Commun. math. Phys. 24, 61—66 (1971)
© by Springer-Verlag 1971

Upper Bounds for Ising Model
Correlation Functions
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Abstract. A Griffiths correlation inequality for Ising ferromagnets is refined and is
used to obtain improved upper bounds for critical temperatures. It is shown that, for
non-negative external fields, the mean field magnetizition is an upper bound for the
magnetization of Ising ferromagnets.

1. Introduction

For each nonempty subset R of an index set A define

op= ]_[ o; (1.1)

where o;=+1,i€ A, is a set of Ising spins. In a given configuration of
spins {c} = {0;: i€ A}, the interaction energy is defined by
E{c}=— ) J(R)og. (1.2)

RcAa

Thermodynamic averages of functions f = f{c} are defined by

(f>=} f{o} exp(—BE{a})/}) exp(—BE{c}) (1.3)

{o} {o}
where sums extend over all configurations of spins. We denote

O’RO'S=O'RS (1.4)

where from the Definition (1.1) RS is the set-theoretic symmetric difference
RUS—RNS.

For ferromagnetic pair interactions, i.e., J(R) non-negative and zero
unless R is a one or a two element subset of A (one element subsets
corresponding to interactions with an external field), Griffiths [1, 2, 3]
proved a number a correlation function inequalities which were
subsequently generalized by Kelley and Sherman [4]. For the inter-
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action (1.2) with J(R)Z0, these generalized Griffiths inequalities are

L (og) 20, (1.5)
IL ST (o= Cons = Cow) (o) 20, (16)

and for any ke R
1L (o> = ), ©(S) Cogsy (L.7)

S
keS
where

7(S) = tanh BJ (S) (1.8)

and the sum in (1.7) extends over sets Se {4 C 4, J(4) > 0}.

It is to be noted that interactions with an external magnetic field
H > 0 can be included in the above by taking J(R) = H for all one element
subsets R of A.

Ginibre [5] and Fortuin, Ginibre and Kasteleyn [6] have recently
constructed a general framework in which inequalities of the type I and II
are valid. Inequality II and its generalizations have been particularly
useful in proving various existence theorems for phase transitions [1, 7]
and for obtaining critical exponent inequalities [8]. The inequality III,
which is the subject of this note, has been used primarily to obtain
bounds for critical temperatures [3].

In the next section, we obtain a refinement of the inequality 11T and
use it to obtain improved bounds for critical temperatures. In the final
section, we show that, for non-negative external fields, the mean field
magnetization is an upper bound for the magnetization of Ising ferro-
magnets with pair interactions.

2. Refinement of the Inequality (1.7)

In the following, we will make use of the identity

exp[fJ(R) og] =cosh BJ(R) [1+ t(R) og], 2.1

where t(R) is defined by (1.8). This result is easily proved by expanding
the exponential and noting that (og)* = 1. We will assume throughout
that J(R)= 0.
Writing
exp(—BE{a})= [] exp[BJ(R) o] 22

RcCA



Ising Model 63

and applying the identity (2.1) to the term in (2.2) corresponding to the
subset S C A, we obtain immediately from the definition (1.3) that

oy = [{or)s + 7(S) {ors)s] [1+7(8) <o )s]1 7" (2.3)

where (...)¢ denotes an average for the system (1.2) with J(S)=0.
Interchanging R and RS in (2.3) gives

Cogsy = [{ogsds + () Copds] [1+1(S) {o5ps]1 ™. 24
Combining (2.3) and (2.4) then gives
Cogy =1(8) {ogsy + [(1 = 7(5)*) op)s] [1+2(8) {os)s] ™"
< uS) ogsy + (1= 1(5)?) {ap)s

where use has been made of (1.5), i.e., (a5)s=0.
Let now S, S,,...,S, be any family of subsets of A. By repeated
iteration of (2.5), we obtain

{og) £1(Sy) {ogs,» + (1 —1(S1)?) ©(S,) {oRs,s,
o (1=1(5)%) ... (1=2S,)*) orDs, 5... .50

2.5)

ie.
{or) = i () {JI_—[ (1- T(Si)z)} ORsDs1....8;-1
mr o e (2.6)
U (1- T(S) (ORDs,,. .5,
where 1(S,) =0.

