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Exact Solution of the Dirac Equation
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Abstract. The exact solution of the Dirac equation with a central potential, in the
semi-relativistic approximation, is derived and formulae for phase shifts and eigenvalue
equations are given.

Introduction

The integro-iteration method, introduced in Ref. [1] is applied to the
solution of the Dirac's coupled radial equations. The solutions are ob-
tained in a form similar to that of the Schrodinger equation [2], i.e., in
simple series which converge strongly when the following restrictions
are imposed on the potential V(r):

Vr^0{r)^r'ββ^\ (la)

and
GO

J V(r) dr < oo for 0 < ̂  < oo . (1 b)

Condition (1 b) excludes the Coulomb potential, but in this case the
solutions are already known [3, 4]. On the other hand in cases with a
screened or modified Coulomb potential [5] the method is applicable
and one can get results to any desired accuracy.

I. Formulation

In semi-relativistic approximation the Dirac equation with central
potential, after separation of the angular part, [3], is reduced to a system
of two coupled radial equations [5]

) F + ^ G 0
τ Gv = 0
dr r

(2)

dr r
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Here we use the same notation as in Ref. [5], but for simplicity we
have put h = c=l, and v = / for j = I — \ and v = — I — 1 for j = I + \.

If we put

G = —
v~ r

( 3 )

t v r

we obtain the more symmetrical form:

For V = 0 the solutions of (4) are readily obtainable and are expressed
in terms of Bessel functions if E2 — m2 = k2 > 0 and modified Bessel
functions if E2 — m2 = —κ2< 0.

Let u1 and u2 be two independent solutions of (4), with V = 0, regular
respectively irregular at the origin, corresponding to g°v and υγ and v2

those corresponding to /v°. We normalize them in such a way that

det x 2

Vl V2

Next we look for a solution of (4) in the form:

/v(r) = C1(r)ι;1(r)-fC2(r)ι;2(r) ( 6

where C^r) and C2(r) are functions to be specified, such that (6) are
solutions of Eqs. (4). Using Lagrange's method of undetermined
coefficients, and taking into account (5) we find:

C\(r) = - Ci V(uί u2 + v1 v2) - C2 V(u\ + v2

2)
(7)

C2(r) = + C 2 V{ux u2 + ϋi v2) -f Cx F(w^ + ̂ ) .

Applying the integro-iteration method [1] we find the general solution
of(7) 2:

Φ2( " )dr'

Φ2( " )+λxe ^ j i π ^ W φ ί Γ )dr>

1 For explicit expressions of up υ} (j = 1, 2) for every case see Appendix.
2 We use the same notation as in Ref. [1].
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where λx, λ2 are arbitrary constants,

v2]

Ai2 = V[uιu2 + vίv2~\

f(r)=]Aι2dr'

and

φJ r ) = \-\A22e^ άr'r\Aue~^φ\ "" )dr", (10a)

Φ2( " ) = l~\Λue^dr')A22e^ Φ2(
 Γ" )dr\ (10b)

The regular solution at r = 0 is obtained from (8), if we put λ2 = 0
and a, = 0, i.e.:

(11)

Finally we get:

For the existence of the solution (11), or (12), we have only to consider
/ r \

the convergence of the central function Φ i L π The last is guaranteed

by the condition [1]:

oo r'

q= $\A22e
2'\dr'l\A11e-2'\dT"<ao.

0 0

If the potential V(r) fullfils the conditions (1) then the function
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is bounded for any 0 ̂  r rg oo. Let be |/| < μ, then we have

q£e4"]\A22\drl\All\dr'

ύe4" f \V\ {\u2

2\ + \v2

2\} dr\ \V\ {\u\\ + \v\\} dr>.
0 0

The r.h.s. consists of four terms. If we apply for each of them the argument
used in [2] § III we prove that all of them are bounded, provided that
the potential V(r) obeys conditions (1).

II. Results and Discussion

(i) The application of the integro-iteration method leads, also in
the present case, to the explicit expressions of the radial wave functions
in a very simple way.

(ii) For E2 — m2 = k2 > 0 (scattering problems) we find for the phase
shifts ηv:

Ar )dr
(13)

where v = l or — / — I . It is understood that for every case we have to
employ, for the calculations of /, Alλ and A22, the corresponding
expressions of Up Vj (/= 1,2) given in the Appendix.

(iii) On the other hand if E2 — m2 = — κ2 < 0 (bound states) we find
the eigenvalue equation:

(iv) The phase function [6] also is explicitly obtained:

e^ΪAue-^φJ"')dr'
S{r) = + ^ f0) . (15)u

It is easy to verify that the phase function (15) is the solution of the
Riccati equation:

S' = [ , 4 1 1 + 2 . 4 1 2 S + ^ 2 2 S 2 ]
or,

Sf = V[_(u1 + u2S)2

with
S(0) = 0.
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This expression is found in [6]. The difference is due to the different
"normalization" of ui5 vt which we adopted in order to have

d e t " 1

(v) From (12) we find:

00 GO /

ί V(gvuί+fvv1)dr= $Ane-'φΛ )dr
0 0

0 0

Integrating by parts the second term in the r.h.s. we find:

]v(gvu1+fvv1)dr= e^]Ane-^φJr)dr. (17)
0 0 \U> U /

In a similar way we find:

Ϊ V(gvu2+fvv2)dr= -e-/<«» Φ t (*\ + 1. (18)

From (17) and (18) we have:

tan*jv = —°-^ (19)

1 — J V(gvu2 + fxv2)dr
o

with v = / or — / — I .
The expression (19) is analogeous to that given by Parzen [7],

Eq. (71).
(vi) Finally we mention that the method can be applied with the

same easiness to the scattering by a modified Coulomb field and it
could be useful for the determination of the nuclear charge density ρ(r)
and the corresponding formfactors [5].

Appendix

If we put in (4) V = 0 we obtain:

(A.1)
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The system can be reduced to two uncoupled Bessel differential

equations. If u1 ? u2 correspond to g° and vu v2 to /v° we make the

following choice of the solutions:

(i) v = /, E2-m2 = k2>0

Ul=
~

γι + ,(

υx= (E -m)±

υ2 = ~(E- mf

~

(ii) v= - / - I , E2-m2 =

Ul=

(iii) v = Z, E2-m2= ~κ2 < 0

w2 = (m + £)* r^ Kί + i(?cr); z;2 = (m - £)^ ̂  X/ + f (κ:r).

(iv) v - - / - I , E2-m2= -κ2<0

Uι=(m + Ef r^ Iι + i(κr), υ x = - ( m - E ) ± r * / t ^

u2 = (m + Ef r> Kι + ±(κr), υ2= (m - Eψ r* Kt^

With thischoice the couples (uf, vt) satisfy Eqs. (A.I) and, [8]

det" uι u2 = 1.
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