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1. Introduction

In [1] Chap. Ill Ludwig gave the definition of coexistent effects in
a quantum mechanical system. Coexistence of effects will be discussed
in this paper. Special attention will be called to the connection between
the notion "observable" and the notion "classical system". It will be
proved in particular that the set of classical effects is coexistent and there-
fore the convex range of observables consists of coexistent effects.

We shall stick closely to the notation introduced in [1]. The quantum
mechanical system is described by subsets of an ordered separable Banach
space B and its dual B\ which satisfy several axioms. The subset

X^0, 11X11-1}

of B represents the ensembles, and the subset

of B' represents the effects of the system (yes-no-experiments). The
probability to measure the effect F e L in the ensemble Ve K is expressed
by the value <K^> of the functional F on B. G denotes the set of ex-
treme points of L, the set of decision effects. G is a complete, ortho-
complemented, weakly modular lattice.

Perhaps it is convenient to keep in mind the representation of B
and B' by Hermitean operators in a separable Hubert space. This re-
presentation is valid for irreducible quantum mechanical systems (no
superselection rule).

B is the set of Hermitean trace class operators.
B' is the set of bounded Hermitean operators.
{>. is the usual order of Hermitean operators.)
K = {Ve B/V ^ 0, tr(F) = 1}, L = {F e Bf/0 ^ F ^ 1}.
G is the lattice of projection operators.
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2. Coexistent Effects

2.1. Definition of Coexistence

Let Q be a Boolean ring (Boolean lattice or Boolean algebra) with
the lattice operations: qγ A q2 intersection, qγ v q2 union, q* complement,
#i + #2 = (<7i Λ Vί) v (#i Λ #2) symmetric difference. An L-valued measure
on Q is a mapping F:Q-*L such that F(q1w q2)=zF(qι)

JtF(q2) if
qίΛq2 = 0. The L-valued measure F(g) on Q is said to be effective if
F(q) = 0 implies q = 0.

Roughly spoken a subset / C L is said to be a set of coexistent effects
if it is possible to construct an apparatus in which these effects can be
measured together. By analyzing the physical situation Ludwig ([1]
Chap. Ill, 12) gives the following mathematical translation of this fact:

Definition 1. A subset / C L is said to be a set of coexistent effects,
if there is a Boolean ring Q and an L-valued measure F(q) on Q such
that / is contained in the range of F(q).

Here Q stands for the different signal-parts of the apparatus in which
the effects are measured together. The Boolean operations in Q corre-
spond to technical operations with these signal-parts as follows:

The signal-part qγ A q2 is always excited if both qt and q2 are excited.
The signal-part q1 + q2 is always excited if either qγ or q2 (but not

both) is excited.
(q* and qίv q2 can be expressed by q* = l + q, q1v q2 =

)
If F(q) is an L-valued measure on β, the set J = {q/q e β, F(q) = 0}

is an ideal in Q and by passing from Q to the quotient ring Q/J it is
possible to get an effective L-valued measure without altering the range
ofβ.

Likewise it is possible to extend the Boolean ring Q and the L-valued
measure such that F(ΐ)= 1, where the first 1 denotes the unit element
in Q and the second 1 denotes the order unit in L C B'. Thus we may
confine ourselves in our considerations to the case where F(q) is an effec-
tive L-valued measure with F(l) = 1.

2.2. A Uniform Structure on Q

An ensemble Ve K is called effective if < V, F) = 0, F e L implies F = 0.
As B is assumed to be separable there exists an ensemble

Vo= Σ VFvA>0, I s
v = l v = l

{Vv} is a countable dense subset of K.
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Vo is an effective ensemble and mo(q)= (V0,F(q)} is an effective real-
valued (not necessarily σ-additive) measure on Q.

Thus d(qί,q2) = mo(q1-{- q2) is a metric on Q and the lattice operations
are uniformly continuous with respect to this metric [2]. The uniform
structure uκ induced by this metric is determined by the neighbourhoods
of the 0-element of Q:

UVo.t = {q/q e Q, mVΰ(q) = < Vo, F(q)} Z ε}. (2)

The uniform structure uκ is independent of the choice of Vo with pro-
perty (1). We shall see this in proving that the filterbasis

l9...9n}

Vl9..., Vn varying in K

is equivalent to (2).
Of course (3) is finer than (2). A moment's thinking shows that the

inverse is proved by the following inequality ({Fv} dense in K\):

S IIK - V\\ + λ;1<V0,F(q)> for all VeK.

