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Abstract. It has hitherto been accepted that the degree of the Harish-Chandra con-
dition applying to single-mass equations of arbitrary spin is determined by the maximum
spin appearing in the representation of SL(2, C) which acts on the field. The present paper
demonstrates a fallacy in the published arguments which lead to the above conclusion,
and gives the correct conclusion which can be deduced from the hypotheses. A counter-
example of an irreducible, single-mass, spin 3/2 equation which does not satisfy the
accepted theory is provided in an appendix.

Relativistically-in variant free-field equations of the form

CSμδ" + im)φ = 0 (1)

have been studied by many authors [1-5, 8, 11-14] (see in particular
Corson [13] and Takahashi [14] for complete bibliography). In the case
that (1) yields solutions with only one mass (apart from sign), Harish-
Chandra has shown [1] that the /^-matrices must satisfy

(β»pΎ-P2(βμp
μ)"-2=Q (2)

for some finite integer n. If one regards (2) as a polynomial in the vari-
ables PO, pl9 p2, and p3 [12], the coefficients must vanish, and:

permutations
{l,. . .,n}

Umezawa and Visconti [3] claimed that (2) is satisfied for a minimum
value of n, n = 2s0 + 1, where s0 is the maximum spin appearing in the
representation of SX(2, C) which acts on ψ (we denote this representation
by S(A)). This result, which seems to be generally accepted, is based on
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the following facts, which are correctly treated in the above-mentioned
paper.

Relativistic in variance of (1) requires that the L.H.S. of (2a) transform
as a symmetric n-th rank Lorentz tensor under a similarity transforma-
tion involving S"1^). If the L.H.S. of (2a) is denoted by ^4μιμ2...μn, then

(3)

If we consider only rotations, the L.H.S. of (3) cannot transform accord-
ing to representations of SU(2) which contain irreducible components
of spin higher than 2s0. Consequently, the R.H.S., regarded as an n-th
rank symmetric Cartesian tensor with indices μ^ ... μn, must be reducible,
in the event that n>2sθ9 to a symmetric tensor of rank 2s0 or 2s0 — 1
(as n — 2s0 is even or odd, respectively) multiplied by the appropriate
number of Kronecker <5's. In any case, according to the standard pro-
cedures outlined by Weyl [6], Aμ^ μn can be subdivided into terms
which transform irreducibly under the Lorentz group, according to the
representations D(n/2>n/2\ /)(«/2-ι,«/2-i)? ? etc According to Garding's
theorem [9], the parts of Aμί μn which transform according to D(k'k\
where fc>s0, must necessarily be trivial. Hence, if n>2s0,

^μι...μn

 = 2-ι ^μiμz " ^μn-iso-iμn-iso^μn-iso + i μn ^ '
perms.

where n — 2s0 is even, and

^μi...μn~~ LJ 9μiμ2 "' @ μn-2Soμn- 2s0+ ι ̂ μn-2s0 + 2 μn { '
perms.

where n — 2s0 is odd. The tensor ^μ1...μ2[n/2_s Ί is symmetric. The above
can be more compactly expressed as

Aμι...μnS^-d^= Σ (n-2So)\tB^μ2sad^...d^ (5a)
perms.

if n — 2s0 is even, and

Λι...μw^1-^= Σ (^-

if n - 2s0 is odd, where, now, Aμι_μnd
μί . . . dμn = n ! (β - d)n~2((β d)2 - 1).

The fallacy in existing discussions is to be found in the erroneous
supposition that Bμί μ2s dμι ... dμ2s° is likewise a polynomial in (β - d).
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Indeed, in the special example of a spin 3/2 equation included with this
paper, the expression ((β - d)2 - D) (β S)2 reduces to Q - g (β 3) βκβ

κ(β d)
-(β-d)2}. In this example the form (β d) βκβ

κ(β δ) is linearly inde-
pendent from (0 - d)2,βκ(β - d)2 βκ, βκβ

κ(β - d)2 and (β - d)2 βκβ\ and therefore
cannot be reduced to an expression in (β d) with scalar coefficients.

