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Abstract. The set of all projections and the set of all unitaries in a von Neumann
algebra factor si are studied from the homotopical point of view relative to the operator
norm topology.

Two projections E and F can be deformed continuously to each other if and only if
E ~ F and 1 — E ~ 1 — F where ~ denotes the equivalence of projections in si in the sense
of von Neumann. In other words, the relative dimension and co-dimension are a complete
homotopical invariants of projections in si and label pathwίse connected components of
the set of projections.

The first homotopy group π1 (Vί{si)) of unitaries in si is shown to be 0 for si of infinite
type. For type IIγ and type In factors, π^fsi)) are isomorphic to additive groups of reals R
and integers Z, respectively, in which the first homotopy group ^ (3?Φf (.«/)) of the center
oϊ<W(si) is imbedded as Z and nZ, respectively.

§0. Introduction

In [5,6] Glimm's classification of U.H.F. algebras is reobtained by
means of the first homotopy group π1 i^ί (stf)) of the unitary groups (si)
of a U.H.F. C*-algebra si and the canonical homomorphism
φ:π1 {βQi (si))-+n± (Φ (si)) where2tW (si) denotes the center ofΦ (si).
The present note is motivated by a desire to investigate the analogous
situation for a von Neumann algebra factor acting on a seperable
Hubert space.

As a preliminary step we study the projections P (si) of a von Neumann
algebra si. Two projections E and F are said to be equivalent [4] (denoted
by E ~ F) if and only if there exists an operator Fin si such that F* F= E
and W*=F. (Such an operator Fis called a partial isometry, it maps
the range of E isometrically onto the range of F.) It is shown that for a
factor si there exists a norm continuous one parameter family E (λ\
0^/ί^ l , of projections with initial point E = Έ(ϋ) and terminal point
F = E (1) if and only if E~F and I-E~I-F, where / is the identity
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operator in si. This enables us to relate the path components of P (si)
to analytic properties of projections.

We next begin our study of the first homotopy group, πί i^lί(sl)\
of the unitary group, % (si), of the von Neumann algebra^.The elements
of π1 ^U (si)) are certain equivalence classes of one parameter families
U (λ), 0^/1^1, of unitary operators in si, depending continously on λ
relative to the operator norm topology oisl and such that U(0) = / = U(l).
We call such a family a loop in % (si). A loop in % (si) is said to be
simple if and only if U (λ) = exp 2π i λS for a fixed self adjoint operator
S in si. We next show that in a factor of infinite type (7^, 11^, III) a
simple loop is homotopic to zero. Thus, since we show that the simple
loops generate πί(tfί(sl)) for all si, we conclude that πί(tfί(sl)) = 0
for si a factor of infinite type. For a factor of finite type a sum of simple
loops can be deformed (that is, is homotopic) to a single simple loop
exp2πίλS, O^A^l. A complete homotopy invariant of such a loop
is given by φ (S) where φ is the trace on si. In particular, πγ ^ll (si)) = R,
φ(πί(^(W(sl))^ZcR for type II t factors and nxt%(j/))^Z,
φ (πί(££tfί (stf)) = nZC Lfor type /„ factors, this latter result being well
known.
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§ 1. Continuous Deformations of Projections

Let 2tf be a separable Hubert space !£ ψe) the set of all bounded
linear operators on &£, stf C S£ ψf) a von Neumann algebra, P (s#) C si
the set of all (orthogonal) projections in si and % (si) the set of all
unitary elements in si.

For any T G ^ ( J T ) we define kerT= {xeJf; Γx-0} and cokerT
= kerT*. For a closed subspace J^ΓCJ^, E^ denotes the orthogonal
projection onto $£. The orthogonal complement of $C in H will be
denoted by J^ x .
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We recall the polar decomposition theorem in the following:

Polar Decomposition Theorem. Let Te =£? (Jtf). The polar decomposi-
tion of Tis W\T\ = T, where Wis a partial isometry such that W*W
= £(kerτy> WW* = EiGΛtrT)L and \T\ = (T*T)1/2. If Test then tfζ\T\e^
also.