As a basis of the uniform structure uκ is given by the subsets

°f 6 x 6 a n ( 3 qi + qi denotes the "difference" of the signal-parts qγ and
q2, uκ is the natural uniform structure induced by testing the signal-
parts of Q by a finite number of ensembles.

Lemma 1. The mapping F:Q->L of the L-valued effective measure
F(q) is uniformly uκ — σ(B\ B)-continuous.

Proof From q1 = (q1 A qξ) v (q1 A <?2) ̂  (<?I + #2) v #2 follows F(qt)
^F(q1 + q2) + F(q2) and F(q2) ^ F(qt + q2) + Fiq^ likewise. Thus
KKFiqJ-Fiq^^iKFiqi + qJ) for all VeK. As XeB can be
decomposed in X = <*V1-βV2;V1,V2 eK([ϊ] III, 6)theσ(F, 5)-topology
is completely determined by the elements of K (instead of B). The re-
presentation (3) of the basis of uκ and the definition of the σ{B\B)-
topology prove the statement.

Let Q be the completion of Q with respect to the uniform structure
uκ resp. metric d(ql9 q2) = mVo(qί + q2). Because of the uniform continuity
of the lattice operations in Q the lattice operations can be extended to
the whole of Q such that Q is a Boolean ring. As uκ is induced by a
real-valued measure mFo, one may apply the results of measure theory
on Boolean rings and conclude that Q is a Boolean σ-ring (which is
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even lattice complete such that unions and intersections can be performed
of all subsets of Q) [3].

Since the uniform structure uκ on Q has got a physical meaning and
the elements of Q are wκ-limit points of elements of Q, we may assign
the same interpretation to elements of Q as to the elements of Q. uκ is
used to describe the uncertainty of the correspondence between signal-
parts and elements of Q.

L is a σ(B\ £)-closed subset of the unit sphere of B'. Thus L is σ(B\ In-
compact and complete with respect to the uniform structure determined
by the σ(B\ £)-toρology. Therefore the uniform continuous mapping
F.Q^L has a unique extension to Q. Because of the uniqueness F(qί v q2)
= F(q1) + F{q2) holds for all qί,q2eQ with qχ^q2 = 0. Thus F(q) is
extended to an L-valued measure on Q, and we have proved

Theorem 1 (Ludwig). A subset IC L consists of coexistent effects if
there exists a Boolean ring Q and an effective L-valued measure F(q) on
Q with F(l) = 1 such that Q is uκ-complete (and therefore a σ-ring which
is even lattice complete), and I is contained in the range of F(q).

Corollary. Let Q be a Boolean ring and F(q) an effective L-valued
measure with JF(1) = 1 such that Q is uκ-complete. mv(q) = (V,F(q)} is
a real-valued normed (mv(l) = ί) σ-additive measure on Q for all VeK.

00

Proof Let qn e Q, qn+1 ^ qn and f\ qn = 0. To prove the σ-additivity
n = l

it suffices to show

->0 f o r a 1 1 V e K (4)

Taking into account the representation (3) of a basis of neighbourhoods
of 0 we conclude that (4) is equivalent to <?„->() with respect to the uniform
structure uκ. Let VoeK have property (1) such that d(qί, q2) = mVo(qί + q2)
= <F 0, F(q1 + q2)} induces uκ. As mVo(qn) ^ 0 is monotonely decreasing
mVo(qn)^oc^O. From mVo(qn + qn,) = \mVo(qJ-mVo(qn.)\ follows that qn

is a wκ-Cauchy-sequence and therefore converges to q e Q with respect
to uκ. The continuity of the lattice operations implies q ^ qn, and from

f\qn = O follows q = 0.

As Ludwig pointed out in [1] Chap. II, 9, those sets of a mathematical
theory which in a physical theory are in correspondence with objects
of reality should be separable with respect to the uniform structure de-
scribing the uncertainty of this correspondence. This fact motivates the
following definition:

Definition 2. A Boolean ring Q together with an effective L-valued
measure F(q) on Q such that F(l) = 1 and Q is ux-complete and separable

8 Commun. math. Phys., Vol. 23
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is said to be an observable O = (Q,F(q)). An observable O = (Q,F(q))
is called decision observable if the range of the L-valued measure F(q)
consists of decision effects, i.e. F(q)eG for all q e Q. (G is the lattice of
extreme points of L)

In view of Theorem 1 the question arises whether it is possible to
confine oneself to the consideration of observables, i.e. inseparable
Boolean rings while dealing with coexistent effects. This question will
be settled in Section 5.

