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Abstract. A necessary and sufficient continuity condition is obtained in order that a
topological group of automorphisms of a semi-finite von Neumann algebra in standard
form is unitarily implemented. The methods used are extended to the study of unitary
implementation for a general von Neumann algebra of those automorphism groups that
commute with the one-parameter modular automorphism group.

1. Introduction

The Hilbert space H of a semi-finite von Neumann algebra % in
standard form can be viewed as the completion of a certain two-sided
ideal m!/? of . It is then not surprising that an automorphism (i.e. a
x-automorphism) y of A will be implemented by a unitary operator U
on H in the sense that y(4) = UAU ~* for every 4 in . If I is a group of
automorphisms of 2, one might conjecture that there is a homomorphism
U of I' into the group of unitary operators on H so that the homo-
morphism y— U, implements the action of I' in the sense that y(A4)
=U,AU, " forevery A e Wand y e I If I is a topological group and if the
action of I' is continuous in the sense that for every fixed 4 € W y— 7y, in
I' implies y(A4)—7,(4) in the weak operator topology of 2, then one
wishes U to be continuous in the sense that U,— U,  in the strong
(equivalently, weak) operator topology of H whenever y—7,.

We shall show that every continuous automorphism group of semi-
finite von Neumann algebra in standard form on the Hilbert space H
is implemented by a (continuous) unitary representation on H, provided
a certain joint continuity condition holds. We show that every con-
tinuous locally compact automorphism group automatically has this
joint continuity property by showing that a continuous locally compact
automorphism group of an arbitrary von Neumann algebra is unitarily
implemented on some Hilbert space (depending presumably on the
group) on which the algebra is faithfully represented as a von Neumann
algebra.
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The methods of proof are found in the literature. The main contribu-
tion here is expressing the objects involved in a form that these methods
can be applied. This involves the factorization of functionals through the
center of the algebra and then calculating with the resulting measurable
functions on the spectrum of the center. Once we make this factorization,
we use the method of Guichardet and Kastler [13, proposition 5], to
prove unitary implementation. Complications still arise here due to the
absence of the L' structure of [13] because of the more general hypo-
thesis. The method of [13] also is the same of R. Busby and H. Smith
[5;§ 5], even though those authors assumed that m!/? is invariant under
I' and also considered no topological questions.

Our main theorem is phrased in a more general way than is need for
the semi-finite case. This is done to include automorphism groups that
are “li¢’s” in the terminology of [13] with respect to a faithful normal
functional given by a cyclic vector on a von Neumann algebra. We show
what automorphism groups have this property in terms of their relation
to the modular automorphism group of the functional [23, cf. 21, § 13]
and then show these groups are unitarily implemented. Aside from
continuity we feel that here the proof of [13] applies directly; however,
the hypotheses on the algebra and the group in [13] are extremely
restrictive and so we do a very minimal amount of extra work in our main
Theorem 8 so that there should be no question concerning the validity
of the implementation.

As corollaries we obtain results that generalize the results of Aarnes
[1] and remove the separability condition on the group from [14] in the
semi-finite case.

2. Continuity

Let 2 be a von Neumann algebra and let 2, be the predual of 2, i.e.
the space of o-weakly continuous functionals on . Let I" be a topological
group of automorphisms of A ; the group I is said to be a continuous
automorphism group of U if, for every A e A and ¢ € A, the function
y— ¢(y(A)) is continuous on I'. The group I is said to be jointly con-
tinuous at a point (y, A) of the cartesian product of I' and a subset B of 2
if, for every ¢ e, the function (y, A')—¢(y'(4')) is continuous at
(y, A) on I' x B, where B is taken with the relativized o-weak topology.
If I is jointly continuous at (g, 0) on I' x B, then I is said to be jointly
continuous at the origin on I' x B. Here ¢ is the neutral element of I
Aarnes studied joint continuity at the origin on the cartesian product of
I' and the positive elements in the unit sphere of 2L.

A topological group I' of automorphisms of a von Neumann algebra
A on a Hilbert space H is said to be unitarily implemented on H if there is
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a unitary representation U of I' on H such that y(4)= U,AU, " for
every AeW and ye . The group I is said to be unitarily implemented
if there is a faithful representation = of the von Neumann algebra A
onto a von Neumann algebra B on a Hilbert space K and a unitary
representation U of I' on K such that n(y(4)) = U,n(4)U, " for all
AeUandye I (Sucharepresentation 7 is called covariant.) In the sequel
all unitary representations of a topological group are assumed to be
strongly continuous (i.e. continuous with regard to the strong operator
topology). An algebraic homomorphism of a group into the unitary
operators on a Hilbert will simply be called a homomorphism.

We need the following lemma of Guichardet and Kastler [13;
proposition 37].

Lemma. Let U be a von Neumann algebra on the Hilbert space H, and
let I' be a topological automorphism group of U that is unitarily imple-
mented on H. Then, for every ¢ in the predual W, of W, the function
=@ - is continuous map of I into U, taken with its norm topology.

The first proposition indicates the kind of hypothesis we must
examine to find a sufficient condition for unitary implementation.

Proposition 1. A unitarily implemented topological group I' of auto-
morphisms of a von Neumann algebra W is jointly continuous on the
cartesian product of I' and any bounded subset of .

Proof. For every ¢ € U, the function y— ¢ - y is continuous function
of I' into A, with its uniform topology by the lemma of Guichardet and
Kastler. Let B be a bounded subset of 2, let 4 € B, and let y e I'. Given
0> 0, there is a neighborhood N(y) of y such that

-y —¢ vl <ol +lub{||A] |AeBH!
whenever y € N(y). If |¢ - y(A"— A)| < 9, then

-7 (A) =@ - YA =@y =@ - (A) +]¢- (4 —A) = 2¢

Q.E.D.

We now show that in one case at least a continuous automorphism
group on a von Neumann algebra is automatically jointly continuous.
In fact, we prove that a continuous locally compact automorphism
group is unitarily implemented. For this, we use a construction of
Henle [14]. Henle used countable structures and so was able to base the
construction on the measurable fields of [9; Chapter I1]. Since it is well-
known that certain arguments fail without countability, we sketch a
construction in the hope that a certain amount of repetition will be
acceptable in the interest of clarity. The construction is more closely
related to ideas in Fell [12] than in [9].

18*
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We need the following result of Aarnes.

Lemma [ 1, Corollary, p.333]. If I' is a continuous locally compact
automorphism group of a von Neumann algebra, then I is jointly con-
tinuous at the origin on the cartesian product of I' and the positive unit
sphere of the algebra.

Proposition 2. Every continuous locally compact automorphism group
of a von Neumann algebra is unitarily implemented.