Lemma 1.1.// E, F are orthogonal projections and \\E — F\\ <1
then ker EF = (I-F)3tf> and coker EF = (I-E) J<f.

Proof. It is clear that

ker EFD(I-F) 3tf,

coker EFD(I-E) ϊtf.

Suppose that EFx = 0 but y = Fx*0. Then \\(E-F)y\\ = \\-y\\ = \\y\\.
Hence ||£ - F|| = 1, contrary to hypothesis. Therefore EFx = O^Fx = 0
so that xe(I-F) #e. Similarly FEx = 0 implies Ex = 0, thus
coker EFc(I- E) 3tf. Q.E.D.

Lemma 1.2. Let E and F be projections in si, | |£ — F | | < 1 . Then
E~F and I-E-I-F.

Proof. Applying the polar decemposition theorem to EF we obtain
a partial isometry We stf and the operator |£F| e M such that EF = W \EF\
where in view of (1.1) W*W = F, WW* = E. Therefore E~F. Since

the same argument shows that I — E~I — F. Q.E.D.

Proposition 1.3. Lei E,FeP{s#). Suppose that E and F can be
connected by a norm continuous path in P (stf). Then E~F and
l-E-l-F.

Proof Let P(ί):0^ ί ̂  1, be a norm continuous path in P(si) con-
necting £ = P (0) to F = P (1). Using the compactness of the unit interval
J = {0 ^ t ^ 1} we may find numbers

0 = ί o < ί 1 < < ί w = l
such that

Applying (1. 2) we find

E=P(0)~P(t 1 ) P(O = F

and

I-E = I- P(0) /-P(g = I-F

from which the result follows by transitivity of the relation ~ . Q.E.D.
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Proposition 1.4. Let E and F be two projections in stf with E~F and
I — E ~ I — F. Then E and F may be connected by a norm continuous
path lying in P (si).

Proof Let U be a partial isometry from EtoF and Fa partial isometry
from J - E to I-F, (7, Vest.

Thus
E=U*U, F=UU*,

I-E=V*V, I-F=VV*.

Let W =U +V. Then We si, and PFis actually a unitary operator in si,
since PFis an isometry from E 3tf to F #ί and (E Jtff to (F Jiff.
Note that by construction

Hence U = WE. Now note

WEW* = UW* = U(U* + V*) =UU* + UV* =F+ (7 F* .

Next note that F*x e (E Jίηf = (/ - £) JT for any x e Jίf. Since / - E = ker U,
we have that t/F* = 0. Thus

By the spectral theorem there exists a self adjoint operator Tes/ such
that W= eίτ with - π / < T ^ π / . Let

Since ΓG S/9 e
itT e s# and e~itT e sJ for all 0 ̂  ί ̂  1. Therefore P (ί) e sJ.

In fact P (ί) is a projection for each t and hence P (ί) G ^ (JS/). Clearly P (ί)
is a norm continuous function of ί, and since P (0) = £, P (1) = F, consti-
tutes a norm continuous path in SP (sί) from E to F. Q.E.D.

We may summarize the results of this section in the following:

Theorem 1.5. Let E and F be two projections in stf. Then E may be
connected to F by a norm continuous path of projections in si if and only
ifE~FandI-E~I-F.

§ 2. Reduction of General Loops to Simple Loops

The aim of this section is to provide a proof of the following theorem:
In the unitary group of a υon Neumann algebra, any loop is homotopic

to a sum of simple loops.
The proof will be accomplished with the aid of a technical lemma

whose statement and proof are deferred to the appendix. Reference to
this lemma is made at a key point in the argument.
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We shall require several preliminary steps. The first Lemma is
well-known.

Lemma 2.1. Let ίt(z) be a continuous function of (ί, z), t e [0, 1 ] , Z G C

and JV be the set of all bounded normal linear operators with the norm
topology. Then the mapping from ( ί ,0e[O,l] x Jί to ΐt(Q)e Jί is
continuous.

