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Abstract. The solutions of the General Relativity equations with quadratic Lagrangians
RiklmRίklm, RikR

ik, R2 are studied. It is shown that nontrivial Euclidian (at r-> oo) solution
of the theory equations does not exist when TΦO (T is a trace of the energy-momentum
tensor of matter). The Schwarzschild solution is not an external part of a total solution
when TΦO. Under condition T = R = 0 Lagrangians RiklmRiklm, RikR

ik lead to the
identical field equations, so there exist the only quadratic Lagrangian and the only field
equations. This equation has a solution with an external part being a standard Schwarz-
schild solution for the statical spherically symmetric case.

1. Introduction

It is known that the standard external Schwarzschild solution satisfies
the equations of the quadratic Lagrangians theory. A conclusion is
likely to be made that with respect to its experimental consequences the
gravitation theory with quadratic Lagrangians

L^RmmRmm, L2 = RikR
ik, L3=R2 (1)

is equivalent to the usual formulation of General Relativity. However
bearing in mind a real distribution of a matter energy-momentum tensor
it is not evident that a nontrivial Schwarzschild solution will be the
external one for the total spherically symmetric gravitational field de-
scribed with Lagrangians (1).

It is known that Lagrangian of the Einstein theory L0 = R is not
invariant with respect to a change of the units measuring the interval.
The necessity of the such invariance seems to be natural for a zero mass
field. So the question arises on the possibility of using the another par-
ticular Lagrangian of course while the main theory principles being
conserved. The quadratic Lagrangians satisfy all the necessary invariance
requirements.

The properties of Lagrangians (1) and ideas of the necessity for the
conformal invariance of a gravitation theory were discussed in papers
[1-41].
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In the present paper I show that under condition T φ 0 the nontrivial
Schwarzschild solution is not a solution of the quadratic Lagrangians
theory equations. Under condition T = 0 the equations have a solution
with the external part being the Schwarzschild solution.

2. The Field Equations

The equations of the quadratic Lagrangians theory satisfy the con-
dition [4, 5, 7, 11]

δ{γ^g Lx) = δ{γ~^g (4L2 - L3)). (2)

So the linear combination L=\(ΛL2 + BL3) is the most general quad-
ratic Lagrangian of the theory. Let us write the action integral in the
form J = J (Lm — L) ]/ — g d4Ω, where Lm is Lagrangian describing the
matter. When obtaining the field equations it is convenient to use the
following formulas

δΓk\ =

δRnm=VkδΓ^ι-\

-\l2gim{Vkδgml+V{

The field equations have a form

H =A(K Kin- 1

+ B{R(Rki -

l/4δkRmnR
mn + Vn(l/7

\l4δkR) + {VnV
nδk-\

vιδΓΐk>

I δQmk ~ ΫmδQkl)

lVnRk_ |7.^ + 1/4^|

Vt vk) R),

(3)

(4)

VR))
(5)

where Tk is the symmetrical energy-momentum tensor of the matter,
Tk = 2/\/ — g δ(\/ — g Lm)/δgik. The Eqs.(5) correspond to: Lagrangian

R2 when A = 0, B = 1, Lagrangian RikR
ik when A = l,B = 0, Lagrangian

RikimRiklm when A = 4,B=1. The trace of Eqs. (5) has a form

T = (A + 3B)ViV
iR. (6)

3. Statical Spherically Symmetric Solution. T Φ 0

Let us take the expression for the metrics in the standard form

dS2 = U{r) dt2- dr2/V(r) - r2 dθ2 - r2 sin2 θdφ2. (7)

Eq. (6) can be written down in the form

r~2 4~ (VUV r2 4~ R\ = ~ T]/U/V/(A + 3B), (8)
or y or I v

from which it follows that

^~ ^~ (9)
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Assuming the Euclidian character of the metrics at the infinity it is
natural to suppose that when r > r0, where r0 is the radius of the spheri-
cally symmetric gravitational field source, the functions U(r) and V(r)
can be taken in a form

