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Exact Solution of the Dirac Equation
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Abstract. The exact solution of the Dirac equation with a central potential, in the
semi-relativistic approximation, is derived and formulae for phase shifts and eigenvalue
equations are given.

Introduction

The integro-iteration method, introduced in Ref. [1] is applied to the
solution of the Dirac’s coupled radial equations. The solutions are ob-
tained in a form similar to that of the Schrédinger equation [2], ie., in
simple series which converge strongly when the following restrictions
are imposed on the potential V(r):

Vo) >r P =t (1a)
and

so}

[ Vindr<oo for 0<a<oo. (1b)

Condition (1b) excludes the Coulomb potential, but in this case the

solutions are already known [3, 4]. On the other hand in cases with a

screened or modified Coulomb potential [5] the method is applicable
and one can get results to any desired accuracy.

I. Formulation

In semi-relativistic approximation the Dirac equation with central
potential, after separation of the angular part, [3], is reduced to a system
of two coupled radial equations [5];

G, v
dr — r G, =0

dF, v+2
dr ¥ v

(E+V+m)F,+
2

—(E+V-mG,+
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Here we use the same notation as in Ref. [5], but for simplicity we
have put A=c=1, and v=1I for j=I1—3 and v=—1—1 for j=[+ 4.
If we put

G, = gy
r
3)
F,= =
-
we obtain the more symmetrical form:
+1
(E+V+mf,+g,—~—g,=0
4
o (4)
—(E+V-myg,+f,+ - f£,=0.

For V=0 the solutions of (4) are readily obtainable and are expressed
in terms of Bessel functions if E2—m?=k?>0 and modified Bessel
functions if E* —m? = —«? <0.

Let u, and u, be two independent solutions of (4), with V' =0, regular
respectively irregular at the origin, corresponding to g° and v, and v,
those corresponding to f2. We normalize them in such a way that

Uy Uy
Uy Uy

det =1t (5)

Next we look for a solution of (4) in the form:
gy(r) = C(r) uy (r) + C5(r) u,(r)
Jur)=Cy(r) v,(r) + C5(r) v2(r)

where C,(r) and C,(r) are functions to be specified, such that (6) are
solutions of Eqgs. (4). Using Lagrange’s method of undetermined
coefficients, and taking into account (5) we find:

Ci(r)=—C, V(uyuy + v, 05) — C, V(3 4 v3)
Ch(r)= +C, V(uyuy +v,0,) + Cy V(ui +v?).

(6)

™

Applying the integro-iteration method [1] we find the general solution
of (7)2:

Cl(r)zﬂ.le'/")¢1< 4 )—Zze‘/{” [A,,e27" d52< 4 )dr'
a, @ @

a 2

8)

, r 5 T s r
Cy(r)=Aye’™ 452( +ie TO[A e P, ar
, “ a, @

! For explicit expressions of u, v, (j=1,2) for every case see Appendix.

2 We use the same notation as in Ref. [1].
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where 4,, 4, are arbitrary constants,

Ay =Vui+ 1]
Ayy=V[ui+ 3]

9
Ay =V[ugu, +v,0,]
A=A, dr
and
asl( ' ):1——jA22e2/ dr’jA11e2/<151< ' )dr”, (10a)
2 2%7% @ a s

q>2< r )zl—fAUe*Z/dr/jAzzezf’ <1>2<ara)dr”. (10b)

@, @

The regular solution at r=0 is obtained from (8), if we put 4,=0
and «=0, 1.e.:

C,(r) = e*f"m@i( " >

0,0
, , (11)
B r )
Cz(r):e’“"gAne 2’fdﬁl(oy())dr .
Finally we get:
g, =u e ’d ¢ +u2e/jrA e o g ar
v 1 1 0,0 5 1 1 0’0
(12)

- - r r - ¥ )
fo=v,e /451(0’0)4“026/(5)14118 27 @1(0,0)511’ )

For the existence of the solution (11), or (12), we have only to consider

the convergence of the central function (Pl(

>

' 0). The last is guaranteed
by the condition [1]:

g= |14y, ¥ dr [ |4 e dr" < .
0 0
If the potential V() fullfils the conditions (1) then the function

Fr)= JCsz dr'
0
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is bounded for any 0 <r < co. Let be |[/| <y, then we have

§§e4“ |455] d"j |4y 4] dr
0

et

O R O 8

VI {u3] + w31} dr [ (V] {uil +[v3]} dr'.
0

The r.h.s. consists of four terms. If we apply for each of them the argument
used in [2] §III we prove that all of them are bounded, provided that
the potential V(r) obeys conditions (1).