Proof. Let K be a compact set in C and Jr(K) be the set of Q e Jί
with its spectrum in K. Let ε > 0 be given. Let δ > 0 be such that

\ϊt,(z)-ϊt»(z)\<Φ

for all zeK and t\ ί"e[0,1] satisfying \t'-t"\<δ. Let Pε(z,ί) be a
polynomial of ί, z and z such that

|Pβ(z,ί)-ft(z)|<ε/4

for all t e [0,1] and ze K. Such a Pε exists by the Weierstrass approxima-
tion theorem.

Let δ>0 be such that

\\Q'-Q"\\<δ, β',β"eJV(X),ίe[0,l]
implies

ιipε(e',o-pε(ev)iι^ε/4.
Such a (Hs seen to exist from the following type of estimates:

| |Σ
llk=i

^ Σ ii

where L is a bound for )z|, zeX.
We now have

O - P.(β', Oil + II P*(<2'> 0 - P.(Q", Oil

", 0 - ft'(β")ll + l|f,'(β") - f,"(β")ll
<£

whenever if, t" e [0,1], |ί' - ί"| < 5, Q Q" e JftK) and || Q - g"||
Q.E.D.

Lemma 2.2. .4 /oop U(λ): 0 ^ A ^ 1 in the unitary group QHjiί) of a
von Neumann algebra si is null homotopic in <%($/) if ||U(λ) —/|| < 2
for all λ.
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Proof. Since U(λ) is norm continuous,

sup | | U ( λ ) - l | | < 2 .
λe[O,l]

Hence there exists a, 0 < a < π, such that the spectrum of U(/l) lies in
the set {expiθ: -a^θ^a} for O^A^l.

Let ft(z) be a continuous function of (ί, z), 0^£ ^ 1, z e C such that
/t(expiθ) = expitθ for -a^θ^a, 0 ^ ί ^ 1. Then /f(U(λ)) is unitary
in eβ/, norm continuous in (ί, A) with /1(U(A)) = U(λ) and /0(U(λ)) = J,
where the continuity is due to Lemma 2.1. Q.E.D.

Given unitary operators Uί9 U2, satisfying || Uί—U2\\ <2 we reserve
the notation L(UU U2) for the path connecting Uί and U2 in the explicit
manner now to be explained. Since || U1 — U2\\ < 2 we have a unique self
adjoint operator Q in {U?U2}" satisfying the following conditions:

The path L(Ul9 U2) is defined by

L(E/l9 C/2) (A) = Uγ exp α g : 0 ^ /I ̂  1.

Note that the distance between any two points on L(C/1? C72) is bounded
by \\Uγ- U2\\. For

\\L(UuU2)(λ')-L(UuU2)(Γ)\\

Notations and Conventions. We fix throughout the remainder of this
section a von Neumann algebra s& acting on a Hubert space ffl. All
loops and paths that we consider lie in the unitary group <%ί(£0) of s$.
All operators lie in si. If a lemma asserts the existence of a loop path or
operator it is understood that the operator lies in sJ and the loop or
path in <W(,$/). If this is not explicitly proved then it is an easy verification
left to the reader.

Lemma 2.3. Any loop is homotopίc to a sum of triangular loops Aj
with three sides consisting of:

Ljj+ί=L(expίQp expiβ j + 1),

l i + 1 = {expi(l-λ)βJ+1; O^α

where Qo,..., βΠ are self-adjoint operators satisfying

WQlWύπ, i = 0 , . . . , n ,

j+ί\\ <δ, i = 0, . . . , n -

and δ is a fixed number 0 < δ < 2.
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Proof. Any loop can be divided into several arcs { U ^ ), U(>lJ+1)}
0 = λ0 < λ± < λn = 1 such that

j = 0,..., n — 1. Let β7 be defined by

with the spectrum of Qj contained in [ —π,π]. Note Q3e { U ^ )}" and

Using (2.1) we see that the loop consisting of the two sides {U(Λy)* U(λ)
λj^λ^^j+i} and U(λj)* Ljtj+1 is homotopic to 0. Therefore the path
consisting of {U(/l); λj^λ^λj+ί} is homotopic, with end points fixed,
to the path LjJ+ί (Fig. 1).

