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Abstract. We show that the non-relativistic quantum mechanical n-body Hamil-
tonians T(k) = T + kVand T, the free particle Hamiltonian, are unitarily equivalent in the
center of mass system, i.e., T(k) — W+{k) TW±(k)~x for k sufficiently small and real.

V = £ Kf, a sum of real pair potentials, Vιf depending on the relative coordinate

XiE R3 of the pair i, where Vt is required to behave like |x,Γ 2~ ε as |x,|->oo and like |x,Γ 2 + c

as |JC£| —>0. T(k) is the self-adjoint operator associated with the form sum T + kV There are
no smoothness requirements imposed on the Vv Furthermore W±(k) = s-lime l T ( λ ) re~ l T ί

t->±OO

are the wave operators of time dependent scattering theory and are unitary. This result gives
a quantitative form of the intuitive argument based on the Heisenberg uncertainty principle
that a certain minimum potential well depth and range is needed before a bound state can
be formed. This is the best possible long range behavior in the sense that iίkV^ Cι\xi\~~b,
0 < b S 2 for |xf| > Rt(0 < Rt < oo) and all Ci are negative then T(k) has discrete eigenvalues
and W+(k) are not unitary.

0. Introduction

In this article we treat the scattering and spectral problem for an
rc-body system in non-relativistic quantum mechanics with weak poten-
tials. We show that the method of Kato [1] used to show asymptotic
completeness and unitarity of the wave operators for weak potentials in
the two-body case can be applied to obtain similar results in the rc-body
case. More precisely we show that in the center of mass system Hubert
space H = L2{R3n-3) the self-adjoint operators T(k)=T + kV (the self-
adjoint operator associated with a form sum) and T (the free particle
Hamiltonian) are unitarily equivalent for sufficiently small, real k. The
potential V = £ Vt is a sum of pair potentials, Vh which are real-valued

i

measurable functions depending on the relative coordinates xt e R3 of
the pair i. Writing

^ H ^ Γ 2 , Bi = (ήgnVi)Ai,

the result follows from the crucial fact that the operators Ai{T—z)~ιBJ
admit bounded analytic extensions for ImzφO, the bound being in-
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dependent of z for ImzφO and moreover that this is sufficient, i.e.
compactness is not necessary.

The equivalence of Tand T(k) is implemented by the unitary operators

W± (k), i.e., T(fc) = W± (k) T W± (k) ~x

where W±{k)~ι = W±(k)*. The operators W±{k) admit an absolutely
convergent power series expansion in k. Pair potentials behaving like
l/\Xi\2~ε as |Xi|->0 and like l/\Xi\2+ε as |xf|->oo are allowed (ε>0) (see
Theorem 1.1 for the precise conditions). There are no conditions of
smoothness imposed on the potential functions. We also show that the
operators

W±(k) = s-\imeiTik)t e~iτt

t~> ± GO

W±(kyι = s-limemέ>- ί T ( k ) < = W±(k)* ,
t-> ±00

i.e., are the wave operators of time-dependent scattering theory. Thus the
wave operators exist and their ranges are all H. This result of course also
gives information about the spectrum of T(k\ in the center of mass
system; namely, it is absolutely continuous, the singular continuous
spectrum being absent. Thus there can be no point spectrum and we have
a quantitative form of the heuristic argument using the Heisenberg
uncertainty principle on the potential shape and well depth which will
exclude bound states. Furthermore the long-range behavior of our result
can not be improved. What is meant by this is that for pair potentials
which fall off like l/|Xj|b, 0<b^2, for |xf|-»oo, no matter how small
k > 0 is there is an infinite point spectrum if all Vi are negative. For a
proof of this fact see Simon [2]. Thus the W+(k) can not be unitary since
the ranges of W+ (k) are orthogonal to the point spectrum of T(k).

In Section I we introduce necessary notation and state our results.
In Section II we give the proofs of the results.

For other results on n-body completeness in the general case see
Hepp [3] and for repulsive potentials see Lavine [4]. For π-body spectral
results see Simon [2], Balslev and Combes [5] and Albeverio [6].

1. Results

Throughout this paper we will maintain the notation of Kato [1].
We consider the n-particle self-adjoint Schroedinger Hamiltonian
operator T(fc) which formally equals T4- kV where T is the free particle
self-adjoint center of mass kinetic energy operator and V = ]Γ Vh the

i

potential, is a sum of n(n — l)/2 pair potentials Vi9 such as i = (lm),
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Z, m = 1, 2, ...,n(/<m). Each Kf is a real-valued, measurable function
depending only on the difference coordinates, xteR3, of the pair i and
fc is a real parameter. We write Vt = BfΛ, where

^ = l^il1/2 β i = (sign7 ί)|K ί |
1 / 2.