Proof. Let I be a continuous locally compact automorphism group
of the von Neumann algebra 2 on the Hilbert space H. Let u be right
invariant Haar measure on I'. Let K(I') be the algebra of continuous
complex-valued functions with compact support on I' and let K be the
linear subspace of all functions of I' into H generated by functions
f - x defined by (f - x)(y) = f(y)x, where fe K(I') and x € H. A positive
hermitian form can be defined on K by setting

EfixuZgiryp= lz_ﬁ(?)g,-(v)‘(xi,yj)du, (1)

for f;, 9, in K(I') and x;, y; in H. The set
K, = {xe K| {x,x) =0}

is a subspace of K and is equal to K, = {xe K| {x, y) =0, for all ye K}.
The hermitian form (1) may be transferred to an inner product

x4 Ko, y+ Kop = <X, )

on the factor space K — K, = H,. The completion of the pre-Hilbert
space H, is denoted by L?(I', H). Notice that we have written the inner
product in I*(I", H) as <, - > to distinguish it from the inner product of H.

Forevery Ae W, f1, ..., fs G1s s g iIN K(I) and X, ..., X, Y1y +ovs Vm
in H, let

(A Z fi-x;+ Ko, Z29;y:+ Ko) = f Zfz()’) gj(V)_ (V(A)xia J’j)d# .

Then for every A in U there is a unique bounded linear operator n(A)
on I*(I', H) such that

(r(A)x, yy = (4, x, y) ,

for every x,y in Hy,. The map = is a faithful representation of 2 on
I2(T', H). This completes the outline of the construction.

Now we show that 7 is g-weakly continuous. If {E;} is a monotonely
increasing net of projections in 2 with least upper bound E, then it is
sufficient to show that lub{n(E,)y, y)> = {(n(E)y, y) for every y € L*(I', H)
of the form y = f- x + K,, where f is a continuous function of compact
support I, on I and x € H. Now given ¢ > 0, by the lemma of Aarnes, we
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may find a neighborhood N of the neutral element ¢ of I' and a g-weak
neighborhood N’ of 0 in A such that (y(4)x, x) < ¢ whenever ye N and
Ae N'nU*" with 4] 1. Let y,,...,7, be elements of I" such that
{N7y;} covers Iy, and let i, be an index such that y;(E—E;)e N’ for
i=iyandj=1,...,n Then we have that

(’})(E - Ei)xa X) <@
for all i 2 i, and all y € I';. This means that

(n(E)y, y> — <m(E)y, y> < lub{|f()* 1y e I'} ulIp)e,

for every i = iy. Thus lub<{n(E))y, y> = {(n(E)y, y).

Now, we argue as in Henle [14]. For every ye I" and fe K(I'), let
f7eK(I') be given by f7(0) = f(dy). Then given fi, ..., f,, g1s ... G IN
K(I') and Xy, ..., X,, Y1, ..., Vs in H, we have that

<Zfi7'xi+K0’Eg;/'yi+K0>:<2f£'xi+K07Zgi'yi+KO>'

Hence, for each y € I', there is a unique unitary operator U, on L*(I', H)
satisfying
U,Efi-xi+Ko)=Zf7 x;+ K,

for every fi,...,f, in K(I') and x,, ..., x, in H. Furthermore the map
y— U, is a unitary representation of I' on L*(I', H). However, an easy
calculation also yields
U,m(A) U, ' = n(y(4)),
for every AeA and yeI'. Q.E.D.
The next corollary extends the lemma of Aarnes.

Corollary 3. Every continuous locally compact topological group of
automorphisms of a von Neumann algebra is jointly continuous on the
Cartesian product of the group and any bounded subset of the algebra.

Proof. Let the notation be the same as Proposition 2. By Proposi-
tion 1 the map (y, A)— U, AU, is jointly continuous at (y,, 7(4,)) on the
cartesian product of I" and the image 7(*8B) of a bounded subset B of A.
Since m and n~! are g-weakly continuous, the map

(, A)>n " (U, n(A) U, ") = p(A4)

is jointly continuous at (y,, 4,) on I' x B. Q.E.D.
We can obtain a new proof of a result of Aarnes [2; Proposition 6.1].

Corollary 4. Let U be a von Neumann algebra, let W, be the predual
of A, and let I' a continuous locally compact automorphism group of .
Then, for every ¢ € U, the map y— ¢ -y is continuous where W, is taken
with its norm topology.
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Proof. Proposition 2 and Lemma of Guichardet and Kastler.

It is now possible to improve some continuity conditions that are
found in the literature. Let B be a C*-algebra with identity on a Hilbert
space H. Let 2 be the von Neumann algebra generated by B on H and
let A, be the predual of A. Let I' be a locally compact group of auto-
morphisms of B. For each y e I" and each ¢ € U, there is one and only
one functional ¢, € U, satisfying the relation ¢ (4) = ¢(y(A4)) for every
A e B (cf. [2; p. 334]). Aarnes [2; Theorem] showed the following state-
ments are equivalent:

(1) each y € I' can be uniquely extended to an automorphism y” of A
such that {y"|ye '} is a continuous automorphism group of 2; and
(2) y—¢, is a continuous map of I' into A, with its o(A,, AW-
topology. By Corollary 4 (2) may be replaced by the following statement
(2) y— ¢, isacontinuous map of I into A, with its uniform topology.

If the Hilbert space H is separable and if the topology of I' has a
countable base, then Kallman [17] proved that (1) is satisfied whenever
each y can be extended to an automorphism y" of A and y— ¢, is con-
tinuous in the o (2, B)-topology of A,.

Now as a special case of Theorem I11.1 of Borchers [3], the identity
representation of B on H is covariant extendible (i.e., is unitarily equiv-
alent to a subrepresentation of a covariant representation) provided (i)
that I' is strongly continuous on B in the sense that, for every B in B,
the map y —y(B) is continuous from I into B with its norm topology and
(i1) that, for every vector state w of H, the map y — w - y is continuous from
I' into the dual B* of B with its norm topology. Due to the Kaplansky
density theorem [9; I, § 3, Theorem 3], the condition (ii) implies (1) via
(2"). By Proposition 2, there is a faithful normal representation 7 of 2l on
a Hilbert space H, such that {y"|y e I'} is unitarily implemented on H,.
This means that the identity representation of B on H is quasi-equivalent
[8;§ 5] toa covariant representation of B (i.e., the identity representation
is quasi-covariant, in the terminology of [3]). Since every multiple of a
covariant representation is covariant, the identity representation is
covariant extendible (cf. [8; 5.3.1]). Hence, we see that condition (ii) is
necessary and sufficient for the identity representation to be quasi-
covariant. In general, let 7 be a representation of the C*-algebra B on the
Hilbert space K. Then we see from Proposition 2 that 7 is quasi-covariant
if and only if (i) y—>w - -y is a continuous map from I" to B* with its
norm topology for every vector state w on K, and (iii) the kernel of 7 is
invariant under I". Borchers [3; I11.1] showed that, if I is strongly con-
tinuous, the condition (ii) is necessary and sufficient for a representation
to be covariant extendible. The strong continuity is hypothesized so that
the covariant algebra [10] can be employed.
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3. Unitary Implementation

Let 3 be a commutative von Neumann algebra. There is a locally
compact space Z and a Radon measure v on Z so that 3 with its o-weak
topology is identified (i.e. isomorphic) with the algebra L” = LE(Z,v)
of all essentially bounded complex-valued measurable functions on Z
with its o-weak topology, i.e. with the topology induced on L* by
L(Z,v). Let 37 be the set of all positive, finite or infinite valued, measur-
able functions on Z. Functions in 3" which are equal locally almost
everywhere are identified with each other in the same way the functions
of L are identified. The set 3* is embedded in 3* in a natural way. Since
each majorized monotonely increasing net in 3 ¥ has a least upper bound
in 3%, each monotonely increasing net in 3* has a least upper bound in
3* so that the least upper bound in 3% of a majorized monotonely
increasing net in 3% is also in 3*. Notice that the least upper bounds
are in general not pointwise least upper bounds. For every S in 3*, let
o(S) denote the essential upper integral of S. The function w of 3" is a
normal semi-finite faithful trace of 3 whose restriction to 3* is a
normal semi-finite faithful trace of 3 [6 and 9; I11, § 4]. Without further
mention we shall always assume some choice of Z and v has been made
for every abelian von Neumann algebra.