UU)

Next note that the closed path consisting of the two arcs Lk, Lk

is null homotopic. Thus we see that the loop {U(λ): 0 rg λ g N} is homo-
topic to the sum of triangular loops Aj9j = O9..., n— 1. Q.E.D.

Lemma 2.4. Suppose that Qί and Q2 are self adjoint operators in sd
such that HQJI, | |Q 2 | | ^ π and \\Q1 -Q2\\ <2e~π. Then the triangular
loop with three sides

1 > 2 = L(expiβ1, expiβ2),

/s homotopic to 0.

/. Let Q(μ) = μ Qί + (1 - μ) Q2 : 0 ^ μ ^ 1. We have
Q ( ^ ) l l = l μ ' - μ Ί l l β i - e 2 l l < 2 ^ π for //', μ" e [0,1] Hence

||exp/Q(μO-exp;Q(μ")ll

S \\Q(μf) - Q(μ")ll exp max {||Q(μ')ll , IIQOOII}
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Thus by (2.2) the loop consisting of the two sides (exp/Q1)*L1 2 and
{(exp/Qi)* expiQ(μ) | 0^μ?g 1} is null homotopic. Let A(μ) be the tri-
angular loop with sides

{expUQ(μ); O r g ^ l } ,

{expιQ(μ'); μ ^ μ ' ^ 1 } ,

{expi(l-λ)Q1; 0 ^ / I ^ 1}.

Then the preceeding discussion shows that the triangular loop
{L1? Lίt29 L2) is homotopic to A(l) (Fig. 2).

exp jQ (μ): 0<//<l

exp iQ

exp i

exp ίQ2 exp iQ1 exp iQ2

The triangular loops A(μ), 0 :gμ ^ 1, provide a continuous deforma-
tion of A(l) to A(0) (Fig. 3). Since A(0) is clearly null homotopic it follows
that the triangular loop {Lu Lί 2, L2} is also null homotopic. Q.E.D.

Lemma 2.5. Let Uί9 U2 be unitary operators in s4. LetAuA2be compact
connected arcs on the unit circle with mutual distance r > 0. Let the length
of the arc Δ1 be α > 0 , and let ε be a given positive number. Then there
exists (5(ε, r, α), depending only on ε > 0, r > 0, a > 0, such that whenever
Eί and E2 are spectral projections of Uί and U2 for Aγ and A2 respectively,
| |Ei J52|| < ε whenever \\ Ux - U2\\ < δ(ε, r, a).

Proof. Let f(z), zeC, bea continuous function which is equal to 1
on a fixed A\ of length α and 0 at any point on the unit circle S1 with
distance from A J larger than r. Since ϊ(U) is norm continuous in
by (2.1) (set ϊt(z) = ί(z) in (2.1)), there exists δ{ε, r,A°ί)>0 such that

whenever

Since

-t(lΓ)||<6

\\U'-U"\\<δ(ε,r,AΪ), U\ U"

ί(U1)E1=E1, ί(U2)E2-
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we have
= \\Eι(ΐ(U1)-f(U2))E2\\<ε

for || Uί — U2\\ < δ(ε, r, zl?). For any other arc Ax of length a there exists
a real number θ such that Δγ^eiidΔ\ and if we use the function
ϊθ(z)= ϊ(e~iθz) instead of f(z) the preceeding computations are still valid.

Q.E.D.

Lemma 2.6. Let Qx and Q2 be self adjoint operators in stf. Suppose that

"
n=-N

= Σ

where En and Fn are spectral projections of Qx and Q2 respectively, and N
is a natural number. If

and

then

\\Fn(I-En-En + ί)\\<ε =

\\Q1-Q2\\<2π/N.

Proof. We have

For m = n or n + 1 we see that

Fn{Qi ~Qi)Em = FnEJπ/N)(m-n- 1/2)

= ±(2JVΓ1πF I 1E1 I l.

For the rest, from the hypotheses we have

Fn Σ EJ\<e.

x x mΦn + 1 II

Hence

Since
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for ψ e J#", we see that

I y Fn En 11 < i .

