that .«7 is generated by

{U(x,y):x,yeL}. 4.4)

Slawny’s results allow us to realise .o concretely on # = L*(R"). If V is
the Banach space of self-adjoint trace class operators on # and ge V*
has trace one then

by

E,(x,y)=tr[oU(x, y)] (4.5)

is an expectation function on L x L.

We include the following well-known result for the sake of com-
pleteness.

Proposition 4.1. Let ¢ be a state on /. Then there exists a trace class
operator g€ V' such that

(¢, 4) =troA] (4.6)

Jor all Ae o/ if and only if the expectation function E,: L x L—C is
continuous.
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Proof. The state ¢ gives rise to a cyclic representation of the Weyl
group by means of the Gelfand-Segal construction. This representation
is strongly continuous if and only if the function E, is continuous. The
proposition is now merely a reformulation of von Neumann’s uniqueness
theorem [15, 16] for strongly continuous representations of the Weyl
group.

The proposition allows us to regard the space V of trace class operators
as a subspace of .&7* and we shall make this identification from now on.

Proposition 4.2. Let K: .o/ —> ./ be a positive linear map such that
K(1)=1 and such that for allype A the function

X, y—=<{K{U(x, y)} w, v 4.7)

is continuous on L x L. Then the adjoint map K*:.o/* —.o/* maps V

into V_and K can be extended to an ultraweakly continuous positive linear
map K : L(H)— L(H).

Proof. If p e V is given by Eq. (3.4) then
(K*(0) Ulx, y)y =<0, K{U(x, n)}>

0

= Y ALK{UX )} EnED

n=1

which is easily seen to be a continuous function of x and y. Proposition
(4.1) now implies that K*(¢) € V. We now let H: V—V be the restriction
of K*to V and recall, [ 7], that V* can be identified with & ((5¢), the space

of self-adjoint bounded operators on #. If we define K=H¥*, the
remaining statements of the proposition follow.

Proposition 4.3. Suppose that g V* and o

0,€VT for n=1,2,3,...
Then

lim tr[o,A] = tr[oA] (4.8)
forall Ae o if and only if
lim Jo— g, =0, (49)
the norm being the trace norm.

Proof. That the second condition implies the first is a simple con-
sequence of the inequality

trfo,A]—tr[o Al = llo — o, 4] -
Conversely let 4 be any bounded operator of the form

A= { [ Ul yydixd'y (4.10)
L
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where f is any continuous function of compact support. We comment
that A¢ .« because x,y— U(x,y) is not norm continuous, but the
integral can be defined in the ultraweak sense. Then

lim tr[g, 4] = lim [ f(x, y) tr[o,U(x, y)] dx dy

= [{ f,»trloUx,y)]dxdy
= tr[pA4],

these calculations being justified by Lebesgue’s dominated convergence
theorem.

Writing A4 as an integral operator we see that it is compact and that
operators of the form of Eq. (4.10) are norm dense in the set of all compact
operators. Therefore

lim tro,A]=tr[oA] 4.11)
for all compact operators A on #, and g, converges to g in the weak
operator topology. The result now follows by [8] upon the observation
that since t € &/

lim tr{o,]=tr[o]. (4.12)

The following proposition provides a clarification at the C*-algebra
level of the nature of the operation M introduced in Section 2 and of the
maps ¢, defined on the Weyl operators of a finite number of degrees of
freedom.

Proposition 4.4. There exists a unique positive linear map o, : </ — .o
such that a,(1)=1 and

O([{U(X, y)} = U(X,, yz) exp[*%rr] (413)
forallx,ye Landallt =20, where x,, y,, r, are defined as in Lemma (2.1).

Proof. We define a positive linear map N : .o/* - %4* by making use
of the expectation function of the thermal equilibrium state E;. If pe.o/* *
and P is the projection of M onto L then we define

Exy(f,9)=E4(Pf, Pg) E;((1 —P) f.(1—P)g) (4.14)

for all f,ge M. Ey, satisfies the condition of Araki and Segal, [14, 15],
and so is the expectation function of a state N¢p € #**. The linearity of
the map N :.o/* — #* is easily proved. The adjoint map N*Z** — of **
is positive, linear and

N*{U(f.g)} = U(Pf. Pg) Ej((1 — P) f,(1 - P) g) (4.15)
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by direct calculation. Since operators of the form U(f,g) generatc %
in the norm topology, and since N* is norm continuous we can conclude
that N*(#)C /. We comment in passing that the restriction M of N*
to 4 is a conditional expectation of % onto .«7, [17].

There exists an automorphism group 6, of % such that in the Fock
representation

0,(B)=e'l' Be~'H! (4.16)
for all Be 4, and for Weyl operators one has
0{U(f, 9)} =U(/., 9) (4.17)
where ]
q fi=cos(Ct) f—Csin(Ct) g 4.18)
an
g.=C " tsin(Ct) f +cos(Ct) g . (4.19)

If now we define «, : &/ — .o/ by
O‘z(A) = M{OI(A)}

then it is immediate that o, is a positive linear map and satisfies Eq. (4.13).
We are now in a position to give Proof of Proposition (3.1).
We have shown in Lemma (2.3) that

lim e~ 0%, (4) oMo =, (4)

for all Weyl operators 4 = U(x, y) where x, y € L, the limit being taken
in the strong operator topology and lying in .«/. General linearity and
density arguments now imply that the limit exists in the strong operator
topology, and lies in .o, for all A € .«/. Since a strong limit of positive
maps is positive it follows that y,:.«/ — .o/ is a positive linear mapping.
We now define T,: .«/* - .o/* by T, =¥ so that T, is positive and linear.
That T, taken V into V is a consequence of Proposition (4.2) together
with the explicit formulae of Lemma (2.3). The strong continuity of the
map t— T, follows by Proposition (4.3) while all the other statements
are easy consequences of the duality formula T, = y¥.

Acknowledgement. The author should like to thank Professor M. Kac who suggested
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