Any element Q in 37 is actually a class of functions. Any two elements
of the class differ from each other on a set which is locally of measure 0
Le. a set whose intersection with each compact set is of measure zero. As
is customary, we consider algebraic relations for the elements of 3* as
though they were actual functions with the modifier locally almost
everywhere adjoined. This means that two different choices of represent-
ing measurable functions for the various classes involved in the algebraic
relations give two different resulting measurable functions which lie in
the same class in 37 i.e. which are equal locally almost everywhere. In
the sequel, we pass freely from classes to representations of the classes.
Underlying this, however, is the assumption that verification has been
made that such passage is legitimate.

Let Q be an element of 3* such that 0 < Q({) < + oo locally almost
everywhere on Z. For every n=1,2, ..., the characteristic function E,
of the measurable set {{ e Z|n~! £ Q({) < n} is a projection in L*. The
sequence {E,} of projections is clearly monotonely increasing and
bounded above by the constant function 1. We show that lubE, = E
is equal to 1. Indeed, let P be the characteristic function of any compact
set X in Z. By the definition of locally almost everywhere, we have that
{{eX]Q(0)=0or Q({) = + oo} is a set of measure zero. Hence, the set
X—Xn(u{{eZn' £Q()<n} has measure zero. Thus EP =P
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locally almost everywhere. This proves that the function E is equal to
1 locally almost everywhere.

Now let y be an automorphism of 3. The element E,Q determines a
class of essentially bounded measurable functions and so E,Qe 3.
The sequence {y(E,Q)} is monotonely increasing in 3" since {E, Q} is
monotonely increasing in 3*. We denote the least upper bound of
{(E,Q)} in 37 by »(Q).

We make some preparations for the Theorem 8 in the following
lemma.

Lemma S. Let 3 be an abelian von Neumann algebra and let y be an
automorphism of 3. Let Q and R be elements of 3* suchthat 0< Q({) < + 0
and 0 < R({) < +oo locally almost everywhere on Z. Let {F,} be a mono-
tonely increasing sequence of projections in 3 with least upper bound 1
such that QF,e 3 for every n=1,2,...; then the following statements
are true:

(i) luby(QF,) in 3% is equal to y(Q);

(i) 0<y(Q) Q)< +<o0 locally almost everywhere on Z ;
(iii) y(Q)»(R) =»(QR), and
(iv) Q@ N =@

Proof. (1) If {4,} is a monotonely increasing sequence of functions
in 3, then the function A({)=lub,4,() is measurable and hence in
3% [4; 1V, §5, Corollary 1, Theorem 2]. This means that lubA4,= A4
locally almost everywhere. Applying this fact to the monotonely in-
creasing sequences {y(QE,F,)}, , and {y(QE,F,)}, we get that
lub,, ,7(QE, F,) Z lub,y(QE, F,) = y(QE,,) locally almost everywhere and
then that lub,, ,7(QE, F,) = luby(QE,,) = y(Q) locally almost everywhere.
Here E,, is the characteristic function of the measurable set
{{eZ|m ' <Q() < m}.Since y(QE,, F,) < y(QE,,) locally almost every-
where, we obtain the reverse inequality y(Q) = lub,, ,7(QE,F,) locally
almost everywhere. This means that y(Q)=lub, ,y(QE,F,) locally
almost everywhere. Now working with {y(QF,)}, we obtain luby(QF,)
=lub, ,y(QE, F,) = y(Q) locally almost everywhere.

(1) Since 0<Q({) < + oo locally almost everywhere, the least upper
bound of the projections {E,} defined in (i) is 1, and so the least upper
bound of the monotonely increasing sequence {y(E,)} is also 1. Now let
Y be a compact subset of Z. Then the sets

{CeY|yE)() =0 forall n=1,2,..}
and

{{e Y[9(Q) Q) #1uby(QE,) ()}
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have measure zero as do the complements with respect to Y of the sets

{{eYIm™y(E,) () £v(QE,) () £ my(E,) ()},
{{e Y9(QE,) (O v(E,) () =y(QE,) ()} for nzm,
{{e YIy(QE,) () =v(QE,.) ()} foralln.

Thus, there is a subset Y, of Y of measure zero such that {e Y-,
implies that y(E,,) ({) =1 for some m and that

7(Q) () =1ub,»(QE,) ({) = lub, . ,»(QE,) ()
=1lub, ., 7(QE,) () y(E,) () = »(QE,) ()

is in the real interval [m~*, m]. So 0<y(Q)({)< +oo locally almost
everywhere.

(iii) Let G, be the characteristic function of the set {{eZ|n'
< R({) = n} for every n=1,2,.... We have that {G,} is a monotonely
increasing sequence of projections of least upper bound 1 and thus that
{E,,G,} is a monotonely increasing sequence of projections of least
upper bound 1. By part (i) we have that y(QR) = lub,, ,7(QRE,, G,). But
y(QR) = y(QE,) y(RG,) locally almost everywhere and so y(QR)
= 7(Q) 7(RG,) locally almost everywhere and finally y(QR) = y(Q) y(R)
locally almost everywhere. But it is clear that y(QRE,,G,) =< y(Q) y(R)
locally almost everywhere. Hence, we have that p(QR) < y(Q)»(R)
locally almost everywhere. Thus we obtain y(Q) y(R) = y(QR).

(iv) Notice that 0<Q ({)< 4+ oo locally almost everywhere and
thus y(Q ~!) exists. From (iii) we see that y(Q 1) (Q) = (@71 Q)=y(1) =1
locally almost everywhere. Thus p(Q ™) =y(Q) ' in 3*. Q.E.D.

The following definition is purely for convenience. It allows us to
treat simultaneously the two cases in which we are interested.

and

Definition 6. Let 2 be a von Neumann algebra with center 3. A
function @ of A™ into 3" will be called an extended normal semi-finite
faithful module homomorphism if

(i) ®(A+ B) = ®(A)+ @(B) for every A, Bin A*;

(ii) #(AB)= AP(B) for every Ain 3" and Bin A™;

(idi) if @(4) =0 for 4 in A", then A = 0 (faithful);

(iv) theset {4 e A" | w(P(A)) < + o0} is the set of all positive elements
of a weakly dense two-sided ideal m of U (semi-finite);

(v) if p=w-® on A" and ¢ is the unique linear functional on m
defined by linearity, then 4 — ¢$(AB) is o-weakly continuous on 2 for
every B e m (normal).