We shall not treat the problem of decision observables here. This
is done in detail in [1]. It is shown there that the mapping Q^GcL
given by a decision observable O = (Q, E(q)) is a lattice isomorphism
of Q onto a Boolean sublattice of the lattice G of decision effects. Thus
it is possible to transcribe the physical interpretation of the lattice oper-
ations of β to the lattice operations in the Boolean sublattice of G.

In case of a decision observable the u^-completeness of Q is proved
to be equivalent to the lattice completeness [1], and in theorem 7 we
shall see, as a by-product, that the condition of %-separability of Q
is automatically fulfilled. Thus a decision observable is a lattice complete
Boolean sublattice of G.

3. Classical Systems

Throughout this chapter Q denotes a Boolean σ-ring and ra0 an ef-
fective real-valued normed σ-additive measure on Q. BQ denotes the linear
space of all σ-additive bounded real-valued functions on Q.

{ / 00 \ 00

m(q)/m(q) real, \m(q)\ ^ C, m ί V qt \ = £ m(q.)
for all {gj with qt A qk = 0 if i φ k >.

The total variation J
i n n Λ

\m\ (q) = suplλ/λ = £ |mfe)|, q = V qi9 qt A qk = 0 if iΦ k\
I i = l i = l J

is a σ-additive measure on Q and thus an element of B. It is well known
that BQ is a Banach space with respect to the norm ||m|| = \m\ (1). As
m0 is effective on Q all elements of β Q

 a r e absolutely continuous with
respect to ra0.

If (X, 4̂, J) is a representation of Q by a Boolean σ-ring A of subsets
of a set X with a σ-ideal J oϊ A such that A/J is σ-isomorphic to Q (for
instance the Loomis' representation), the dual space B'Q of BQ may be
characterized by the space of all mo-measurable bounded functions on X.
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In the sequel we want to sketch a representation - free characteri-
zation of BQ.

A finite subset te}j=i...nCβ is said to be a decomposition of 1 if
n

<3έΦ0 for all i, q{ A qk = 0 if ί φ k and \/ q = 1.
i=ί

A mapping / : {qt} ->R of a decomposition of 1 into the reals is said
to be a representative of a simple function, and the set of these mappings
is denoted by S(Q).

Let / , / ' e S(β), where / : {?i} -»R and / ' : {q'k} - R
The relation / (q^ =/'(<?&) if <?j Λ ̂  φ 0 is an equivalence relation

/ ~ / Ό n S ( β ) .
S(β) denotes the set of equivalence classes, which will be called

simple functions on Q.
It is easily seen that in every equivalence class there is one and only

one representative fe S(Q), the values of which are different for different
elements of the decomposition of 1 (the mapping / is injective). The
equivalence classes, simple functions, will be characterized by represen-
tatives.

S(Q) is a linear vector space by means of the following definitions:
1. / + / ' is a mapping of

te A qf

k/qt e {gj, qk e {^}, qt A q'k Φ 0}

into 1R such that (/ + /') (qt A q'k) = f{qτ) + f(qf

k).

2. λ - f is a mapping of {qt} into 1R such that (λ /) (gf) = λ f{q^ λ e R
ηq, qeQ, denotes the simple function ηq{q9 ^*}^R such that ηq(q) = 1 and
ηq(q*) = 0 and is said to be a characteristic function. Every simple function

n

f •' {QI} ~^^ then has the representation f=Σ /(<&) rjj q , .

<m,/>= X/te) m(^), meBQ,feS(Q) is a bilinear function on
ΐ = l

x S(β) with the property

<m,/> = 0 for all / G S ( 0 implies m = 0,

<(m,/) = 0 for all meBQ implies / = 0.

As

(5)

holds, the linear functional on BQ given by feS(Q) is continuous, and
thus S(Q) is a linear subspace of B'Q, the dual space of BQ. Concerning
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the dual norm on S(Q) we have

11/11= sup
meBQ

^ sup

(6)

= sup \f{qt)\.

Here mOq denotes the measure defined by mOq(q') = mo(q A q'\ (5) and
(6) imply

= sup \f(q^\. (7)

It is possible to show that S(Q) is dense in B'Q with respect to the dual
norm. Thus B'Q may be identified with the completion of S(Q) with
respect to the norm (7).