The operators 7 and Ah Bt are defined as maximum multiplication
operators on the Fourier transform of H = L2{R3n~3) and H, respectively.
Thus T is self-adjoint and v4f, Bt are closed.

In order that the theorem of Kato [1] be directly applicable we
introduce the Hubert space H' = HφHφ ®H(n(n -l)/2 summands)
and let V= B*A. The operators A and £ are defined by

Xtt = (X1M,X2M,...,Xiί$5_i)M) for ueD(X)^f]D(Xi)CH, X = A(B),

Xj = AfίBi) and are closed linear operators as mappings from D(X) C H
to i/;. We point out however that it is not necessary to introduce Hf and
the results will still be valid but the Kato proof will then require modi-
fication. The resolvent of the self-adjoint operator T will be denoted by
R(z).

We not state the crucial lemma from which our results will follow.

Lemma 1.1. The norm of the closure, [CίjR(z)Dj], of the operator
CiR(z)Dj for ImzφO where Ch Dt = Ai9 Af, Bu Bf has the majorίzatίon

| | [ Q l φ ) ^ ] | | S (2mjCij)/(4π) (α' 1 4- b~ι)

• [ I I ^ I I L P / ^ ^ H ^ I I ^ ^ ] 6 2 - 1 ^ ^ - 1 (1.1)
Γ 111/II 111/II -lal-Ha + b)'1

Ί \\Vi Wlβ'HR*) II Vj II L«/2(K3)J

where i,j are the same pair or not completely disjoint pairs. In (1.1)
a= -3P"1 +1>0, b = 3q~1-l>0, l^q<3<p^oo and mjι - m ^ 1

4- mf1 with j = (fcZ), fc < Z. Tfte constant

Cij = ί if i=j and cij = (mk + mι)m^1 for fc</,

ί = (lm\ j = (fcZ); cij = (mk + mι)m['1 for fc<Z5 i = (km), j = (kl). For i,
completely disjoint pairs we have

\\lCtR{z)Dj]\\ ύ 2 ( s u p \ \ l A i R ( z ) A i - ] \ \ y ' 2 ( s u p | | E ^ ^ ϋ )
\ * / \ z / ( 1 . 2 )

where the sup /.s fα/c<?/7 or£τ α// z, Imz Φ 0.

By specializing theorems 1.5, 3.9 and 4.1 of Kato [1] to our case and
using the same notation as in Lemma 1.1 we have
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Theorem 1.1. For some constant N <oo let V be such that

max2(φ-l)/2) 1 ) (a

factor 2 occurring after max m (1.3) cαrc be dropped for n = 2 or 3)
then for any real k with \k\ < 1/N

a) T(k) is the unique self-adjoint operator determined from the re-
solvent

R{z, k) = R{z) - fc[JR(z)£*] (1 + kQiz))'1 AR{z) (1.4)

where Q{z) = \_AR(z)B*~] is a bounded operator from H' to H' and
\\Q(z)\\ < N for ImzφO.

b) The operators T and T(k) are unitarily equivalent, i.e.

T(k)= W±(k)TW±(k)*

where W+ (k) are unitary and are defined by
+ 00

(W±u,v) = (u,v)+(k/2πi) J (AR(λ±iO)u,BR(λ + iO9k)*v)dλ (1.5)
— GO

with u,ve H. W± (k), W± (k)* admit absolutely convergent (in operator
norm) series expansions in k.

c) The operators W+ (k\ W± (fc)* of part b are the wave operators of
scattering theory, i.e. on all H we have

W+{k) = s-\imeiT{k)te~iTt

and the scattering operator S = W+ (k)* W_ (fc) is unitary.

Remarks

1. T(k) defined through (1.4) agrees with the definition of T(fc)
defined by the quadratic forms method of Simon [7] as each Vt e L3/2(R3)
by (1.3) and L 3 / 2 (# 3 )C#(the Rollnik class).

2. In. (1.5) AR(λ±iO)u are H' valued functions of λ and exist a.e.
for — o o < l < o o as boundary values of the analytic vector AR(z)u.
Similar remarks apply to BR(λ +ϊθ, k)*v.