If @ is an extended normal semi-finite faithful module homomorphism,
then the ideal m (iv) will be called the ideal of definition of ¢ = w - .
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Since nt is dense in U, there is a monotonely increasing net of projections
{E,} in m with least upper bound 1. Therefore, given any nonzero A4 in
A™, there is an E, with A2 E, A% % 0. This means that every nonzero
element of A majorizes a nonzero positive element B of m. So the function
@(B) is finite locally almost everywhere. Hence, there is a projection F
in 3 such that F@(B) = &(BF) is a nonzero element of 3. This mecans
that 4 majorizes a nonzero element BF in m such that ®(BF) is in 3.

The set m'? = {4 A| A*4em} is a two-sided weakly dense idcal
of A [9; I, § 1, Proposition 11]. The relation

(4, B) = ¢(B*A)

defines an inner product on m!/2. The completion of m'/? under this
inner product will be denoted by H,. We notice that m as well as m'/? is
dense in Hy. Indeed, let 4 €(m'/?)* and let ¢ > 0. There is a monotonely
increasing sequence {E,} of projections which commute with 4 and
satisfy the relation lubE, = 1 such that, for each E,, there exist orthogonal
projections F, ..., F,, which also commute with 4 and positive numbers
Ays ooy Ay which satisfy (1 —9) AE, < X 4 F; < AE,. This means that
> A;F,em and

|A—Z AFl,<|A—AE,|,+ |AE,— £ LF),
< (1= E)A*)'2 + op(AE,A)?
S H((1—E)A?)'? +od(A2)2,

Since lirrlnqﬁ((l —E,)A%*) =0 by hypothesis (v), we see that A is in the

closure of m in H,. But each element in m'/? is a linear combination of
elements of (m'/?)*. Hence, m is dense in m!/2 or equivalently m is dense
in H,. For each 4 € 2, the map B— 4B of m'/? into m'/? is a bounded
linear operator of m'/? and so the map can be extended uniquely to a
bounded linear operator n,(A) of H,. The map 7, of 2 into the bounded
linear operators of H, is a faithful representation of 2 on H,,. It is called
the canonical representation of U induced by ¢. If {4, } is a monotonely
increasing net in A" with least upper bound A, then the least upper
bound of the monotonely increasing net {m,(4,)} is m,(A4). Indeed, we
have that lub(n,(4,) B, B) = lub¢(B* A, B) = $(B*AB) for every Bem
since limB* A, = B* A (o-weakly). Using the fact that m is dense in Hj,
we conclude that lubmy(A4,) = ms(A).
We now perform a calculation that we shall need.

Lemma 7. Let N be a von Neumann algebra with center 3. Let & be an
extended normal faithful semi-finite module homomorphism of " into the
space 3* which is formed with respect to the normal semi-finite faithful
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trace w of 3. Let y be an automorphism of U such that there exists a Q,
in 3% with o - Q,-®=w-D-y. Then the following statements are true:

(1) 0<Q,(0) < + 0 locally almost everywhere on Z; and
@) if Q' €3+ and w - (Q'®)=w- @y, then Q' = Q,. Suppose 6 is an
automorphism of W for which there exists a Q; in 3* with @-® -0
= - (Q;P); then
(if}) @ @ (0) = ©-(Q,071(Q,) D).

Proof. (i) For simplicity let Q, = Q. Let X be a measurable subset of
a compact set in Z, and let E be the projection in 3 which corresponds
to the characteristic function of X. If EQ = 0 locally almost everywhere,
then w(@(y(E)) = 0. This means that y(E) = 0 since w and @ are faithful.
Hence, the projection E vanishes and X is of measure zero. This means
0 < Q(0) locally almost everywhere. Now let X be a measurable subset
of a compact subset of Z such that Q({) = + oo for all { € X. If X is not of
measure zero, the characteristic function E is nonzero. For every nonzero
Ain A with 0 < 4 < E, we have that ®(4) e 3" is nonzero and majorized
by ®(E) = E®(E). Hence, the function Q@(A4) is equal to + oo on a set of
positive measure. On the other hand, we can find a nonzero 4 in A with
0< A < E such that - ¢(y(4)) < +co due to the semi-finiteness of @
(cf. discussion following Definition 6). We have obtained a contradiction.
Therefore, we have Q({) < + oo locally almost everywhere.

(ii) Let Q' be in 3% so that w-(Q'®)=w- ®-y. By (i), the function
Q' is finite locally almost everywhere. Let E be a nonzero projection in
3 suchthat Q'E and QF arein 3. There is a nonzero A in m™ majorized by
E such that &(A) is in 3. This means that

w(Q'E®(A)B) = w(QEd(A) B)

for every Bin 3%. Since w is a normal semi-finite faithful trace on 3, we
obtain that Q'E®(4) = QE®(A). Hence, we have shown that for every
nonzero projection E in 3 such that both Q'E and QF are in 3, there is a
nonzero element C in J with 0 < C < E such that Q'EC = QEC. In view
of the fact that Q" and Q are finite locally almost everywhere, we find
that Q' = Q.

(iii) Let F, be the characteristic function of the measurable set
{(eZ|Q()<n}. For every AeU*, we have that

lubQ,;6~"(QF,) ®(A) = 0;0~(Q) D(4).
in 3% (Lemma 5 (i)) and hence that

lubw(Q,;0 ™1 (QF,) #(A)) = w(Q50 ' (Q) ¢(4))
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[4;V, § 1, Proposition 1e]. But we have that

(@561 (QF,) @(A4)) = o(®((QF,) 6(4)) = »((QF,) #(3(A)))
@(QP(F,0(4)) = o(®(y(F,5(A)))
o(y(F,) ®(y6(4))) .

Since lubF, =1 and so luby(F,) = 1, we have

@(Q;671(Q) 2(4)) = w(®(y5(4))). Q.ED.

We are now ready to prove our principal theorem. We perform an
analysis similar to that of [13; Proposition 5] without recourse to an
[!-structure or to the fact that the locally compact space Z in [13] can be
taken to be the spectrum of 3; or equivalently, an analysis similar to that
of [5; § 5] without recourse to the invariance of the ideal of definition
under the automorphism group.

Theorem 8. Let U be a von Neumann algebra with center 3 and let T’
be a continuous automorphism group of W. If I is not locally compact,
then assume that I' is jointly continuous at the origin on the cartesian
product of I and the unit sphere of 3. Let ® be an extended, normal semi-
finite faithful module homomorphism of W* into the space 3* which is
formed with respect to the normal faithful semi-finite trace w of 3. For
each y eI, assume there is a Q, e 3% such that ¢y = - (Q,P) where
¢ = w - @. Then the automorphism group I is unitarily implemented on the
Hilbert space H, associated with the canonical representation induced by ¢.

