Commun. math. Phys. 22, 162—165 (1971) © by Springer-Verlag 1971

On Stable Potentials

N. ANGELESCU, G. NENCIU, and V. PROTOPOPESCU Institute for Atomic Physics, Bucharest, Romania

Received April 23, 1971

Abstract. Examples are given of one- and two-dimensional stable potentials which cannot be decomposed into the sum of a non-negative function and a continuous stable potential.

§1

In his book on Statistical Mechanics [1], D. Ruelle raised the question whether every measurable stable potential on R^{ν} can be decomposed into the sum of a continuous function of positive type and a non-negative function. In a recent paper [2], Lenard and Sherman studied a class of step potentials on R^1 and found inside this class an example of stable potential which cannot be decomposed in this manner. Moreover, they were able to change this potential into a continuous stable potential preserving however the indecomposability property.

This note is concerned with finding further examples of indecomposable stable potentials. The idea is that for a subclass of the step potentials considered in [2], even a weaker decomposability requirement cannot be satisfied. Namely, we are looking for potentials which cannot be written as the sum of a continuous stable potential and a non-negative function. This enables us to considerably simplify the indecomposability proof and, moreover, to find a two-dimensional example. Of course, our examples will consist of surely non-continuous potentials.

§ 2

Let us consider the two-parameter family of potentials $\varphi_{t,d}: R^{\nu} \to R$, $0 \leq t \leq 2, d \geq 0$, defined through:

$$\varphi_{t,d}(x) = \begin{cases} d & \text{for } 0 \le |x| \le t \\ -1 & \text{for } t < |x| < 2 \\ 0 & \text{for } 2 \le |x| \end{cases}$$
(1)

$$\varphi_{2,d}(x) = \begin{cases} d & \text{for } 0 \leq |x| \leq 2\\ 0 & \text{for } 2 < |x| \end{cases}$$
(1')

For every $d \ge 0$, there is one critical value of $t, t_c(d) > 0$, such that $\varphi_{t,d}$ is stable for $t_c(d) \le t \le 2$ and unstable for $0 \le t < t_c(d)$. Indeed, for every fixed configuration $(x_1, ..., x_n) = (x)_n$, the function

$$\Phi_{n,t,d}(x)_n = \sum_{i,j=1}^n \varphi_{t,d}(x_i - x_j)$$

is continuous to the right in t, therefore, if $\varphi_{t,d}$ is stable for all $t_0 < t \leq 2$, then $\varphi_{t_0,d}$ is stable. As $\varphi_{0,d}$ is unstable, $t_c(d) > 0$.

Moreover, $\lim_{d\to\infty} t_c(d) = 0$. Indeed, for every 0 < t < 2, define:

$$p(t) = \max \{ n \in \mathcal{N} | \exists (x)_n, \ t < |x_i| < 2 \ \text{for } i = 1, ..., n \text{ and}$$
$$\min_{\substack{i, j = 1, ..., n \\ i \neq j}} |x_i - x_j| > t \}.$$
(2)

Applying an induction argument as in the proof of Theorem 1 in [2] (see also Example 2^o below), one obtains at once that $\varphi_{t, 2p(t)}$ is stable, therefore $t_c(2p(t)) < t$.

Proposition. Suppose d > 0 is given such that, for a $\delta > 0$, $t_c(d) = t_c(d+\delta) < 2$. Then, there is no continuous stable potential $\Psi(x) \leq \varphi_{t_c(d),d}(x)$.

Proof. Suppose there is one such $\Psi(x)$. From continuity in the neighbourhood of $|x| = t_c(d)$, we obtain: For every N > 0, there is an $\eta_N > 0$ ($\eta_N < t_c(d)/2$), such that $t_c(d) - \eta_N < |x| \le t_c(d)$ implies $\Psi(x) < -1 + 1/N$. Define then:

$$\varphi_N^*(x) = \begin{cases} d & \text{for } 0 \le |x| \le t_c(d) - \eta_N \\ -1 + 1/N & \text{for } t_c(d) - \eta_N < |x| < t_c(d) \\ -1 & \text{for } t_c(d) \le |x| < 2 \\ 0 & \text{for } 2 \le |x| . \end{cases}$$
(3)

If we prove that φ_N^* is unstable for at least one N, the proposition is proved, because φ_N^* majorizes Ψ , a contradiction. To this end, define for every N:

$$\varphi_N^{**}(x) = \begin{cases} \delta & \text{for } 0 \leq |x| \leq t_c(d) - \eta_N \\ -1/N & \text{for } t_c(d) - \eta_N < |x| < t_c(d) \\ 0 & \text{for } t_c(d) \leq |x| \end{cases}$$
(4)

and choose N such that φ_N^{**} be stable. This is certainly possible, in view of the fact that $N \varphi_N^{**}(2x/t_c(d))$ belongs to the family (1) and, therefore, as already remarked, is stable for $N\delta \ge 2p(1) \ge 2p(2-2\eta_N/t_c(d))$. Note that:

$$\varphi_{t_c(d)-\eta_N,d+\delta}(x) = \varphi_N^*(x) + \varphi_N^{**}(x) \,.$$

By hypothesis, $\varphi_{t_c(d)-\eta_N, d+\delta}$ is unstable, which implies φ_N^* unstable.