I1. Results and Discussion

(i) The application of the integro-iteration method leads, also in
the present case, to the explicit expressions of the radial wave functions
in a very simple way.

(i) For E* —m? = k* > 0 (scattering problems) we find for the phase
shifts #,.:

L r
N e P d
€ (J) 1€ 1(0,()) r

~ 2w 0
e F! )QDI(O’O)

tany, = + (13)

where v=1 or —I—1. It is understood that for every case we have to
employ, for the calculations of /, 4,; and A,,, the corresponding
expressions of u;, v; (j=1,2) given in the Appendix. \
(iii) On the other hand if E? — m? = —k?* <0 (bound states) we find

the eigenvalue equation:
@(ﬂ)zo. (14)

0,0

(iv) The phase function [6] also is explicitly obtained:

e’V A e cbl< " )dr’
) 0,0
S(r)= +

¥
e f" @1 (0’ 0)

It is easy to verify that the phase function (15) is the solution of the
Riccati equation:

(1)

S'=[Ay, +24,,S+4,,5%]
S =V[(u, +u, S)* + (vy + v, 5)*] (16)
S(0)=0.

or,

with
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This expression is found in [6]. The difference is due to the different

“normalization” of u;, v; which we adopted in order to have

Uy Uy
Uy Uy

det
(v) From (12) we find:

=1.

V(g,u; + f,v,)dr= jAue‘/cD]( " )dr
) 0,0

+

O R O« 8

12 ,SOHQ 1(0,0 F

Integrating by parts the second term in the r.h.s. we find:

j V(gvu1+fvvl)dr: e/‘X).‘.Alle_Z/v Q51< ' )dr
0 0

0,0

In a similar way we find:

Ot=— K

Vigu, + f,v,)dr= —e A2, (0%0) +1.

From (17) and (18) we have:

V(gvul +fvvl)dr

o= 8

tany, = -
1- f V(g,u, + f.v,)dr
0

withv=/[or —[—1.

(17)

(18)

(19)

The expression (19) is analogeous to that given by Parzen [7],

Eq. (71).

(vi) Finally we mention that the method can be applied with the
same casiness to the scattering by a modified Coulomb field and it
could be useful for the determination of the nuclear charge density ¢(r)

and the corresponding formfactors [5].

Appendix
If we put in (4) V =0 we obtain:

v+1

(E+m)f\0+ge/_ r gv:()

1
—(B=m) g0+ 0+ T po =0,
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The system can be reduced to two uncoupled Bessel differential
equations. If u;, u, correspond to ¢g° and v,, v, to f° we make the
following choice of the solutions:

@) v=1l E2=m*=k*>0

‘ [mr RYEi

u;= (E+m)* 7JH%(kr), v, = (E——m)zl/TJH%(kr),
.1/ mr L1/ mr

u; = —(E+m)* i/ s Yipgkr),  vy=—(E—m) ‘/ 2 Y y(kr).

() v=—1-1, E2=m?*=k*>0

uy = <E+m>%[/—”21J,+%(kr), v1=—(E—m)%’/i’ziJ,ﬁ(kr),
L1/ mr )/ wr
iy = —(E + m)* ‘/—2- Yostkn), o= (E—m) |/—2— Y y(kn).

(i) v=1, E>—m’= x> <0
uy=(m+E@ r¥ I, (xr), vy=—(m—E}rt I (),
uy=(m+Ey} r* K, (1), v,= (m—E}rt Ky, (xr).
i) v=—I—1, E>—m?*= —x?<0
uy=(m+E@}rt I, (kr), vy=—(m—E}rtL_,(xr),
uy=(m+E} K, (kr), v,= (m—E}rt K, (xr).

With thischoice the couples (u;, v;) satisfy Egs. (A.1) and, [8]

lu, u
det™| ' *=1.
Uy Uy
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