Proof. At the outset we identify each element of 2 with its image
under the canonical representation induced by ¢.

We have that 0 < Q,({) < + oo locally almost everywhere on Z. Hence,
the function Q;' in 3* also satisfies the relation 0<Q; ' ({)< +
locally almost everywhere on Z. The function R,=(Q;")"* in 3+
satisfies the relation

0<R, )<+

locally almost everywhere, and thus 5(R ) is defined for every § e I', and
is equal to the least upper bound in 3 * of the sequence {6(R, EY)}, where
E} is the characteristic function of the measurable set {C eZ|n!
g Q,'(0)<n} or equivalently the set {{eZ|n "> <R/()=n'?}
(Lemma 5).

Now we outline the steps of the proof. Let m be the ideal of definition
of ¢. For every y e I', we show (I) that the relation U,4 = limy(R,E}A)
(Aem'’?) uniquely defines a unitary operator U, on H = H,. Then,
using the lemmas we have prepared, we verify (II) that y — U, is a homo-
morphism of the group I' into the group of unitary operators of H,
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(III) that U, AU, ' = y(A) for every A e W and y e I', and finally (IV) that
y— U, is continuous.

I. We now proceed with the initial step, viz., the definition of U,. Let
Aem'’?andlety e I'. First we show that y(R, E? A) e m"/%. For simplicity,
let R E} = R}. We have that

PR, Y(RIA) = - DH((R]) 4 4)
= (Q,(R))? B(4* 4)) = P(E}A* A).

for every n=1,2, ..., since Q,(R})* ®(4*A4) = E}®(A*A) locally almost
everywhere in 3 Because A*Aem and 0 < E"A*A < A*A, we see
that y(R1A4) e m'/2.

Now we show that {y(R}A)} is a Cauchy sequence in H. Indeed, for
n = m, we have that

Ip(RyA) = »(RT A5 = ((E; — E}) A* A)

since Q,(R}— ) P(A*A) = (E} — ET) #(A*A4) locally almost every-
where in R+ The o-weak contmulty of B—@(BA*A) on A and the
o-weak convergence of {E]} to 1 implies that {y(R}A)} is Cauchy in H.
We denote the limit of this Cauchy sequence in H by U, A.

It is clear that U, is a linear map of m'/? into H. But we also have that

(U,A, U,A) = lim(y(R"4), y(R" A))
=lim$(EIA* A) = P(A* A) = (4, A),

for every A e m'?. This means that U, is an isometry on m'/*. Because
m'/? is dense in H, the map U, has a unique extension to a linear isometry
of H into H. We also denote this extension by U,.

We now complete the proof this initial step by showing that U, is a
unitary operator. It is sufficient to show that the range of U, contains an
arbitrary A4 in the dense set m'’> of H. Because y~'(R]_; A)e m'/? for

every n= 1,2, ..., the element
U,(r 7 (R A)) = imy(R}) Ry _, A
is in the range of U,. However, we have that
YRR = y(ET)E]_, ()

locally almost everywhere by Lemma 5 (ii), (iii) and (iv) and Lemma 7
(11i). Hence, we have that li'{]ny(E;")E;'_lA is in the range of U,. This
means that E]_; 4 is in the range of U, as is shown by the relation

Iy (EYE; 1 A—Ej_ Al = $((1—9(ED)E}_ A% A4)
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coupled with the fact that {y(E"')} converges g-weakly to 1. Likewise, the
relation )
IE1_ A= A3 = (1 E)_,) A% 4)

implies that A is in the range of U,. Thus, the dense set m'/? is in the range
of U,. Because U, is an isometry, the range of U, is actually H and so
U, is a unitary operator.

II. We now show that y— U, is a homomorphism of the group I’
into the group of unitary operators of H. Let 4 € m'/? and let y and J be
in I'. We calculate U,U;A. We have that

U,Us 4 = lim U,(3(Ry A)) = lim limy (RI3(RY A)) )

since 6(RYA)e m'/? (Part I). By Lemmas 5 (iii), (iv), and 7 (ii), (iii) we
conclude that

R},é = Rﬁé‘l(R.},) .
Then we have that

RYEF0 71 (E)) = R ;ES E5 67 (ES) = (R,ES) (071 (R,) 6~ (E})) EL5
= RPSTU(R) EX,

in 3 for every k, m, n, by Lemma 5 (iv) and Lemma 7 (iii). Applying 7o
to both sides, we obtain

PO(RY,) 7O(E) y(Ey) = yo(RF) 7(R}) yO(EX,) 3)
and this yields
178(RE, B30 (E3) A) — y0(R},, B30~ (E}) A)ll
= ” Uya(Ely(éE:s”fS—l(E")A E’JE,; I(E;)A)”¢
= Q((E*;EPs~(En) — EN,E58 1 (EL)2 A* AP/,
From this we see that all of the possible iterated limits of
{ya(R’*;éEglé_1(E;I!)A)}k,m,n

exist and are equal. Indeed, the functional B —>¢3(BA*A5 is g-weakly
continuous on A and the sequences {E},}, {E}'} and {6~ '(E)} converge
to 1 strongly in the unit sphere of 3. But we now have that

U,s(A) =limU,,(E'4) = lim im U, Ls(Ey 6~ (ED) A)
= hm 11m hmy&(R’y‘(,E'” Y(E7) A)
= h;fn lim limyd(RE; E5 6~ (E}) A)
= li;fn(lirf,n limy(R}0(RF AEY,)))
= limU, Uy(4E%,) = U, U; 4
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by relations (3) and (2) and the fact that hmE’"A A, hmE" “YEDA
=FE A, and 11mAE"6— A in H. Therefore we have that U, o= U, U,

because m'/? is dense in H. Finally U,-, = U, ! since U, = 1. This com-

pletes the proof that y — U, is a homomorphism of I'.

I1I. We now show that U,AU, " = y(A) for every Ae U and yeT.
We recall that each element of 2 has been identified with its image
under the canonical isomorphism induced by ¢. For every Bem!/?,
we have that

U,AU'B = lir{n U, (4y (R} -.B))
= lign U,(y " (R]-1p(4)B)) = lign lirﬂny(Rfj') R} y(A)B
= li;n li;lny(E’y") E}-y(4)B

because 7' (R]- IB) and y"'(R)-.p(4)B) are in m'? and because
YRR -1 = y(ET)E} -, by relation (1). But we have that

hgn higny(E'y") EY-.y(4)B = lil{nEf,'_ly(A)B =7y(A4)B.

Therefore, we have that U,AU;'B=7(A4)B for every Bem'? and
consequently U, AU, = y(A).