Similarly

Hence
II 2i - β2ll < 4Nπε + (π/N) = (2π/N)

where we have used the estimates || Q1 \\ S π, || Q2II = π Q E.D.

Lemma 2.7. There exists δ>0 with the following property: When-
ever Qί and Q2 are self-adjoint elements in s$ satisfying

II e x p ί Q ± — e x p Ϊ " Q 2 II

then the triangular loop with sides

L l i 2 = L(expiβ1, exp/β2),

L2 = {expi(l-λ)Q2: O^λ^ί}

is homotopic to a sum of simple loops.

Proof. Let Uj = expiQj9j =1,2. Let En be the spectral projection for Qx

on the half open interval ((n-(1/2))π/N, (n +(1/2))π/N], n=-N,
— N + 1,..., N. Similarly, let Fn be the spectral projection of Q2 for the
half open interval (n π/N, (n + 1) π/N], n— —N, — N + 1,..., JV — 1, where
N is an integer chosen so that N>πeπ.

By (2.5) there exists δ(ε,π/(2N),π/N) such that if ||Q± — Q2||
< δ(ε, π/(2N), π/N) then

\\Fn(I-En-En + 1)\\<ε for π = -

\\F_N(I-E_N-E_N+ι-EN)\\<ε,

\\FN-t(I-EN_t-EN-E-N)\\<e9

and

Since ||Fα£^|| < ε implies | |Fα£'|| = ||Fα£^£Ί| < ε for any subprojection E
of Eβ9 the assumptions of the appendix are satisfied with EA = F_N,

Ey = I — Eo — Ea — Eβ. Therefore there exists projections £ 0 l 5 E02 with



E0XλE02 and

where

We define

and

Obviously

and

Also
\\F-N(I-E01

and
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^01 ~f~ EQ2 — i^o =
 ^N ~\~ ^ - Λ Γ ?

II £^02II = 11̂ - Λ 2 I I < ^ ) ,

lim ε'(ε) = 0 = lim ε;'(ε).

N

β i = Σ (»π/iV)£n,
«=-iV

QΊ= Σ (« + (l/2))(π/JV)FB,
Λ=-JV

i V - 1

= Σ (?iπ/iV)£M-πEoi+π£:o2
n=-JV+l

- £ - w + i ) | |

F _ w ( / - £ o - £ _ w + 1 ) | | + ||F_w£o2ll

81

\\FN-1(I-EN-1-E02)

Replacing ENby E02, E_Nby E01 we see that Q'[ replaces the role of Qγ.
Letting

(En if n*N, -N,

£ n = j £ 0 1 if n= -N,

[E02 if n = N,
we may write

iV

Ql= Σ

We then see that the hypotheses of (2.6) are satisfied for Q'[ and Q'2
with ε + ε'(ε)<(2N)~2. Hence for such ε, \\QΊ-Q'2\\<2π/N. By our
choice of JV

II62-62II

II Q ί - G i l l
6 Commun. math. Phys., Vol. 22

<2e-
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By applying (2.4) we may therefore conclude that the following three
triangular loops are homotopic to 0:

L1 = {expUβ1: O ^ λ ^ l

The triangular loop with sides <j L1Λ, = L(expiβ1, expiQi)

2, = {expiλQf

2: O^A^l

iβ'2, expiβί)

L2 = {expiλQ2: O^A^

The triangular loop with sides \ L2>2, = L(exp iβ2> expiβ2)

L r = {expi(l-λ)β'2: Og

The triangular loop with sides

Note that expiβΊ = expΐβί because [βi, £N] = [ £ 0 2 , βj] = 0 and thus
expi(βi — 2π£ iV + 2πjE02) = expιQ/

1. Note also that the distance from
any point on LίtV, L2i2, or L 2 % r . to Uί =exp/β1 is smaller than

2 π

< 3 e < 2
< 2iV + 2N + iV < '

Therefore the four paths U?LUV9 U?Lv.tV, U?L2>t2

 a n ( i U*L2Λ form
a loop which by (2.2) is null homotopic.