On the other hand, the formulae given for the differential operator
D(S) associated with the field commutation relations in the paper of
Umezawa and Visconti [3] are quite correct. It is these formulae which
lead to consideration of the tensor character of the expressions (2 a).

The correct conclusion to be drawn from the preceding analysis is
that the traceless part of any π-th rank symmetric tensor formed from
the /Ps vanishes if n>2s0. As Weyl has shown [6], such a tensor must
transform irreducibly under the action of the Lorentz group; in fact, it
transforms according to the representation D(n/2'n/2}(Λ\ which, as we
have seen, is not non-trivially admissible. Moreover, as will be shown
in a forthcoming paper, the same is true for any irreducible tensor classes
constructed from the /Ps which correspond to representations of the
Lorentz group that do not appear in the decomposition of S(A) x S(Λ)
into a direct sum of irreducible representations [15]. The unique traceless
part of the symmetric tensor Sμι^mfln is given by:

[«/2] 1 / _ 1 \ fc ln _ M
co = v x v ( _ M \n κ\n n . cβi. .βk
°μi...μn La i LJ I Λ I 1 lr I yμiH2"' Vμ2k-ιμ2k "βi QkV2k+ 1 . . .μ n'

fc=l n' perms. \ ^ / V K I

(6)

If we define the operator Πv

μ\\\\v

μ

n

n as

1 [n/2] / _ 1 \ f c /w L\ k
_ γ γ I _ L ί
f x 2 Z. ^ I 4 ) I t I 1
!J perms. fe= 1 V ^ / \ ^ / i= 1

7 7 v 1 . . .v n = __ γ γ _ ί Π ί/ aV2i~iV2i
11μ1...μn- / f x 2 -

,_,

(/)

Π ^
we have ^..^^JJ ^S^...,,,, and that Jζ J; Tvl...Vn, for an arbi-
trary tensor, Tμ ι < > t μ n, is the projection onto that part of itself which is
symmetric and traceless. The projection operator -/7μJ;;;^ is analogous,
but not equivalent, to the projection operator Θ^'"^" constructed by
Fronsdal [7, 10].

In considering the tensor Aμι μn, the term involving gμιμ2 has no
traceless component. This follows from the fact that gμv is invariant
under the Lorentz group, and any n-th rank tensor including it as a
factor must transform in the manner of an (n — 2)-th rank tensor. In the
case of a symmetric tensor, D(n/2'n/2}(Λ) cannot then be included in the
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decomposition of the representation of the Lorentz group acting on that
tensor into irreducible representations, whereas it is the representation
which acts on the traceless part of an n-th rank symmetric tensor. The
traceless part of the second term in (2 a) is therefore identically zero.
Accordingly,

so that

ιrμ\\::£βvί...βvn=o (8)

for n>2s0, which is the correct conclusion to be obtained from the
hypotheses of the Umezawa-Visconti Theorem. It is, however, a weaker
result than the one originally claimed. Eq. (8) expresses a relation between
n-th rank, (n — 2)-th rank, etc. symmetric tensors constructed from
/^-matrices. That this should lead to a polymonial equation satisfied by
p - β (p a 4- vector) is only true if there exists a linear dependence among
elements of the jS-algebra such that tensors of the form

Σ βμi~ βμn-2k
perms.

can be expressed in terms of tensors of the form

aμιμ2 aμ2P-ιμ2P V β β
y •- y ΔJ "μi " tjμn-2k

perms.

where l^p^ξ — k, and contraction of tensor indices is implied. It should
be realized that such a linear relation is an algebraic property of the
β-matrices and cannot be inferred from their transformation properties
under the Lorentz group.