IV. We now prove that y— U, is continuous. We first show that
(B,U,A)—(B, A) as y—¢ for every A and B in m™. Since B € m and since
7(A)— A (strongly) as y — &, we have that ¢(y(A4) B) > $(AB) as y . Thus,
it is sufficient to show that {(B, U,4)— $(y(A)B)} converges to 0 as y
tends to &. We have that

(B, U, 4) = $(y(4) B)| = lim|d(y (R} A) B) — SO(E; H)B)  (4)

since lirllny(Ef;) = 1 (strongly)and C — ¢(C B) is strongly continuous on 2.
The operator R} is a positive and so there is a positive operator S, in the
unit sphere of JE7 such that (R} 4 E%) S’ = E}}. On account of the manner
in which the EY are ordered, we may find a positive element S, in the unit
sphere of 3 such that S E7 = §;. We then obtain that
—E}= (R}~ E)) (R} + E})S, = (R} — E})S,
and that )
P((ARS— E)B) = p(7(A((R})* - E3)S,)B)
= p(y(R}S,A?) p(R3 A2y~ (B) - d(y(AE}S,)B).
We notice that 4'/? e m'/2. Thus, from (4) and (5), we get
(B, U,A) = $(y(A)B)| = [(U,(4'>y~" (B)), Uy,(S,4' %) — d(y(4S,) B
=[(4'2y71(B), 5,4"%) = $(»(4S,)B)| (©)
=1$(S,47 7" (B) = $(»(4S,)B)|

(5)
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because U, is a unitary operator. We now have the correct estimates and
shall complete the proof using an argument by contradiction. Assume
there is a ¢ >0 and a net {y;} in I" that converges to ¢ such that

(B, U,,4) — $(y:(4)B) = ¢

for every i. Because the unit sphere of 3 is weakly compact, we may
assume (by passing to a subnet if necessary) that {S, } converges to an
element S in the unit sphere of 3. By the joint continuity hypothesis
(or by Corollary 3 if I" is locally compact) we conclude that {y,(S,)}
converges weakly to S. By the continuity hypothesis, we then can con-
clude that {S,y;'(B)} and {7:(S,,) 7:(A4)} converge weakly SB and SA
respectively. From (6), we get

lim|(B, U, 4) — ¢(7(4)B)| = |$(SAB) — H(SAB) = 0.
This contradicts the choice of {y;}. Hence, we have that
lvigrg(B, U,A)= (B, A).
Since linear combinations of m™ are dense in H, we have that
lyi_lg(x, U,y)=(x,y) foreveryx,yin H.

Because the map y—y4é is continuous at ¢ on I' and because y— U, is a
homomorphism, we see that

lim(x, U, ) = (x. Uy)

for every x, y in H. Therefore, the map y— U, is continuous. Q.E.D.

4. Applications to Algebras in Standard Form

A semi-finite von Neumann algebra 2 on a Hilbert space H is said
to be in standard form if there is a Hilbert algebra 4 that is dense in H
such that U is generated by the extension to H of the left multiplication
operators of A. Every semi-finite von Neumann algebra is isomorphic to
a von Neumann algebra in standard form [7 and 9; I, § 5-6].

The next theorem applies Theorem 8 to algebras in standard form.
It is known under more restrictive hypotheses ([14], [16; Remark 4.75],
[18;§2]).

Theorem 9. Let U be a semi-finite von Neumann algebra in standard
form on a Hilbert space H. Let I be a continuous automorphism group of .
If I is not locally compact, then assume I is jointly continuous at the
origin on the cartesian product of I' and the unit sphere of the center 3
of W. Then the automorphism group I is unitarily implemented on H.
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Proof. Let 3 be identified with the space of all essentially bounded
measurable functions on the locally compact space Z with respect to a
Radon measure v. Let w be the normal semi-finite trace given by the
essential upper integral defined by v on the space 3* of all positive
(finite or infinite) measurable functions on Z. Let @ be a normal semi-
finite faithful 3-trace on A*. This is an extended 3-module homo-
morphism on A" in the sense of Definition 6. The function ¢ =w - P
is a normal semi-finite faithful trace A* (cf. [9; IIL, §4]). For every
y e I', we may easily verify that ¢ -y is also a normal semi-finite faithful
trace on A", Hence, there is a normal semi-finite faithful 3-trace @, on
A* such that ¢:v=w- ®, (cf [9; 111, §4, Proposition 3]). However,
there is a Q, in 3j such that Q. @ = @, [9; III, § 4, Theorem 2]. Thus,
there is a Q, in 3" such that w-®-y=w (Q,P) for every yeI. By
Theorem 8, we conclude that there is a unitary representation U of I" on
H, such that my(y(4)) = U,m4(A) U, *. Here m, is the canonical representa-
tion induced by ¢ on the Hilbert space H,. The algebra n,() on H, is
also in standard form [9; I, § 6, Theorem 2]; and therefore, the iso-
morphism 7, of A onto m,(A) is implemented by an isometric iso-
morphism of H onto H, [9; I, § 6, Theorem 4]. This means that I is also
unitarily implemented on H. Q.E.D.

The next corollary extends the results of Kallman [18]. It also
extends results of Henle [14] in the semi-finite case except that Henle
assumed only measurability while we assumed continuity owing to the
noncountable situation before us.

Corollary 10. Let U be a semi-finite von Neumann algebra with
properly infinite commutant on a separable Hilbert space H and let I be a
continuous automorphism group of W. If T' is not locally compact, then
assume that I is jointly continuous at the origin on the cartesian product
of I and the unit sphere of the center of W. Then I is unitarily implemented
on H.

Remark. If I' leaves the center of A elementwise invariant, we may
replace the condition that H is separable by the condition that 2 is
countably decomposable. We also note that here no joint continuity
hypothesis is needed.

Proof. Let ¢ be a normal faithful semi-finite trace on U, and let
m, be the canonical representation of 2 on H,, induced by ¢. There is a
unitary representation U of I' on Hy such that my(y(4)) = U,n,4(A) U,”"
for every yeI' (Theorem 8). Let K be a Hilbert space with countably
infinite dimension. The commutant of 7,4(2)® Cy on the tensor product
H,® K is m,(A) ® L(K). Here Cy is the algebra of scalar operators on
K and L(K) is the algebra of all bounded operators on K. But 7,() and
ms(A) are anti-isomorphic and so m,(A)" is also o-finite [9; III, §1,

19  Commun math Phys, Vol. 25
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Corollary, Theorem 6]. Thus, the algebra m,(U)® L(K) is o-finite and
properly infinite. This means that the isomorphism 4 —m,(4)®1 of A
onto my(A)@ 1 is spatial [9; 111, § 8, Corollary 8]. But the map y— U,®1
is a unitary representation of I' on H,® K. Therefore I" is unitarily
implemented on H.

We now derive the second application of Theorem 8.

Let 2 be a von Neumann algebra on a Hilbert space H with cyclic
and separating unit vector x. Denote the normal faithful state w,(A4)
=(Ax,x) on A by w. Then there exists a one-parameter group
{o,] —oo <t< oo} of automorphisms of A associated with w such that
- g, = o for all ¢t and such that for every 4, B in U, there is a function
F(4) holomorphic on the strip 0 < ImA< 1 and bounded on 0<ImA <1
with boundary values F(t) = w(o,(4)B) and F(t +i) = w(Ba,(A4)) (cf. [21;
§ 13]). The state w is said to satisfy the Kubo-Martin-Schwinger (KMS)
boundary conditions for 1 with respect to the one-parameter group {a,},
and {o,} is called the modular automorphism group associated with w
[21,§ 13]. Asis well-known the group {o,} is unitarily implemented on H.
In fact, we have that (£ A4;x,X B;x)=(Z g,(4,)x,X0,(B,)x) for all
Ay ...y Ay By, ..., B, in A. Hence the map Ax—0,(A4)x can be uniquely
extended to a unitary map U, of H such that ¢,(4) = U,AU,” ! for every
A e U. Also the map t— U, is a unitary representation of the reals. For
future reference we note that U,x = x for all ¢.