Combining all the preceeding observations, we see that the original
loop is homotopic to the loop consisting of Lί9 and Lr,. But since

expz'Aβi = exp[2πiA£jv] exp[ —2πiλ£02] exp[iλβi']

dueto [βi,£ J V] = [£O2,β/

3[] = 0, the loop consisting of Lv and Lx,, is
homotopic to the sum of the two simple loops {exp2πi/l£ iV:0^/l^l}
and {exp(-2πίλ£ O 2 ):0^A^l} completing the proof. Q.E.D.

Summing up (2.3) and (2.7) we have the following:

Theorem 2.8. Let si be a von Neumann algebra with unitary group
°U(si). Then π^iό^)) is generated by the homotopy classes of the simple
loops.

Proof. Note that taken together (2.3) and (2.7) say that every loop in
is homotopic to a sum of simple loops. Q.E.D.
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§ 3. The First Homotopy Group of the Unitary Group of a Factor

In this section we will apply the theory developed so far to the
special case of a von Neumann algebra factor.

Theorem 3.1. If s$ is a factor of infinite type (that is s$ is of type
/«,, ///«, or III), then πί(%(^)) = 0.

Proof. By (2.8) we have only to show that a simple loop {exp2πUβ:
0 ^ λ ^ 1} is homotopic to 0. Since exp2πz'Q = 1 we see that Q = £ nE%

n

for n = 0, ± 1 , ±2, . . . and E% are mutually orthogonal projections.
Hence we need only consider the case of a simple loop {exp2π/λ£|
0^/1^1} where £ is a projection.

First we consider the case where £ is a projection of infinite relative
dimension in srf. There exist in stf mutually orthogonal projections
£ 1 ? £ 2 with infinite relative dimension such that E = Ei + £ 2 . Also there
exist mutually orthogonal projections Fu F2, F3, F4 of infinite relative
dimension with Fί + F2

JrF3+F4r = L By (1.1) there exist norm con-
tinuous paths of projections

l , i = 1,2, 3
such that

3(0) = *;, ί = l , 2 , 3 ,

F1(ί) = El9 F2(l) = £ 2 , F3(1) = J - F 4 .
Let

U(λ, μ) = [exp2πϊλF1(μ)] [exp2πίλF2(μ)]

• [exp2πzAF3(μ)] [exp-2π//l(/-F4)].
Clearly

U(λ, 1) =

Thus the loop {exp2πU£:0^λ = l} is null homotopic in
Next we consider the case where £ is a projection of finite relative

dimension. Then I — E has infinite relative dimension and £ = / — (/ — £).
Since / and I — E commute with each other {exρ2πU£:0^λ^ 1}
is homotopic to the difference of the two simple loops {exp2τπΛ(J-£):
OgΞλ^l} and {exp2πiλ/: O^λS 1}. Since s/ is of infinite type both
I and I — E have infinite relative dimension and thus the loops
{exp 2πiλ(I-E):0^λ^l}, {exp2πίλ/:0^A^l} are null homotopic
\Ά?U{S4) by the earlier part of the argument and the result follows. Q.E.D.

Remark. Kuiper [3] has shown that aU(sΛ') is actually contractable
for a von Neumann algebra factor of type 1^. Breuer [1] has obtained
a similar result for certain von Neumann algebra factors of type 77®. We
conjecture that %(£#) is always contractable for a factor of infinite type.
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We wish now to deal with the case where &0 is a factor of finite type.
First we introduce a homotopy invariant for simple loops in such a factor.

Notations and Conventions. Henceforth s4 will denote a von Neumann
algebra factor of finite type. We denote by φ the normalized trace func-
tion on &#.

Definition. Let a loop L= {U(λ): O ^ A ^ 1} in <Vt(s/) be divided
into several arcs at

0 = λo<λ1<~ <λn=l,

such that for a fixed positive number δ, 0 < δ < 1

||U(/l') — U(λ")|| <δ
whenever

That is the distance between any two points on the same arc is bounded
by δ. Then using

logβ= £ (-1)1""1 —(β-JT
m = l m

we define

where f / ^ U ^ ), ι = 0, ...,w.