The definition / ^ 0 if <m,/> = 0 for all meBQ with m^O gives

the dual order in B'Q. If feS(Q),f= YJf{qι)nqi one has / = 0 if and
ί = l

only if/te)^Ofor all i.
In connection with the remarks at the end of Section 2.2 we shall now

prove
Theorem 2. Let Q, m0, BQ be as stated above. BQ is a separable Banach

space if and only if Q is separable with respect to the uniform structure
uκ which is determined by the metric d(q1,q2) = mo(

Proof As m?qί-m0q2 = m0(qiAqί)-m0iqίAq2) holds for qί,q2eQ, the
total variation is

q ι ~ m0q2\ = i A q\) + m0(qί A q2) =

qί + q2).

i +q2) '

(8)
This implies

l l m o β l - moq2\\ = m

(8) shows that the subset M = {mOq9qeQ} of BQ and Q are homeo-
morphic and Q is wx-seρarable if and only if M is norm-separable.

First assume BQ to be separable. As BQ is a metric space the subset
M of BQ is separable.

Now assume Q to be separable and Mc a countable dense subset
of M. Let

€i, λt real, ^ί
T= \meBQ/m=

I
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T is a linear subspace of BQ. The Radon-Nikodym-theorem which
establishes an isomorphism between BQ and the space of mo-integrable
functions Lγ(Q, m0) shows that T is dense in BQ corresponding to the
simple functions S(Q) in LX(Q, m0).

ί " 1
Tc= \meBQ/m = ΣQί'moqi>Qi rational, m0q2eMc\

I i = i J
is a countable dense subset of T and thus of BQ.

In [1] Chap. Ill, 16 a system <23, B'} as described in our introduction
is said to be classical if the lattice G of decision effects is Boolean (thus G
is a Boolean ring). It is shown that in this case <J5, B'} is isomorphic to
<£ Q , B'Q) with Q = G such that KQ = {me BQ/m ^ 0, m(l) = 1} represents
the ensembles, LQ = {fe B'Q/0 ^ / ^ 1} represents the effects, and
GQ = {feLQ9f = ηq,qeQ] represents the decision effects of the system.

As B is assumed to be separable theorem 2 shows that Q is wx-separ-
able.

In the reverse given a Boolean σ-ring Q with an effective measure
m0 such that Q is wκ-separable a system (BQ9B'Qy satisfies Ludwig's
axioms and is a classical system.

4. Observables and Classical Systems

In this section it will be shown that an L-valued measure F(q) on a
Boolean ring Q which is incomplete induces a linear mapping S:B-+BQ.
This mapping makes possible some interesting results with respect to
coexistent effects which will be presented in Section 5.

We'll first give a definition [4].

Definition 3. Let ^Bλ, #ij> and < £ 2 , B'2y describe quantum mechanical
systems, and let K1,K2>LUL2 be the sets of ensembles and effects
respectively. A mapping S:Kί^K2 which is linear on Kλ (i.e. S(μVί

+ (l-μ)V2) = SVί + (l-μ)SV2,OSμSl) is said to be a mixture
homomorphism. A mapping T:L2^>Lί is said to be a continuous linear
homomorphism if the following conditions are satisfied:

1. Fl9F2,F1 + F2eL2 implies T(F t + F2)=TF1+TF2.
2. If FneL2 is a a(B2,B2)-convQrg&nt sequence Fn^FeL2 then

TF^ί^tf^-converges to TF.
The following lemma gives a physical motivation of assumption 1.

of the second part of the definition.

Lemma 2. Assumption 1. of the second part of Definition 3 is equivalent to
Γ. // F(q) is an L2-valued measure on a Boolean ring Q, TF(q) is an

L^valued measure on Q.
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Proof Trivially 1 implies Γ. In order to show the reverse suppose
Fί,F2,Fί + F2eL2. Consider the Boolean ring β(2) of all subsets of a
set of two elements {1,2} and define F({0}) = O, F({1}) = F1,F({2}) = F2,
F({1,2}) = F1 + F2. F(q\ qeQ(2) is an L2-valued measure on Q(2) and
T(F± + F2) = T(F({1} v {2})) = TpJ + T{F2).