U(r) = 1 - £ ajrn, V(r) = 1 - £ bjrn. (10)
n=2 n = l

In this case we obtain a following expansion for a quantity

R = 9ik(8nr!k - dkr
ι

n + rl.rz - / τ ? θ ,

K = Q/r4 + C2/r5 + C3/r6 + - (11)

where the coefficients Cf are related in a simple way to the coefficients
ai9 bh for example Cγ = 2(b2 — a2) + %(foi — a^/2. At the same time from
equality (9) we obtain the following expansion

R = MJr + M2/r2 + M3/r3 + , (12)

άr, M2 = - ( % + 61)M1/4,... (13)

The expansion (12) is consistent with the Euclidian character of the
metrics at r-» oo, i.e. with equality (11) only when Mγ =0. This leads to
the equality T = 0 on assumption of the sign determinacy of the quantity T.

We conclude that under the condition TΦ 0 there is no a nontrivial
static spherically-symmetric Euclidean at r->oo solution of Eqs. (5).

The result obtained indicates definitely enough against the possibility
of using Lagrangians (1) for the description of the real gravitational
field. However to consider this case completely it is necessary to analyse
the case T = 0. If we showed that Eqs. (5) did not describe the external
gravitational field of a particle in this case also it would evidence in
favour of the uniqueness of the Einstein field equations.

4. Γ = 0

The condition T = 0 is not consistent with the conventional properties
of the matter energy-momentum tensor. But on this occasion let us refer
to Einstein [42] "...although it might seem that the quantity T} is
positive for the whole system in fact the quantity T/ +1\ is only positive".
The possibility of T = 0 for a real massive body has been also discussed
in the same paper.

The fact that the contribution of the proper gravitational field to the
total energy-momentum tensor of a point particle has the same order of
magnitude as the contribution of a "bare" particle is also the result of
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ADM group [43-44]. This group has shown that the total mass of the
neutral point particle is equal to zero. The possibility for the total mass
of a closed system being equal to zero has been also considered by
various authors [33, 45-48].

Using the commutation rules for the covariant derivatives in the
expression Vn V

1^" and the condition T = R = 0 we can write Eqs. (5) in
the form (we suppose that A = 1)

Tt

k = Rk

linR
ln - i δkRlnR

ln +±Vn F»Kj. (14)

For metrics (7) Eqs. (14) take a form

T$=U-1r-32VU'(l-V)
/ + 9(JJ-1VU')2 - 3 F ' 2 ) + ^ %

T 2 = (C/

+ I r'2(- 10 U'1 VU' V- 3(U~1 V U')2 - 3 V'1) + \ Vn V"Rl.

Besides we have the equation

')

+^U-ίV'U'{U-2U'2 0

Only three equations from the four ones (15-16) are independent.
Therefore it is necessary one additional equation to determine four
independent functions To°, T/, U9 V. Usually such the equation is the
equation of the state of matter. In the present case it is only the principal
possibility or nonpossibility of the existence of a solution that we are
interested in. Therefore it is sufficient to analise an example with a truthful
equation of the state. Let us choose this equation in the form

7? = T2 . (17)

Let us search for the solution in the form

+" | 2

f o 2 M r 2 M ) , V = d-βr2 + Σjinr2", r<r0,

V=U=l-2M/r, r>r0.

From the conditions (16-17) we obtain that

U = a(l + br2+±b2r*-£b3r6 + •••),
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From the boundary conditions U(r0) = V(r0) = 1 - 2M/r0 we obtain
the constants a and b

- r ^ _ - ^ - r ~ * ( 2 0 )

Then we determine the tensor 7]fc(r) corresponding to the solution (20),

To° = 12b2 - 54b3r2 + ... 7? = T2 = £ Γo° . (21)

5. Conclusions

We have shown that the description of the gravitational field with
the quadratic Lagrangian theory leads to the condition T = R = 0. In
this case the nontrivial solution with the external Schwarzschild one
exists. If we shall not consider the condition T = 0 as unacceptable it is
necessary to admit that the variant of the gravitation theory with quadratic
Lagrangians is consistent with the known experimental data.

However the very strong limitations imposed on the matter-gravita-
tional field system in the quadratic Lagrangians theory (the condition
T = 0, the single-valued form of the function 7]k(r)) apparently give
evidence against a possibility of use the quadratic Lagrangians for
a description of a real gravitational field.
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