Theorem 3.2. With the notations preceeding, if δ is chosen sufficiently
small, lφ(L) is well defined, independent of the points of division, and an
invariant of the homotopy class of the loop L in <%ί(&/).

Proof. There exists <S0>0 such that for any Qί9 Q2 with ||βill <δ0,
\\Q2\\ <δ0, \ogeQί eQl — Qx — Q2 can be written as a norm convergent
infinite sum of multiple commutators oϊQί and Q2 by the Baker-Hausdorff
formula. Since φ vanishes on commutators we have

whenever \\eQl — IW<δ and \\eQl —1\\ < δ for some small δ.
Therefore whenever the mutual distance of the C//s is small we have,

m'

from Π (t//-1t/J) = l/ C/m.)

Let 0 = λo<λ1<"-<λn=ί and 0 = μ 0 < μ x < < μ m = 1 be two
given divisions of [0,1]. Consider the union of the two divisions, that is
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the subdivision using all the Λ's and all the μ's. Provided that δ is chosen
in the foregoing manner, lφ(L) for the λ division and lφ(L) for the μ
division are equal to lφ(L) for the joint division because of the additivity
computed in the previous paragraph. Hence lφ(L) is well defined.

Any continuous deformation of loops in <JM(s0) can be divided into
small triangular deformations. Using again the above additivity, lφ{L)
is invariant under each triangular deformation and hence lφ(L) is a
homotopy invariant. Q.E.D.

Theorem 3.3. If s/ is a factor of type Πx then π^U{M^) is isomorphic
to the additive group of reals, in which π^&Wis/)) is the integers.

Proof. By (2.8) a general loop in <%£{si) is homotopic to a sum of
simple loops of the form {exp2πmJ/lEJ : O^λ^j}, j= 1, ...,iV, where
the rij are integers and the Ej are projections.

Since s/ is of type IIl9 each Ej can be divided into ntj mutually ortho-
ttlj

gonal subprojections with equal relative dimension in si: Ej = £ Ejk.
fc=l

Thus each {exp2πmJ A£J : 0 ^λ ^ 1} is homotopic to a sum of nij loops
{Qxp2πiΠjλEjk:0^λ^ί}9 k = 1, ...,m7 . Since si is a finite factor
dim(/ — E)= 1 — dimE for any projection E in si. Thus in particular

dim(l — Ejk) = 1 — dimE^ : k = 1,2,..., m7-
and since

dimEjk = d i m E 7 l : fc = 1,..., m7-

we see that each projection E j fe can be deformed through projections
in eδ/ to Ej! by (1.5). This gives a deformation of the corresponding loops
to { e x p 2 π m j λ £ / 1 : O ^ λ ^ l } . Thus each {exp2πmjλ£</ : O ^ λ ^ l } is
homotopic to {βxp2πmJ m7 E j l : 0 ^ λ ^ 1}.

In this manner we can make all Πjirij equal to some fixed integer n
and dimEj^j = 1,..., N smaller than 1/JV. Note that n will be a common
m u l t i p l e of nu...9nN b i g e n o u g h s o t h a t dimEj<l/N, j=l,...,N.

There exist mutually orthogonal projections Ej,j= 1,2, ...,N, with
dimEj= dimEjl9 j=l,...,N. Hence, since si is a finite factor
d i m ( / - £ j ) = d i m ( / - £ J . 1 ) , for ; = 1,...,N. We may thus apply (1.5)
to continuously deform Ej to Ejl9j= 1,..., JV, through projections in ^ .
Thus we see that the original loop L is homotopic to {Qxp2πinλE:

N

0 ^ λ ^ 1} where E = ]Γ Ej is a projection.