As it is easily seen a mixture homomorphism has a unique linear ex-
tension to the whole of Bx. The extended linear mapping is positive
and satisfies \\SX\\ ^ \\X\\ for all XeBx. Therefore the adjoint linear
mapping S'.B^^B^ is σ{B'2,B2) — σ{B'1,JB ̂ -continuous, positive and
satisfies ||SΎ|| ^ ||Y|| for all YeB'2. Moreover S Ί = 1 since SKxcK2.

A continuous linear homomorphism T:L2-*Lγ has a unique linear
extension to the whole of B2. The extended linear mapping T:B2^B[
is σ{B'29B2)-σ(B\,B^continuous, positive and satisfies | | T 7 | | ^ | | 7 | |
for all Ye B'. Therefore the adjoint linear mapping T maps Bί into B2,
is positive and satisfies || T'X\\ ^ \\X\\ for all X e Bv If T\ = 1, TKX C K2

holds, and T" is a linear extension of a mixture homomorphism. Thus
the mixture homomorphisms of ensembles and the continuous linear
homomorphisms of effects which map 1 onto 1, are dually connected.

Theorem 4. Let <2?, B'} describe a quantum mechanical system. Let
Q be a Boolean ring and F(q) an L-valued effective measure such that
F(l)= 1 and Q is uκ-complete.

Define SV=mv for VeK, where mv(q) = (V,F(q)} is as in the
corollary of theorem 1. Then it is defined a mixture homomorphism
S\K-*KQ, which maps effective ensembles onto effective measures and
the continuous linear homomorphism S'.LQ^L defined by the adjoint
S' of the linear extension of S satisfies

S'ηq = F(q) for all qeQ (9)

S is uniquely determined by (9).

Proof The corollary of Theorem 1 shows that indeed SV = mv

defines a mapping S:K->KQ. The linearity of the function (V,F(q)}
on B implies that S is a mixture homomorphism.

Assume Vo to be an effective ensemble and mVo(q) = 0. It follows

The following identity proves S'ηq = F(q)

Ve K,<V,S'ηq> = <SV, ηq} = <mF, ηq} = mv(q) =

Now assume ((S1 -S2\ηq} = 0 for all qeQ.
It follows <(S 1 -S 2 )K/> = 0 for all elements / of the σ{Bf

Q,BQ)-
closure of the linear subspace S(Q) of B'Q spanned by the characteristic
functions ηq. As 5 ( 0 is dense in B'Q even with respect to the dual norm,
(Sί - S2) V = 0 holds for all VeK.
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It is possible to prove the inversion of Theorem 4:

Theorem 5. Let Q be a Boolean σ-ring, (BQ, B'Q} as described in
section 2 and S:K-+KQ a mixture homomorphism which maps effective
ensembles onto effective measures1. The adjoint continuous linear homo-
morphism S'.LQ^L defines an effective L-valued measure F(q) = S'ηq such
that F(ί) = 1 and Q is uκ-complete.

Proof As ηqi v q2 = ηqi + ηq2 if ^ Aq2 = 0, F(q) is an L-valued measure.

mv(q) = <V,F(q)} = <S V, ηq> = (S V) (q) proves S K = mv.

To prove that F(q) is effective suppose F(q) = 0. Hence mVo{q) = (Vo,
F(q)y = 0 for an effective ensemble Vo e K. Since S'(l) = 1 for an adjoint
mapping of a mixture homomorphism, F(l) = 1 holds.

To show the ^-completeness of Q let Vo be an effective ensemble
with property (1) of Section 1. The uniform structure uκ is generated
by the metric d(q1,q7) = mVo(q1 + q?). As mVo is an effective σ-additive
measure on a Boolean σ-ring Q, Q is complete with respect to this metric

[2].
The combination of Theorem 2 with Theorems 4 and 5 gives

Corollary. To an observable 0 = (Q, F(q)) uniquely corresponds a mix-
ture homomorphism S of the quantum mechanical ensembles K into the
classical ensembles KQ, S:K^KQ such that S maps effective ensembles
on effective measures and S'ηq = F(q).

Vice versa a mixture homomorphism S.K^KQ of the quantum me-
chanical ensembles K into the classical ensembles KQ of a classical system,
such that S maps effective ensembles on effective measures, determines an
observable 0 = (β, F(q) = S'ηq).