3. For the case n = 2 Kato [1] (see Theorem 6.1) showed that Ve R
is sufficient for the conclusions of Theorem 1.1 to hold for small fc.
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2 . Proof of Lemma and Theorem

Proof of Lemma 1.1. We will make estimates to establish sufficient
conditions on the V{ so that the operators

admit norm bounded analytic extensions, [CίJR(z)DJ ], where the bound
is uniform for ImzφO.

More precisely, we will show

supllLC^D,]!!

(2.2)

where a,; > 0, 1 ^q<3 <p ^co and mj1 = mk"
] + mf* for j = (kl), k<l.

The constant cVj — 1 if ι = j and cij = (mk + mι)m^1 for k</, i = (lm\
j = (kl); ctj = (mk + m^mfι for k < /, i = (km),j = (k/). The expression (2.2)
holds for i, j the same pair or not completely disjoint pairs. Minimizing
the right hand side of (2.2) with respect to the atj we have

where α = - S p ^ + ^ O and 6 = 3^f~ 1 -l>
For /,; completely disjoint pairs we have

sup\\lCiR{z)Dj]\\ £ ( p | | ^ , | | ) ( U ^ J l l )
V z i \ z I (2.3)

We now make the estimates required to establish (2.2).
Since At = Af ^ 0, Bt = Ai\Ji = U^ where Ui is a partial isometry

it is sufficient to bound the norms ||/ljK(z)^ w|| where

u e D(Aj) = D(Aj) = D(Bj) = D(Bj).

For the case of ij the same and ij different but not disjoint pairs we
reduce the calculation to two body considerations and follow a method
of Kato [1]. For i,j disjoint pairs we reduce the problem to the case
where the pairs are the same.
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Case 1. i = 7, i.e., i = (kl). We have

where T{ is the relative kinetic energy of the pair ί. We show that

A p ι ι A ΊJW <Γ (Λ.TΓ t /*} wi \ P \\ A \\ u\\ 11a D( Λ \ t -̂> O CJ S^
/ 1 jc- **-i 2 == v / i) ~^i J-fi(R^) 2 ' •^v"'^!/' ' '^ \ )

where mf~
1 = m^1 + mfx so that, using the representation

00

R(z)u = i J eizte~iTtudt, Imz>0;
0

we have for Imz > 0

WAM^ΛMli^l WAe'^A^dt
(2.6)

For Imz < 0 we obtain a similar majorization. We obtain (2.2) by sub-
stituting (2.5) with p for the first integrand of (2.6) and (2.5) with q re-
placing p in the second integrand of (2.6). We now derive (2.5). Denote the
coordinates by (x, xR) where x e R3 is the relative coordinate of the pair
i and xR are the other 3n — 6 coordinates. We have for t > 0

- (4πiί/2m ί)-3/2 f exp[-2m i |x - y\2/4if] A&) u(y, xR)dy . ( 2 ' ? )

The spatial integrations are understood to be over R3 and are to be inter-
preted as limit in mean relations. With v(x, xR) = exp( — 2mi|x|2/4iί)
• A^x) u(x, xR) we have, using the Hausdorff-Young inequality [1],

iτ'f4.M)(x, xR)\r'dx]llr' S Q(r', ί) [j |t;(x, x R ) |^x] 1 / r (2.8)

with r'-ι + r~ι = 1, C^r', ί) = (4πί/2m i)
3 ( r" 1" 2" 1 ). But

[j Mx, xΛ)| rdx]1 / Γ ^ | |^ | |^p ( Λ3)[ί \u(x, xR)\2dxf12 (2.9)

with r" 1 = 2" 1 + (2P)"1. Thus

f i μ ^ - ^ ^ i M ) (x, xR)|2dx rfx* ^ j [j M,(x)|2sdx]1/S

• [ ί K e - ^ ^ u ί ί ^ x ^ - ' d x l ^ ' d x i ,

with 5"1 + 5 ' " 1 = 1, 2s' = r\ which upon substituting (2.8) and (2.9) in
(2.10) gives (2.5).