Suppose next that we are given two loops of the final form, namely

La = {exp2πinaλEa: 0 g λ g 1} ,

Lb = {exp2πinbλEb: 0 ^ λ ^ 1},
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where Ea, Eb are projections and na, nb are integers. By the same argument
as before we can deform each of the above through loops in °ti(si) to

L'a = {Qxp2πίnλE'a: 0^/1^1} ,

L'b = {Gxp2πίnλE'b: 0 ^ λ ^ 1}

respectively where n = nanb, and E'a9 E'b are projections. The invariant of
(3.2) can be calculated immediately for the loop L = {exp2πίmλE:
0 <> λ ^ 1} and is given by

lφ(L) = 2πim dim £ ,

and is an invariant of the homotopy class of the loop. Thus if La and Lb

are homotopic dimϋ^= dimEb. On the other hand if dimE^ = dimEj,
we may, since si is a finite factor, apply (1.5) to conclude E'a may be
deformed through projections in si to E'b. Thus L'a is homotopic to
L'b through loops lying i n ^ ^ ) and hence the same is true for La and Lb.

Therefore lφ( ) completely determines the homotopy class of a loop
in ΰU{si\ The range of lφ( ) is the set of complex numbers 2πin dimE
where n is an integer and E a projection. Define

i ; :
by

Since lφ( ) is additive, so is Yφ{ ). Since si is of type llγ the range of
dim£ is all of [0,1] and hence l'φ is surjective. Since Yφ( ) is a complete
homotopy invariant for loops in ϋU(^) it is also injective, and hence is
an isomorphism of πγ^U(s£)) onto the additive group of reals in which
πγ(βalί{sd)) is mapped onto the subgroup Z of integers. Q.E.D.

Remark. If si is a factor of type /„ then substantially the same argu-
ment with the invariant lφ( ) shows that πγ i^l{^)) = Z by an isomorphism
taking π^iβ^ίKsd)) to nZ. This result is classical and the details are left
to the reader.

Remark. In a von Neumann algebra of finite type, but not necessarily
a factor, it should be possible to use the center valued trace and sub-
stantially the same argument to compute

Appendix (by L. Pitt): A Technical Point

Theorem. Let &£ be a Hίlbert space, and

ίwo orthogonal splittings of 3tf0. Let Ej be the orthogonal projection
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// | | £ 0 £ c | | , \\EXEB\\, \\EfiEJ, and \\EyEB\\ ίε, then
(1) \\EAE0EB\\Z3ε.
(2) There exist projections E0A,E0B ontoJ^0A,3^0B with3tf'0=3tf

such that
\\EBE0Λ\\^ί2ε

and
\\EΛE0B\\£32ε.

Proof. First we show (1). Since

EAEO EB = EA(I — EΛ — Eβ — Eγ)
EB

= 0 - EAEaEB - EAEβEB - EAEγEB,
we have

\\EAE0EB\\ £ \\EAEaEB\\ + \\EΛEβEB\\ + \\EAEyEB\\

To prove (2), let F = E0EAE0 and F=\λάFλ be the spectral re-
o

presentation of F. Let E0A = F([a, 1]), where a > 0 is to be determined
later.

If 6*6i-6*G2^0> t h e n EQfQ1E-EQ%Q2E^0 for any pro-
jectionEandhence | |ρ1£x||2^||β2Ex||2forallx,namely | |β 2 E| |^ | |ρ 1 E| | .
Applying this to Q1=a~1F, Q2 = E0A and E = EB, we obtain

Hence

\\EBE0A\\ = \\(EBE0A)*\\ = WEo^

Next let E0B = E0-E0A. Then (EAE0B)* (EAE0B) = FE0B and hence

HJ^Eojill = | | ίΈ 0 jιll 1 / 2 ^«1 / 2> where | | β * β | | = | | ρ | | 2 is used. Substituting
\\EΛE0BEA\\ = \\EΛE0B\\2, \\EAE0BEB\\ g | | ^ £ 0 ^ l l + \\EA(E0AEB)\\
^ S ί l ^ d \\EAEOBEC\\S\\EAEOB\\ \\EOEC\\ ̂ ε, into

U^fioii^ll + \\EΛE0BEB

we obtain

By using H ^ ^ O B I I ^ β l / 2 ? w e have

By choosing a = 1/4, we obtain (2). Q.E.D.
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