It is to be noted that if the family {S;} = .o/, the set of subsets of A
excluding R such that ;"R =+ ¢ and J(S;)>0,i=1,2,...n,

{or)s,....s,=T(R). 2.7
Also, because of the monotonicity property (1.6)
<0Rs,->s1,...,sj_1§<<7ksj>- (2.8)

It follows that if {S;,i=1,2,...,n} =</ and S,, ; =R, (2.6), (2.7), and (2.8)
give

n+1 -
s % ) {T] 1= )} ons) 9)

where use has been made of {ogg>=<{0oi)=1. Obviously, the best
inequality from (2.9) is obtained by choosing an ordering for S5, S,, ..., S,
which minimizes the right hand side.

For a set of N pair-wise interacting spins in the presence of an
external magnetic field H, we choose R={r}(J(R)=H),S;={r,s;}



64 C. J. Thompson:

j=1,2,..,N—1,Sy=R, such that s;+s5;,i%j, and s;+r. From (2.9)
(with n= N —1), we then obtain

N-1

(o,>= [] (1—=1(r,s;?) tanh BH
j=1
N1 _ (2.10)
+ Z t(r,sj){ﬂ 1—1(r,s;) }(as)
where t(r,s)=tanhfJ,,, J,, is the coupling constant between spins r

and s, and (r, 5¢) =0.
For a translationally invariant system {a,» = my(H, f) is the magnet-
ization per spin for all k. It follows from (2.10) that if

G(B)= Nil 1(r, ;) {]]:II (1—=1(r, si)z)} <1 (2.11)

j=1 i=0
the spontaneous magnetization my(f)= Hlil’(l)l gim my(H, p) vanishes,
-0+ — 0

and hence that a solution of
G(Bo)=1, Po=(kTy)™* (212)

gives an upper bound T, for the critical temperature T,.
For example, if there are nearest neighbor interactions only on a
lattice with coordination number g,
qg—1

G(B) = tanh(BJ) ;’ (1 — tanh?BJy 2.13)

where J is the coupling constant between nearest neighbor spins. For the
square lattice (¢ =4),(2.12) and (2.13) give tanh(f,J)=0.29 ..., which
is to be compared with the mean field value 0.25 [3], Fisher’s [9] self-
avoiding walk bound 0.37..., and the exact value ]/5—1:0.414
The bounds obtained from (2.12) and (2.13) of course improve with in-
creasing coordination number.

3. Mean Field Bound for the Magnetization

For a set of N Ising spins with ferromagnetic pair interactions only in
the presence of an external magnetic field H=0, the choice R = {r},
S ={r, s} in (2.3) gives

o,>=[0,)s+tanh(BJ.) {o,>s] [1 + tanh(BJ,;) {o,0:0s]1" (3.1)

where J ,, =0 is the coupling constant between spins r and s. From the
monotonicity property (1.6), {0,005 = {0,)s {o,0s. Also, since
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0= (o5 £1,<0, s tanh BJ, < tanh(BJ,,{o,»s). Using these results in
(3.1), we obtain

<o,y = tanh (BJ,{o:>s+ g({0,)s)) (32
where g(z) = tanh ™ 1z. Hence, since {o,>s =<0,
9o = BJasy +9(o,)s) - 3.3)

Iterating (3.3) until all bonds J, ;>0 have been eliminated, we then
obtain, using (2.7)
9 o)< Y BJ.<oy + BH,

sFr

(o stanh( ¥ p.<o + bH) (34)

s*r

ie.

For a translationally invariant system {o,) = my(H, ) is the magnetiza-
tion per spin for all r. Taking the limit N — oo in (3.4), we then obtain
O<m<tanh(fam+ fH), for H=O0, (3.5

where m= lim my(H, f), and from translational invariance,
N— o

a= Y J, (3.6)
sFr
is independent of r.
The positive solution of
m* =tanh(fam* + fH), H=z=0 (3.7

is the mean field magnetization. From (3.5) we then obtain
0s<mgm*, for HZz=0. (3.8)

Notice also, from (3.8), that the mean field critical temperature T* given
from (3.7) by p*=(kT*)"'=a~! is necessarily an upper bound for the
true critical temperature.
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