We now consider those automorphisms y of 2 such that w -y = 0Q,
for some Q, in 3 *, where 3" is formed with respect to e restricted to the
center J of 2. Before we set up the precise situation, we characterize
those automorphisms y for which Q, exists. These automorphisms leave
w J-invariant in the terminology of Guichardet and Kastler [13;
Definition §].

The next proposition generalizes Theorem 1 of [15] to auto-
morphisms that do not leave the center elementwise invariant.

Proposition 11. Let A be a von Neumann algebra on a Hilbert space H
with center 3. Let x be a cyclic and separating vector for U and let {o,}
be the modular automorphism group associated with the state w = w,. Let
y be an automorphism of W. Then there exists a positive self-adjoint ( per-
haps unbounded operator) C affiliated with 3 so that x is in the domain
of Cand w¢, = w -y if and only if y commutes with o, for every —oo <t < 0.

Proof. Suppose that C exists. For every n=1,2, ..., let E, be the
spectral projection of C associated with [0,n] and let CE,= C,. The
monotonely increasing sequence {E,} of projections in 3 has least upper
bound 1.

First we show that w(y-o,-77'(4))=w(4) for all 4eA and
—oo < t<oco. We notice that ¢,(B) = B for all Be 3 [21; Lemma 15.8].
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We have that
(70, y7H(A) = (o.(y " (4)Cx, Cx)
=lim(o,(y (4) C,x, C,x)
=1i'11'n( oy~ (A)C})x, x)
=lirxln(y A)CEx, x)=(y"1(A4)Cx, Cx)
=(A4x,x).

Hence, the state w is invariant under y - g, -y~ ! for every —oo <t < +00.

Now we show for every 4 and B in 9, there is a complex-valued
function F(4) defined on the strip 0 < ImA <1, that is holomorphic in
0<Imi<1 and continuous and bounded on 0 <ImA<1, and that
satisfies the KMS boundary conditions

F(t)=(y -0,y '(4)Bx, x),
F(t+i)=(By-0,-y~ 1 (4)x, x)

and

for all —co<t<+o. Let A'=9"1(4) and B =y Y(B). Forn=1,2, ...
the function F,(4) defined on the strip 0 < ImA <1 by

F,(A)=(4""BC,x, A*C,x) if 0<Imi<1/2
=(A'C,x, A VB*C,x) if 12<Imi<1

is holomorphic for 0 <ImA<1 and continuous and bounded for
0=ImA=1[22; Remark, p. 37]. Here 4 is the modular operator. Also
we have that

F,(t)= (6 (4)B'C,x, C,X)
=(y-a,-y7'(4) By(E,)x, x)
F,(t+i)=(B'o,(4)C,x, C,x)
=(By oy A V(E)x, x),

and

for all real t. Comparing the values of F, and F,, at s+ it with s and ¢
real and 0 £t £1/2, we obtain
|F, (s +it) = F,,(s + it)] < | 4'B'(C, — C)x]| | 4*C,x]|
+4'B'C, x| |A*(C,,~ C,)x]|

by [22; Remark, p. 37]. But (1 + 4'/?)~! is a bounded operator such that
A'(1+ 4Y*)7" is bounded with norm not exceeding 1 for 0 <t <1/2.

19*
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Hence, we have that
”AtB/(Cn - Cm)x“ é H(l + A”Z) B/(Cn - Cm)x”
< |IB(C,— C)x| + [J4'*(B'(C,— C,)x)|

=2|B| (C, = Cp)xl s
and that

14*B'Cpx|| = 2||B'| lub] C, x| .

Here J is the conjugate-linear isometric isomorphism of H such that
JAY2Dx = D*x for every D e . Since x is in the domain of C, we see
that lub|C,x| < +oco and that lrl;ln3|((C,,~Cm)x(| =0. Hence {F,(A)} is

uniformly Cauchy on 0 < Im4 =< 1/2. Likewise we obtain that {F,(4)} is
uniformly Cauchy on 1/2 <ImA < 1. This means that {F,} converges
uniformly to a function F on 0 <ImA <1 and hence that F is holo-
morphic on 0 <ImA<1 and continuous and bounded on 0 < ImA < 1.
Now we calculate F(t) and F(t + i) for all real t. Since {y(E,)} converges
strongly to 1, we have that

F(t) = limF,(t) = 1i3n(v -0,-7 7 (A) By(E,)x, X)
=(y-0, -y "(4)Bx, x)

and likewise that
F(t+i)=(By-o,-7 ' (4)x,x),

for all —oo<t< +o0o. This means that t—7-0,-y~ ' is the modular
automorphism group of the normal faithful state w of 2. By the unique-
ness of the modular automorphism group of w, [21; Theorem 13.2] we
obtain that y-0,-7 ! =0, for all —0<t< +00.

Conversely, suppose that g,y =y - g, for every —oo <t <oo0. How-
ever, the one-parameter group {y~'-o,-y} of automorphisms is the
modular automorphism group of w-vy [15; Lemma 1], i.e. the normal
functional w -y satisfies the KMS boundary conditions with respect to
g,. This means that there is a positive self-adjoint (perhaps unbounded)
operator C affiliated with 3 such that the domain of C contains x and
that wc, = w -y [21; Theorem 15.4]. Q.E.D.

Let 2 be a von Neumann algebra with center 3 on the Hilbert space
H and let xe H be a cyclic and separating vector for . Let v be the
measure on the spectrum Z of 3 induced by the relation

(Ax, x) = gA‘(C) dv(().

Here A" is the Gelfand transform of 4 e 3. Then 3 with its o-weak
topology is identified with the space L*(Z,v) of essentially bounded
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measurable functions on Z with its g-weak topology by the Gel-
fand transform 4— A" Indeed, the measure v is a so-called perfect
measure. Now the projection E of H on the subspace closure {Ax|4 € 3}
is an abelian projection of the commutant 3’ of 3. Since x is a cyclic
vector for 3, the projection E has central support 1 in J3'. Hence, for
each 4 in 3/, there is a unique @'(A4) in 3 such that EAE = &'(4)E. The
map®’'(A) is a positive g-weakly continuous 3-module homomorphism
of 3" into 3. The restriction & of @’ to A is also a positive o-weakly
continuous J-module homomorphism of A into 3. It is also faithful
since @(A* A) =0 implies (P(A*A)x, x) = (@' (A*A)Ex, x) = (Ax, Ax)=0
and hence that A =0.