5. The Convex Range of Observables

If / is a set of effects of a quantum mechanical system described by
<£,£'>, the σ{B\ £)-closed convex hull of / will be denoted by cό(Z).
Let Q be a Boolean ring and F(q) an L-valued measure on Q. cδ{F(q),
qeQ} is called the convex range of the L-valued measure. Convex
combinations of effects F(q) have a distinct physical meaning. If

n n

F= Σλr F(qi)9 λt>0, Σ λt = 1, F may be interpreted to be an effect of

an apparatus, which selects the signal-parts qt with a frequency λ{ and
gives a response if the selected qt gives a response. A trivial example
is given by the position measurement of an interval the endpoints of
which are varied statistically.

1 This is no essential assumption but can always be arranged by altering the Boolean
σ-ring Q in correspondence with the effectivity of the L-valued measure F(q).
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Since coexistence of effects expresses the fact that these effects can
be measured together in one apparatus the above given interpretation
of convex combinations of effects suggests the conjecture that convex
combinations of coexistent effects are coexistent. Indeed it will be proved
by Theorem 8 that the convex range of an L-valued measure consists
of coexistent effects.

Definition 4. Let Q,Q' be Boolean rings and F(q),F'(q')L-valued
measures on Q and Qf respectively. F(q) and F'(q') are said to be equiva-
lent if

Theorem 6. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(l) = l and Q is uκ-complete. Let S:K^KQ

be the mixture homomorphism determined by F(q) corresponding to
Theorem 4 and Sf the adjoint continuous linear homomorphism. S' :LQ^>L.

l.S'(LQ) = cό{F(q\qeQ}.
2. For every extreme point Fe of S'(LQ) there is exactly one qeQ such

thatFe = F(q).
3. cδ {F(q\ qeQ}nG = {F(q), qeQ}n G.

(It is not possible to get any new decision effects as limit points in the
convex range of an L-valued measure.)

Proof. The set of extreme points of LQ is the set of characteristic
functions {ηq, q e Q}. Since LQ is σ(Bf

Q, 2?Q)-compact the Krein-Milman-
theorem shows LQ = cδ {ηq9 q e Q).

In Theorem 4 we proved S'ηq = F(q). Thus we have

S'(co {ηq9 qeQ}) = co {F(q)9 qeQ}.

The weak continuity of Sf implies

S\LQ)Cco{F{q\qeQ}.

Since LQ is σ(B'Q, l^-compact Sf(LQ) is σ(B\ 5)-compact and therefore
closed such that

Now assume Fe to be an extreme point of S'(LQ). lϊfeLQ with S'f = Fe,
f is an extreme point of LQ. Thus there is qeQ such that Fe = F(q).
Suppose Fe =
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Hence

Since Fe is an extreme point F(qί v q2) = F(qίΛ q2) = Fe. Thus F(qί+q2)
= F(qί v q2) — F(qίΛ q2) = 0 and qx = q2 because of the effectivity of the
L-valued measure F(q).

S'(LQ)nG = {F(q\qeQ}nG is an immediate consequence as G is
the set of extreme points of L and F e S'(LQ)nG thus implies F is extreme
point of S'(LQ).

Lemma 3. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(l) = l and Q is uκ-complete. If E denotes the
set of extreme points of cδ{F(q\qeQ}, the set M = {qeQ,F(q)eE}
is a uκ separable subset of Q.

Proof Theorem 6 shows that F:Q->L gives a bijection of M onto E.
Since B is separable, σ(B\ B) is metrizable in L and L is σ(B', inseparable.
Thus the subset EcL is σ(B\Inseparable and there is a countable
σ(B\ 2?)-dense subset Ec in E. It will be shown that MC = F~1(EC) is
wκ-dense in M.

If qoeM, there is a sequence qneMc such that F(qn)^F(q0) in

F(qn) = F(qn A q0) + F(qn A q%).

As co {F(q\ qeQ} is compact there is a subsequence qnv such that

and

ec6{F(qlqeQ}9 (10)

= F(q0).

