
Commun. math. Phys. 26, 301—306 (1972)
© by Springer-Verlag 1972

On Exact Kerr-Schild Type Vacuum Solutions
to Salam's Two-Tensor Theory of Gravity*

R. MANSOURI and H. K. URBANTKE

Institut fur Theoretische Physik der Universitat, Wien

Received January 17, 1972

Abstract. A Kerr-Schild type ansatz for the / and g tensor fields leads to a tractable
form of the field equations of Salam's two-tensor theory of gravity in vacuo. While the
general solution contains the Schwarzschild and Kerr metrics in the pure Einstein vacuum
case, we can show in the f — g case that all "non-trivial" ( / φ # ) solutions are restricted
to have the form of "plane-fronted waves".

I. Introduction and Conclusion

A two-tensor theory has been set up by Salam etal. [1] to describe
the gravitational interactions of leptons and hadrons. Its field equations
in regions free from matter are

(1.1)

where
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Gμv(f), Gμv(g) are the Einstein tensors constructed from the symmetric
nonsingular tensor fields / μ v ,g μ v when considered as "metrics". m > 0
is the mass of the /-field which in regions containing matter would interact
directly only with hadrons, while g would interact directly only with

* Supported by ,,Fonds zur Ford. d. wiss. Forsch. in OsterrΛ Nr. 1255.
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leptons. Thus the gravitational interaction between leptons and hadrons
goes via the "mixing terms" on the right hand side of Eqs. (1.1).

Several attempts have been reported [2, 3] to find exact nontrivial
solutions (i.e. / μ v + gμv) of the vacuum equations (1.1), which are rather
complicated. One typical approach is to impose symmetry conditions
to simplify (1.1), but so far there was not too much success. Another
approach consists in imposing algebraic assumptions on f,g. As an
example of this approach, we consider the case where / and g are of the
Kerr-Schild [4, 5] form, i.e.

g = η + 2%k®k

where η is the flat Minkowski metric and k is a field of Minkowski null
vectors (ημvkμkv = O). The reason for doing so is that on the one hand
the class of Kerr-Schild metrics in general relativity contains several
interesting metrics such as the plane-fronted waves [6, 7], the Vaidya
metric [8,9] and the Kerr family [10, 5], and can be explicitly determined
in the Einstein vacuum case [4, 5]. On the other hand, the drastic
simplification of (1.1, 2) when (1.3) is inserted allows a complete treatment
in the / — g case.

The result, however, is rather poor when compared with the corre-
sponding pure Einstein vacuum case. Namely, Eqs. (1.1) permit only
Kerr-Schild solutions which are plane-fronted [7] waves, i.e. fields
containing a geodesic null congruence with vanishing shear, twist
and expansion and with a Weyl tensor of the algebraic type N [11,12].
Two cases are to be distinguished. The first is characterized by vanishing
rotation [7,12] of the congruence, i.e. parallel rays ("pp waves"), and
has been described earlier [3]. In the second case the rotation does not
vanish. Choosing the coordinates in Kundt's [7] canonical way, the
solution can be written

fμvdxμdxv = ds2 + x^du2,
where

ds2

Q = Idudυ + \dz - 2υx~x du\2 - 3v2x~2du2 (1.5)

is the flat metric in some noninertial coordinates (z = x + iy\ <& = &(u,x,y)
and #"(M, X, y) are arbitrary functions of u whose x, y-dependence is
given by (A 2 = d2/dx2 + d2/dy2)

Δ2.F=m2(&r-&),

Δ2& = -(κ2

g/κ})m2 (&-<&).

Equation (1.6) is formally the same as in the pp case [3] and can easily
be decoupled and solved for suitable boundary conditions.
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In the rest of the paper we want to prove our statements made
above. Several obvious generalizations suggest themselves which will
be treated elsewhere; it is, for instance, easy to read off type III / — g
solutions from Ref. [7]. The interest in all the solutions obtainable
in this way lies not so much in the particular solutions that might result,
but in the clarification of the general structural properties of the under-
lying theory [although some solutions which appear as a byproduct
might be interesting in themselves; see the Kerr example]. One might,
e.g., think that not only our very special kind of ansatz (1.3), but also
the particular form of the mixing terms (1.2) (stemming from "co-
variantization" oϊ fμv — ημv) might be a reason why the class considered
here is not too rich. It seems worth while to test this by considering the
various generalizations.

Finally we want to mention that all what has been said about
solutions of (1.1) of the form (1.3) remains valid in the two-tensor theory
of massive gravitation [13], a co variant extension of the theory of Freund
et aί [14].

Acknowledgment. We wish to thank Dr. P. Aichelburg for many helpful discussions
and for drawing our attention to Ref. [5].

II. Determination of the Optical Scalars and the Petroy Type

Assume that gμv,fμv are of the form (1.3); then

fμv-gμv = 2j4?kμkv with j f = ̂ - ^ . (2.1)

The field equations (1.1) now simplify drastically1, reducing to

2

Gμv(f) = m2JίTkμkv, Gμv(g)= -\m2^kμky. (2.2)
κf

Obviously, both $F and ̂  must not vanish for nontrivial solutions
p f φθ). By contraction, both curvature scalars vanish, and (2.2) is
equivalent to

Rμv(f) = m2^kμkv, Rμv(g)=~\nι2jekμkv. (2.3)
κf

The contracted Bianchi identities imply from (2.2) that kμ is geodesic.
For further analysis, we use the tetrad formalism of Sec. 5 of Ref. [5]