Case2. iΦj but ί and j not disjoint pairs. It is sufficient and for
definiteness we consider ί = (23), 7 = (12). In analogy with case 1, (2.4), we
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have
\\A23e-iτtA12u'\\ S \\A23e'iT^A12u\\9 u = e'^^^u (2.11)

where in this case 7} is the relative kinetic energy of the pair j . The relative
coordinates of 1 and 2 we denote by yί e R3 and yt plays the role of the
variable x of case 1. We denote the coordinates by (y1, xR). We have with

Φ i , **) = e'^22m^u(A12u) (yl9 xR) (2.12)

mj1 = mf1 + m2

1, and from the Hausdorff-Young inequality

\\e-iT^A12u(, xR)\\LriRi,dyi) £ Cj(r\ t)\\v(, xR)\\Lr{R^dyi) (2.13)

where r'~ι + r~x — 1. Then

||^23^ίTj%2w||2-ίM23|2K^ίT^12W)(yi,%)|2^ldXR (2.14)

We use the Holder inequality in y1 with s"1 4- sf~γ = 1 to obtain

23«ΓiΓj'Λi2«||2 g ί [j lAnfdyJ* [j |(e-'^M12«)

• O Ί . X J J I 2 ' ' ^ ! ] 1 ' 4 ' ^

^ ( > ) 3 / 1 ^ | | £ C ( ' i ) 2

with r' = 2s'. In arriving at (2.15) we have used the fact that A2J(x'2 — x'3)
— A23(m1m[2y1 + ΣbiX'n), x'2, x'3 denote the coordinates of 2 and 3,

w 1 2 = Mi + m2, and where ^ b^x^ is a linear combination of the other
i

xR coordinates (see Appendix 1 of Simon [2]). Thus we have

If l^al2 '^,!1" = (m12M)3's \\A23\\h^) •

In the case where A13 occurs in place of A23 we have Aί3(x[ — x'3) = A13

ίw2m1~2

1yi + Σ c ΐ χ Λ) Using the Holder inequality again in (2.15) we

obtain

H' *κ)||έw,dyi) = U \Λ12u(yuxR)\rdyi2
2/r

^ Eί \Λ12\
rkdy,rrk [j \u{yl9 xR)\rk'dytf^ '

where /c"1 + fc'"1 = 1. Let rk' = 2 then

| |A 2 3^- i Γ ' f^ 1 2u| | i ^ (^a/fftO6^ ll^all&dt^Mxall&cK^C2^, ί) ||M||| (2.17)

w i t h q = 2 r ( 2 — r ) " 1 o r a s | | M / | | 2 = | | W | | 2 w e h a v e

\\A23e~iTt A12u'\\2

( 2 1 8 )
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which is analogous to (2.5). Proceeding in the same manner as from (2.5)
to (2.6) we obtain (2.2) for this case.

Case 3. ϊ φ j with the pair i disjoint from the pair j . We have for
I m z > 0 with the sup taken over veD(Aj\ \\v\\ = 1,

\\AiR(z)Λju\\ g sup

= sup

sup

(2.19)

{AfeiT^tv,Aie~i{T'Tj)tu)d

^ sup
GO \ l / 2 \ /oo \ l / 2

where Th 7} are the relative kinetic energies of the pairs i,j respectively.
F r o m Lemma 3.6, Eq. (3.9) and Theorem 5.1, Eq. (5.3) of Kato [1] we
have (recalling that Ak: D(Ak) CH-^H)

— GO

Imz Φ 0, u' e

for k = i or ), w e H so that

l J .M| |^2[supμ i R(z,
11/2

(2.20)

(2.21)

where the sup in (2.21) is taken over ImzΦO, v'eD(Af\ u'eD(AJ),
y'φO, u'ΦO. The resolvents R(z, Tm) in (2.21) are the resolvents of the
operators Tm. By noting that each term in the brackets of (2.21) just
reduces to the type given by (2.6) we arrive at (2.3).

Proof of Theorem ί.ί. Since T is self-adjoint it is obvious that all the
hypotheses of Theorems 1.5, 3.9 and 4.1 of Kato [1] are satisfied except
for the T-smoothness [1, Definition 1.2] of A and B and that

\\AR(z)B*u\\ ^ ImzΦO, (2.22)

Thus our proof consists in showing that these two hypotheses are satis-
fied. From Remark 1.10 of Kato [1] we see that T-smoothness of A{ and
Bi imply that A and B are T-smooth. From the hypothesis (1.3) we see
(referring to Lemma 1.1) that H f ^ l φ ) ^ - ] ! is bounded uniformly for
Imz Φ 0. Since At = Af ^ 0, Bt = At Ut = ΌiAί this implies the T-smooth-
ness of Aι and B} using Theorem 5.1, Eq. (5.3) of Kato [1].
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Eq. (2.22) is valid since

\\AR{z)B*u\\ S sup \(v,AR(z)B*u)\
IMI = i

^ sup \Σ\(vi9AiR(z)BJUj)
(2.23)

and by the hypotheses (1.3) the right-hand side of (2.23) is less than

JV||M|| for ImzφO.
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