It suffices to show qnv-+q0 with respect to uk or equivalently

Fo being an effective ensemble with property (1) of Section 1. As

and JF(<?*V Λ q0) = F(q0) - F(qnv A q0), it suffices to show F2 = 0 in Eq. (10).
Since F(qΛvvq0) = F(qnvΛqξ) + F(q0)^F2 + F(q0) we have F2 + F(q0)
e cδ{F(q\ q e Q}. F(q0) = 1/2F, + 1/2(F2 + F(?0»_impUes Ft = F2 + F ( 9 o )
= F(qo\ because F(q0) is an extreme point of co {F(q% q e Q}.
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Theorem 7. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(ΐ) = 1 and Q is uκ-complete. There is a smallest
Boolean subring Qx of Q such that Qγ is uκ-complete and the restriction
Fί(q) of F(q) to Qx is equivalent to F(q), i.e. cδ {F\q\ q e Q} = cδ{F^q),
<1e δ i l Qiιsuκ-separable. Moreover F(q)eG for allqeQ implies Q = Qι

Proof Let E and M be defined as in Lemma 3, Mc a countable dense
subset of M. The subring Qc of Q generated by Mc is countable. The
closure Qι = Qc with respect to uκ is a inseparable and wx-comρlete
subring of Q. Clearly McQx and therefore E is contained in the range
of the restriction Fx(q) of F(q) to β ^ Thus

Of course cδ {F^q), q e Qx) C cδ {F(q\ qeQ} and {Q^F^q)) is equivalent
to (Q,F{q)).

Suppose Q' is a %-complete Boolean subring of Q such that the restric-
tion of F(q) to Q is equivalent to F(q). By Theorem 6, 2. we have M C Q!
and thus Qx c Q'

If F(q) e G, F(q) is an extreme point of cδ {F(q\ qeQ} and therefore
F(q) e E. Thus F{q)eG for all qeQ implies Q C M c βi» i e Q = 6i•

Theorem 8. Lei Q be α Boolean σ-ring and (BQ,B'Q) a system as
described in Section 2. There is a Boolean ring Q such that Q is a subring
of Q\ the Lg-valued measure q^ηq can be extended to Q' and the range
of the extended LQ-valued measure consists of the entire set LQ.

Before we enter into the proof of Theorem 8 it will be shown that it
is possible to define a multiplication in B'Q such that B'Q becomes an

algebra. If/, ffeS(Q) are simple functions/ = £ f(qdηqt, Γ=Σ fWηqϊ
i=l ί=l

n ri

define / / ' = Σ Σ /(««) * /'(tffc) %t A q'k
 B Y t h i s definition S(Q) is a com-

i = ί k=l

mutative algebra and

||/ / ' | | = s u p ( | / f e ) | | / ' t e ) l ) ^ 11/11-II/ΊI
i,k

shows that the multiplication can be extended to B'Q, Moreover fetQ,
f'eLQ implies f-ffeLQ.

Proof of Theorem 8. Let AM denote the free Boolean ring on M = LQ

([5,6], Appendix to this paper). Every element aeAM, αΦO, 1, has a
unique representation

a=\J Λ/V/M /ίe£Q,aiσ = 0,l (11)
σ=l \i = ί I
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by a union of monomials with the same base such that all monomials
are different (thus disjoint) and the base is minimal.

Define an Lβ-valued measure f(a) on AM as follows:

/(*)= Σ Π<U/;) (12)
σ = 1 \i = 1 /

if a has the representation (11). Here 77 denotes the product introduced
above and

/i if δiσ=l,

Since f(a) = f(a) f' + f(a) {l-f), f'eLQ, it is easily seen that (12)
still holds if the base of the monomials of the representation (11) is
extended corresponding to Eqs. (16), (17) in the appendix, and the base
is no longer minimal. The additivity of /(α) now is an immediate con-
sequence of the representation of qί v q2 (if qγ Λ q2 = 0) given in the
appendix.

To prove that LQ is contained in the range of /(α), let fo^LQ.
afo = Pfo1 ί 1 ) i s a monomial of AM, such that f(afo) = / 0 .

The ideal of elements a e AM of measure zero is

ί
jo= )aeAM/a = 0 or a has representation (11) and

I ί = l

Q' = AM/J0 denotes the quotient ring and φ the canonical homomor-
phism φ:AM-+ AM/J0 = Qr.

Without altering the range of f(a), f'{φ{ά)) = f(a) defines an effec-
tive LQ-valued measure on Q.

Now it will be shown that there is an injective homomorphism
J' Q-^Q' s u c h that Q may be identified with a subring of Q and
ff(j(θί) = rlq if <ϊ e δ Thus f'(a\ a e Q\ is an extension of the LQ- valued
measure q^->ηr

If qεQ, aq = p~q

1 (1) is a monomial in AM. Define j{q) — φ(aq). To
prove j(q*) = (j(q))* it is sufficient to show f(aq* + (α^)*) = 0

T h u s f(aq* + (o,) ) = ηq. ηq + ( l - η q . ) • (1 - % ) = 0.
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To pΐovε j(q1Λq2)=j(q1) Λj(q2) is sufficient to show f((aqιΛaq2)
)

v

v
V

Clearly 7 is injective and /'(j(q)) = f'(φ(aq)) = f(aq) = ηq.