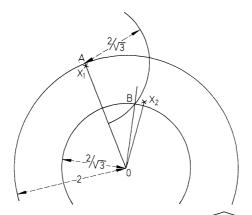


Fig. 1. x_1 must be at nonzero distance from A, therefore $\widehat{x_1 0 x_2} > \widehat{A 0 B} = \pi/6$

This proposition furnishes indecomposable potentials as soon as $t_c(d)$ is shown to be constant on an open interval. We shall consider the following two examples:

1°. For v = 1, it has been shown in [2] that $t_c(d)$ is the following right-continuous stop function:

$$t_c(d) = 2/k$$
 for $2(k-1) \le d < 2k$, $k = 1, 2, ...$ (5)

Therefore, all potentials $\varphi_{t_c(d),d}$ with $d \ge 2$ are indecomposable.

2°. For v = 2, it can be easily shown that, for d < 12 and $t < 2/\sqrt{3}$, $\varphi_{t,d}$ is unstable. For, suppose the points are arranged in a hexagonal lattice of constant a, $t < a < 2/\sqrt{3}$; then, for every i, $\varphi_{t,d}(x_i - x_j) = -1$ whenever x_i is a nearest- or next-nearest-neighbour of x_i , and:

$$\varphi_{n,t,d}(x)_n \leq nd - 6n - 6n + 0(1/n) < 0$$

for sufficiently large n. 0(|/n) is due to the fact that peripheral points have a smaller number of neighbours.

On the other hand, for $t = 2/\sqrt{3}$, $d \ge 23/2$, $\varphi_{t,d}$ is stable. To prove this, the induction argument [2] refered to above can be applied. Let us first note that $p(2/\sqrt{3}) = 11$, as it can be seen on Fig. 1. Suppose $\Phi_{n-1,t,d}(x)_{n-1}$ ≥ 0 for all configurations $(x)_{n-1}$, but there is one configuration $(x)_n$ such that $\Phi_{n,t,d}(x)_n < 0$. For every x_i in this configuration, denote n_i the number of those integers $r \neq i, r = 1, ..., n$, such that $|x_r - x_i| \le t$ and let $\overline{n} = \max_{i=1,...,n} n_i$. Similarly, denote f_i the number of those integers r = 1, ..., n such that $t < |x_r - x_i| < 2$. Clearly, $\overline{n} \ge 1$, because otherwise:

$$\Phi_{n,t,d}(x)_n = 23n/2 - \sum_{i=1}^n f_i \ge 23n/2 - 11n > 0.$$

Choose i_0 such that:

a) $n_{i_0} = \overline{n}$.

b) The x-coordinate of x_{i_0} is equal to the infimum of the x-coordinates of all the x_i satisfying a).

$$\Phi_{n,t,d}(x)_n - \Phi_{n-1,t,d}(x_1, \dots, x_{i_0-1}, x_{i_0+1}, \dots, x_n) = \varphi_{t,d}(0) + 2 \sum_{i \neq i_0} \varphi_{t,d}(x_i - x_{i_0}) = (1 + 2\overline{n}) \, 23/2 - 2f_{i_0} < 0 \,,$$
(6)

because otherwise $\Phi_{n,t,d}(x)_n \ge 0$ by the induction hypothesis. In view of $p(2/\sqrt{3}) = 11$, the set $\Delta_{i_0} = \{x_i \in (x)_n | t < |x_i - x_{i_0}| < 2\}$ can be covered with at most 11 circles of radius *t*, each of them centered in some $x_i \in \Delta_{i_0}$ and such that their centers be at a distance strictly greater than *t*. No such circle contains more than $\overline{n} + 1$ of the x_i in view of a), and at most 6 of them can contain exactly $\overline{n} + 1$ of the x_i in view of b). Thus:

$$2f_{i_0} \le 2[5\overline{n} + 6(\overline{n} + 1)] = 11(2\overline{n} + 1) + 1, \qquad (7)$$

which contradicts (6) for all $\overline{n} \ge 1$.

Therefore, $t_c(d) = 2/\sqrt{3}$ for all $23/2 \le d < 12$, and, according to the proposition, $\varphi_{2/\sqrt{3},d}$ is indecomposable for $23/2 \le d < 12$.

For v = 3, such an argument is not sufficient to prove that, on some open interval, $t_c(d) < 2$ is constant. It seems however a natural conjecture that $t_c(d)$ is in fact a step function for all v.

Acknowledgements. We are grateful to Professor D. Ruelle for having pointed out to us that the argument we gave as a proof of this last conjecture was mistaken.

References

- 1. Ruelle, D.: Statistical Mechanics, Rigorous Results. New York: W.A. Benjamin, Inc. 1969.
- 2. Lenard, A., Sherman, S.: Commun. math. Phys. 17, 91 (1970).

N. Angelescu G. Nenciu V. Protopopescu Institute for Atomic Physics Laboratory of Theoretical Physics P.O. Box 35 Bucharest, Romania