Appendix

An Irreducible Single Mass, Single Spin Equation which Violates
the Contention of Umezawa and Visconti

We define below the β-matrices for an irreducible spin 3/2 Eq. (1)
with unique mass and minimal equation for β0 :
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We use the representation
Denote the generators of S(Λ) by Sμv (antisymmetric tensor), with the
identification A{ = ^£ijkSjk and Bi = S0ί.

AI and BI can be expressed as follows:

'4
P

Sf

<M /
Λ l > Ai =

Ail

21, 0

0 α,
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(9b)

It can be seen that %= -ι'./P/2) and at= - -^-σh where /P/2) are the

usual operators associated with spin 3/2 and σt are the Pauli spin matrices.
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The following relations hold, where [ , ] denotes the commutator and
{ , } the anticommutator:

Σ «?

, -ujaί= ut ut = είjk uk
(lOb)

-ί<

«t „. + Mί „. =

(lOc)

The remaining relations can be obtained by taking the hermitian con-
jugate of (lOb), noticing that 91, and α, are antihermitian. From the above
follow the usual commutation relations for At and Bt:

Relativistic in variance of (1) requires:

,]= -εijkAk. (11)

Let

1 0

0 -1

(12)

1 0 0 0\ [4 rows]

0 1 0 0 [2]

0 0-1 0 [2]

0 0 0 -I/ [2]

Then S is the reflection operator, since \_Ah S]=0 and {B(,iS}=0; in
addition η satisfies the requirements of a hermitizing matrix, since
(ηA^ = — ηAt, (ηB^ = — ηBt, η = η^, and ?/2 = 1 (note that At is anti-
hermitian and B, is hermitian).
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The following vector set of matrices βμ satisfies Lorentz-invariance
of (1) and is hermitian with respect to η (i.e. (ηβμ)* = ηβμ)''

β _βo~
\o

/'
0

0

π

' -δJ;

0

1

2

1

2 1/3

1/2

1 0
A =\-βι <

0 0 \

1 l/2\

2]/3 1/3

1 o

2 °

Π 1 /

/ ί

1 t
— Mi
2

1

2/3 Mί

2 '

5
Z«;

3 '

j

31/3 Λί

I (14)

\ 1/3 "' 3 ' 1/3 flί

γP,,^, /ί = 0,1,2, 3

2J/3 W'

i
7—α.

3 1/3 '

iat

0

"?^"'
2 1/2

3 l 1/3 fli

0

-*« /

The elements written in P0 stand for that number multiplying the
appropriate identity matrix. Note than Pl = Qo = ήPoή, and P^ = Pt.

It can be seen that the minimal equation satisfied by β0 is β% - βl = 0,
which is of degree 1 greater than that normally predicted [3]. The only
non-zero eigenvalues of β0 are +1, which correspond to vectors which
transform under rotations according to spin 3/2 only. Thus the physical
solutions have unique mass and spin.

Finally, the algebra formed from the β-matrices is irreducible, η can
be constructed from the /Γs, so that for every element α in the algebra,
its hermitian conjugate α1" is also in the algebra. Therefore, irreducibility
of the algebra is equivalent to the requirement that no matrix commutes
with all the /Γs, other than a multiple of the identity. The Sμv can also
be constructed from the /Γs, so that a commuting matrix C would have
to commute with the operators of the (complete) Lorentz group. The
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only such commutant must be of the form

C- 1 Γ - I " " " " I tt'ft
In ' I Λ Λ - L ' * ^ '\U

To require that [/?o>C]=0 implies that a = b = a and c = d = 0, which
proves irreducibility. We append expressions for η and Sμv.

(16a)

Let Π0=^ξβeβκβ
κβs and /^sl — flo: projections onto the subspaces

acted on by D(l »@D(* l) and 2(D(-0)ΘΓ><0'*)) respectively.

[β,, j8J - ̂  ()5μ βκ β
κβv - βv βκβ

κβ,} (16b)
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