(henceforth referred to as KS\ the function h appearing there replaced

1 This simplification is purely algebraic, depending only on a relation like (2.1) with k
a null vector of g, but not on (1.3). Here is a starting point for generalizations.
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by ^ or ^ for gμv,fμv. The two tetrads adapted to g,f differ only in the
vector 33 = δu — hd4; note, however, that the effect of both d3s on
functions F with d4F = 0 is the same (this remark will remove most of the
apparent ambiguities that might arise in the following, as we will not
distinguish the tetrads and indices for notational convenience). The
tetrad form of (2.3) is then

Rab{f) = 0 = Rab(g) for (α, b) φ (3, 3),

R33(f) = m2JP9 R33(g)=-\m2^.
κf

When we set {KS (5.7))

kμdxμ = e3 = du+ Ϋdξ + Ydξ- YΫdυ , (2.4)

the geodesic condition mentioned aboved reads Y 4 = — Γ 4 2 4 = 0 (and
complex conjugate). With this, kμ given by (2.4) is automatically affinely
parametrized, i.e. kμ;vk

v = O. The contracted Bianchi identity applied to
(2.2) then leaves

= 0. (2.5)

(Here ^f 4 = kμdμ&? again there is no ambiguity; all optical scalars of kμ

are the same with respect to both metrics !)
Now we show that the shear of kμ must vanish for nontrivial solutions.

Indeed, the complex shear in this tetrad formalism is given by F 2 ,
the field equations R22 = 0 imply

^ ^ Z ) ^ ] = Y 2 [ ^ 4 + ( Z - Z ) ^ ] = 0 (2.6)

(cf. KS (5.25)). Assuming Y 2 + 0, we would have

^ 4 = 0 = ̂ ,4 Z = Z, (2.7)

so that the imaginary part of Z would vanish, but according to (2.5)
also its real part, the divergence or expansion. Since now Z = Y x = 0,
the integrability condition KS(2J) applied to 7 [ 1 4 ] gives Y2 ΫΛ = | Y2\

2 = 0,
a contradiction. Therefore we must have vanishing shear: Y2 = 0. Now
the equations R44 = R42 = R22 = 0 (and c.c.) are satisfied.

Next we show that the complex expansion Z must vanish also.
Our procedure is to assume ZΦ0, which enables us to follow KS(5)
further: we satisfy the equations R12 = JR 3 4 = 0 by setting h = \M{Z + Z)
with M 4 = 0, i.e.

\{ + ), %( Z) (2.8)
with

Z,4 = N 4 = 0. (2.9)
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If now #e = 9? - <§ and J-f 4 are formed and, together with Z + Z = kμ.μ

and ZA = -Z2(KS(534% inserted into (2.5), we obtain

( L - N ) Z Z = 0. (2.10)

Thus, the assumption ZφO leads to trivial solutions, L = N, proving
our assertion.

It is now seen from the expressions for the relevant components
of the Riemann or Weyl tensor that the field equations together with
Z = 0 imply Petrov type N with kμ as a quadruple Debever-Penrose
vector.

III. Canonical Form of Solutions

Kundt [7] has determined all metrics which contain a geodesic
null congruence of vanishing shear, twist and expansion and whose
Ricci tensor is of the form

Rλv=-μkλkv, (3.1)

where kμ is tangent to the null congruence. In particular, he has given a
geometric definition of the concept of plane-fronted waves, and has
shown that the plane-fronted waves are identical with that subclass
of his metrics where the Weyl tensor has type N. Two essentially different
cases have to be distinguished, for each of which he has given a canonical
form of the metric, whereby the task of solving Einstein's equations is
reduced to solving Laplace-Poisson-type equations. Our results of
Sec. II show that we are dealing with gμv,fμv which have exactly these
characteristics of planefronted waves. What remains to be done is to
write down our fields in Kundt's canonical form and to solve those field
equations which are not yet identically satisfied.

The two essentially different cases are distinguished by the vanishing
or nonvanishing of an additional optical scalar which appears when
both, complex shear and expansion, vanish: the rotation |Ω| (this name
is often used for the imaginary part of Z also, notably by KS, but we
should like to use the word "twist" for the latter; |Ω| is equal to |Y3 |
in the KS formalism). The case of vanishing rotation, i.e. planefronted
waves with parallel rays ("pp waves"), appears in the Kerr-Schild form
in Kundt's canonical coordinates; its generalization to / — g solutions
has been described earlier [3].

In the case of non-vanishing rotation, this quantity can be used
as invariant coordinate, and the corresponding canonical form of the
metric is

ds2 = η + Adu2, (3.2)
where

η = \dz- 2υχ-ιdu\2 + Idυdu - 3v2x~2du2 (3.3)
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is the flat metric in some curvilinear coordinates (z = x + iy), as one
easily checks by calculating the Rieman tensor; it is even easy to find a
transformation to Minkowski coordinates and discuss its meaning.
The null congruence is given by kμdxμo: du. The function A is independent
of v, depends arbitrarily on w, and to satisfy (3.1) one must have

-ίA) = 2μ. (3.4)
dx2 dy2

It is almost obvious now that the corresponding / — g solution is given
by (1.4, 5, 6). Actually, one has to check that f,g can be brought to the
canonical form (3.2, 3) simultaneously, but this follows from the tensor
relation (2.1). The function A belonging to g, say, is independent of v
in the canonical coordinates. The transformation achieving this leaves
open a possible v dependence in the corresponding function for/, and (3.1)
is still satisfied. But as for our field equations (2.3) μoc#" — {S, this υ
dependence must actually be absent. Therefore (1.4, 5, 6) is the general
solution.
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