Corollary 1. The set LQ of classical effects of a classical system
described by <£ Q ? B

f

Q} is a set of coexistent effects.

Corollary 2. Let Q be a Boolean ring and F(q) an effective L-valued
measure on Q such that F(ί) = 1 and Q is uκ-complete. There is a Boolean
ring Q such that Q is a subring of Q\ the L-valued measure F(q) can be
extended to Q' and the range of the extended L-valued measure consists
of the entire convex range cδ {F(q), qeQ} of F(q).

Thus the convex range of F(q) is a set of coexistent effects.

Proof There is a continuous linear homomorphism S':LQ->L
determined by the L-valued measure F(q) such that Sr(LQ) = cδ{F(q),
qeQ} (Theorem 6). Now apply Theorem 8.

A combination of Theorems 1, 7, and 8 gives

Theorem 9. A set IC L of effects of a quantum mechanical system
consists of coexistent effects if I is contained in the convex range of an
observable.

Appendix

Free Boolean Rings

A Boolean ring A is said to be free on a subset M which generates A
if every mapping from M into an arbitrary Boolean ring can be extended
to a ring-homomorphism. This ring-homomorphism is unique. It can
be shown that for each cardinal number there actually exists a Boolean
ring which is free on a set of this cardinality and is unique up to iso-
morphisms.
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We will not enter into the proof of this statement but sketch the con-
struction of a free Boolean ring on a set M. Let 2M denote the M-fold
product space of {0,1}. 2M is the set of all mappings /:M->{0,l}. If
xeM,px denotes the canonical projection px: 2M-> {0,1} and p~ί(δ) the
set of all mappings /:M->{0,l} which satisfy /(x) = δ (5 = 0,1). The
subsets p ~1 (1), x e M, of 2M generate a Boolean ring AM of subsets of 2M.
x-^p~* (1) is a natural bijection between M and the class M' of generators
p~x (1) of AM. By means of the duality theorems in the field of Boolean
rings it is proved that AM is free on M' ([5,6]). AM consists of all subsets
of 2 M which are finite unions of finite intersections of sets p~ 1 (δ) (δ = 0,1)

It is easily seen that

n

Λ Pxil ( î) + 0 is equivalent to xt Φ xk if ot Φ δk.

n

Sets of the form /Xpj/ί^) with x^Φxfc if iφk are called monomials
Ϊ = 1

and the sets {x1, ...,xn}CM base of the monomials.
Two monomials with the same base are equal or disjoint. Every

element a e AM, a Φ 0,1, has a unique representation

fl= V
σ=l \i=ί

by a union of monomials with the same base such that all monomials
are different and the base is minimal.

If a has the representation (13) and the base is not minimal there
is xt such that for every σ exists ρ with δiσ + δiβ and δkσ = δkρ if kφi.

Suppose aλ, a2 e AM and a1 A a2 = 0. We want to give a representation
of a1 v α 2 . Let

mi

m2 / «2

<>i=V Λ P ^ ! . ) - (14)
\ /

= V Λ O T
σ = l \ i = l

Without loss of generality assume

n+l^i^njL and



116 H. Neumann: Classical Systems and Observables in Quantum Mechanics

Now (14) and (15) can be written

mi / m »2 \
fli=V V Λ Λ (p^ ' ί^Ap- 1 ^, (i6)

σ=l δk = O,ί \ ί = l k = ή+ί I

«2=V V Λ Λ
σ = l <5k = 0 , l \ i = l fc = « +

(16) and (17) are of the form

* i = V (

«2= V ( Λ P Z - 1 ^ ) ) . (19)

Thus it is possible to extend the base of the monomials given in (14),
(15) such that a1 and a2 have a representation by unions of monomials
of a common base. Of course this base is no longer minimal. a1Λa2 = 0
implies that all monomials of aγ are different from the monomials of
a2 and αx v a2 has a representation by the union of all monomials of
(18) and (19).

m'i / «3 \ m2 / « \

α l V α 2 = V ΛP.VίO v V (
σ = l \ί=l / σ = l \i

Also in this representation of aγ v a2 the base {z1?..., znj is not neces-
sarily minimal.
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