Proposition 12. Let N be a von Neumann algebra on a Hilbert space H.
Let x be a cyclic and separating vector for N, and let {a,} be the modular
automorphism group of the normal faithful functional w,. Let I’ be a
continuous automorphism group of W such that y-o,=0,-y for every
real t. If I is not locally compact, then assume that I is jointly continuous
at the origin on the cartesian product of I' with the unit sphere of the center
of W. Then the automorphism group I' is uniformly implemented by a
unitary representation U of I on H so that, given any unitary implementa-
tion V of {o,} on H such that V,x = x, the unitary operators U, and V,
commute for every yeT and —oo <t <oo. Furthermore, if JAY? is the
polar decomposition of the closure S of the conjugate linear operator
Ax— A*x (A eN), then U, commutes with J and A for every yeT.

Remark 1. As we have seen, such an implementation V of {o,} exists.

Remark 2. In view of Proposition 11, the last statement of Proposi-
tion 12 is a generalization of a result of Stormer [20; Lemma 2].

Proof. We preserve the notation of the paragraph introducing this
proposition. For every y e I', there is a positive self-adjoint C, affiliated
with the center 3 of U such that x is in the domain of C, and such that
w¢,x =,y (cf. Proposition 11). Let F} be the spectral projection of
C, correspondmg to the interval [0, n] and let C7 = C F}. For every
Ae A", we have that

w,-y(A)=(AC,x, C,x)
= lub,(AC}x, Cjx) = lub,(4(C7)* x, x)
= lub,(P(A(C})*)x, x) = lub,((C})* P(A)x, x) = 0(Q,D(A)) ,

where Qy is the least upper bound of the monotonely increasing net
{(C»?} in 3*. Thus, the hypotheses of Theorem 8 are satisfied. Let us
preserve the notation of this theorem. Let 7, be the canonical homo-
morphism of 2 induced by ¢ on Hy. For 4,,..., 4,, By, ..., B, in A, we
have (£ 4;x, £ B;x) = ¢((Z B,)*(Z 4,)). Hence, the space H is spatially
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isomorphic to H, under the map Ax— A of o7 x onto m'/? = . Hence,
we may transfer the implementing unitary representation of I on H, to
a unitary representation U on H by setting U, Ax = limy(R!'4)x for every
Ae. !

For every 4eU, yeTl, and —o0 <t < +00, we have that
VU Ax = li'{nV,y(RQA)x
= li’IInot YRIA)V,x = li’{n«/(R;c,(A))x
=U/(0,(A4)x)=U,V,Ax

since V;x =x and since ¢,(C)=C for all Ce3 [21; Lemma 15.8].
Because x is dense in H, we get that V,U, = V, U, for all y, 1.
We now consider the last statement. For every Ae U and ye I, we
have that
Ax =limy(R}A)x .

Since R} is in 3, we have that
limSy(RjA)x = limy(R}) S(y(A4)x) = limy(R} A¥*)x = U, A*x .

Using the fact that S is a closed conjugate linear operator, we have that
U,Ax is in the domain D(S) of S and that U, 'SU,Ax = A*x = SAx.
Now let y e D(S). There is a sequence {4,} in A with limA4,x =y and
limA4;x = Sy. However, we have that limU,4,x = U,y and limSU,4,x
= U, Sy.Since Sisclosed, we have that U,y € D(S)and that U, ' SU,y=Sy.
This means that SC U,;”'SU,. Since y is arbitrary, we may conclude that
S=U;'SU, for all yeI. Hence, we have that U 'JU,=J and
U, ' AY2U, = A% (cf. [11; XI1.7.6] for the analogous result for closed
linear operators). Finally, we get that U, 'AU,=4. Q.E.D.

Added in Proof on February 10, 1972. A more general form of Proposition 11 was
obtained independently by F. Combes [Proposition 4.17, Compositio Math. 23, 4977
(1971)]1.

References

{. Aarnes,J.: On the continuity of automorphic representations of groups. Commun.
math. Phys. 7, 332-336 (1968).

2. — Continuity of group representations, with applications to C*-algebras. J. Func-
tional Analysis 5, 14—36 (1970).

3. Borchers,H.J.: On the implementability of automorphism groups. Commun. math.
Phys. 14, 305—314 (1969).

4. Bourbaki, N.: Integration, Chapters I—V, Act. Sci. Ind. no. 1175, 1244. Paris: Her-
mann 1965, 1967.

5. Busby,R., Smith, H.: Representations of twisted group algebras. Trans. Am. Math.
Soc. 149, 503—537 (1970).



11.

12.

17.

18.

19.

20.

21.

22.

23.

S © ® =

Automorphism on von Neumann Algebras 275

. Dixmier,J.: Applications &y dans les anneaux d’opérateurs. Compositio Math. 10,

1—55 (1952).

. — Algébres quasi-unitaires. Comment. Math. Helv. 26, 275—322 (1952).

— Les C*-algebres et leurs représentations. Paris: Gauthier-Villars 1964.

. — Les algebres d’opérateurs dans 1’¢éspace Hilbertien. Paris: Gauthier-Villars 1969.
. Doplicher,S., Kastler,D., Robinson,D.: Covariance algebras in field theory and

statistical mechanics. Commun. math. Phys. 3, 1—28 (1966).

Dunford, N., Schwartz,J.: Linear operators, Parts I and II. New York: Interscience
1957, 1963.

Fell,].M.G.: An extension of Mackey’s method to Banach *-algebraic bundles. Mem.
Am. Math. Soc. no. 90, {—168 (1969).

. Guichardet, A., Kastler, D.: Désintégration des états quasi-invariants des C*-algebres.

J. Math. Pures Appl. 49, 349—380 (1970).

. Henle,M.: Spatial representation of groups of automorphisms of von Neumann

algebras with properly infinite commutants. Commun. math. Phys. 19, 273—275
(1970).

. Herman,R., Takesaki,M.: States and automorphism groups of operator algebras.

Commun. math. Phys. 19, 142—160 (1970).

. Kadison,R. V.: Transformation of states in operator theory and dynamics. Topology

3 (Suppl.) 2, 177—198 (1965).

Kallman,R.R.: A remark on a paper by J. F. Aarnes. Commun. math. Phys. 14, 13— {4
(1969).

— Spatially induced groups of automorphisms of certan von Neumann algebras.
Trans. Am. Math. Soc. 156, 505—516 (1971).

Sirugue. M., Winnink, M.: Constraints imposed upon a state of a system that satisfies
the K.M.S. boundary condition. Commun. math. Phys. 19, 161—168 (1970).
Stermer, B.: Automorphisms and mvariant states of operator algebras. Acta Math.
127, 1—10 (1971).

Takesaki,M.: Tomita’s theory of modular Hilbert algebras and its applications.
Berlin, Heidelberg, New York: Springer 1970.

— Disjointness of the KMS-states of different temperatures. Commun. math. Phys.
17, 33—41 (1970).

Tomita, M.: Standard forms of von Neumann algebras, the Vth Functional Analysis
Symposium of Math. Soc. of Japan, Sendai, 1967.

H. Halpern

Department of Mathematics
University of Cincinnati
Cincinnati, Ohio 45221, USA





