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Abstract. The set of all projections and the set of all unitaries in a von Neumann
algebra factor & are studied from the homotopical point of view relative to the operator
norm topology.

Two projections E and F can be deformed continuously to each other if and only if
E~F and 1 — E~1—F where ~ denotes the equivalence of projections in .« in the sense
of von Neumann. In other words, the relative dimension and co-dimension are a complete
homotopical invariants of projections in &/ and label pathwise connected components of
the set of projections.

The first homotopy group =, (% (<)) of unitaries in &/ is shown to be 0 for & of infinite
type. For type I, and type I, factors, 7, (% (=) are isomorphic to additive groups of reals R
and integers Z, respectively, in which the first homotopy group =, (Z% (<)) of the center
of % (/) is imbedded as Z and nZ, respectively.

§ 0. Introduction

In [5,6] Glimm’s classification of U.H.F. algebras is reobtained by
means of the first homotopy group =, (% (<£)) of the unitary group % (=£)
of a UHF. C*-algebra o and the canonical homomorphism
Q.1 (ZU (L)) 7, (U () where Z % (/) denotes the center of % (7).
The present note is motivated by a desire to investigate the analogous
situation for a von Neumann algebra factor acting on a seperable
Hilbert space.

Asapreliminary step we study the projections P (/) of a von Neumann
algebra /. Two projections E and F are said to be equivalent [4] (denoted
by E ~ F) if and only if there exists an operator Vin o/ such that V*V=E
and VV*=F. (Such an operator Vis called a partial isometry, it maps
the range of E isometrically onto the range of F.) It is shown that for a
factor o/ there exists a norm continuous one parameter family E (4),
0=<1=1, of projections with initial point E=E (0) and terminal point
F=E(1) if and only if E~F and I — E~1—F, where I is the identity
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operator in /. This enables us to relate the path components of P (<#)
to analytic properties of projections.

We next begin our study of the first homotopy group, 7, (% (<)),
of the unitary group,Z (<#), of the von Neumann algebra.oZ.The elements
of m, (U (/) are certain equivalence classes of one parameter families
U (4), 0= A =1, of unitary operators in <7, depending continously on A
relative to the operator norm topology of <7 and such that U (0) = I = U(1).
We call such a family a loop in % (<Z). A loop in % (/) is said to be
simple if and only if U (1)=exp2niAS for a fixed self adjoint operator
S in &/. We next show that in a factor of infinite type (I, II,, III) a
simple loop is homotopic to zero. Thus, since we show that the simple
loops generate m, (% (<)) for all o/, we conclude that m; (% (=/))=0
for &7 a factor of infinite type. For a factor of finite type a sum of simple
loops can be deformed (that is, is homotopic) to a single simple loop
exp2nilS, 0=1=<1. A complete homotopy invariant of such a loop
is given by ¢ (S) where ¢ is the trace on 7. In particular, =, (% («/)) =R,
@ (ZU(A)=ZCR for type II, factors and =, (¥)=Z,
@ (n (ZU (A))=nZC Lfor type I, factors, this latter result being well
known.
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§ 1. Continuous Deformations of Projections

Let S be a separable Hilbert space & (#) the set of all bounded
linear operators on &, &/ C £ (#) a von Neumann algebra, P (/) C o/
the set of all (orthogonal) projections in &/ and % (&/) the set of all
unitary elements in &.

For any Te & (#) we define ker T={xe #; Tx=0} and coker T
=ker T*. For a closed subspace o4 C #, E, denotes the orthogonal
projection onto 2. The orthogonal complement of ” in H will be
denoted by .
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We recall the polar decomposition theorem in the following:

Polar Decomposition Theorem. Let Te & (). The polar decomposi-
tion of T'is W|T|=T, where W is a partial isometry such that W*W
=Egerry> WW*=Eerry and |T|=(T*T)V2. If Te of then W,|T| € o/
also.

Lemma 1.1. If E, F are orthogonal projections and |E— F| <1
then ker EF =(I — F) o and coker EF =(I— E) A.

Proof. 1t is clear that

ker EF>(I—F) o,

coker EFD>(I—E) o .

Suppose that EFx=0 but y=Fx=0. Then |[(E—F)y| =] —yl=Iyl-
Hence |[E — F|| = 1, contrary to hypothesis. Therefore EFx =0=Fx=0
so that xe(I—F) #. Similarly FEx=0 implies Ex=0, thus
coker EFC(I—-E) #. Q.E.D.

Lemma 1.2. Let E and F be projections in s, |E—F||<1. Then
E~Fand I-E~I—F.

Proof. Applying the polar decemposition theorem to EF we obtain
apartialisometry We of and the operator |EF| € o suchthat EF = W|EF|
where in view of (1.1) W*W =F, WW*=E. Therefore E~ F. Since

I-E)-I-F)|=[E-F| <1
the same argument shows that [ —E~I—F. Q.E.D.

Proposition 1.3. Let E, Fe P (/). Suppose that E and F can be
connected by a norm continuous path in P (/). Then E~F and
I-E~I-F.

Proof. Let P (t):0<t <1, be a norm continuous path in P (=) con-
necting E = P (0) to F = P (1). Using the compactness of the unit interval
J={0=t=<1} we may find numbers

O=ty<t; < - <t,=1
such that

[P+ —P@I<l: i=0,-,n—1.
Applying (1. 2) we find

E=PO)~P(t)~--~P(t)=F
and
I-E=]-P0)~---~I—-P(,)=I-F

from which the result follows by transitivity of the relation ~. Q.E.D.
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Proposition 1.4. Let E and F be two projections in &Z with E~F and
I—E~I—F. Then E and F may be connected by a norm continuous
path lying in P (<f).

Proof. Let U be a partial isometry from E to F and Va partial isometry
fromI—Etol—F, U, Ve.

Thus

E=U*U, F=UU*,
I-E=V*V, I-F=VV*,

Let W=U + V. Then We o/, and Wis actually a unitary operator in 2/,
since Wis an isometry from E 3# to F # and (E #)" to (F ) .
Note that by construction

W]Ex’: U|E.;f s Wl(E.#)l = VI(F.#)L .
Hence U = WE. Now note
WEW*=UW*=U (U*+V*=UU*+UV*=F+UV*.

Next note that V*xe(E #) = (I — E)# for any xe #. Since | — E=ker U,
we have that UV * =0. Thus

WEW*=F.

By the spectral theorem there exists a self adjoint operator Te & such
that W= e'T with —aI<T<nl. Let

P(t)=e"TEe "T:0<t<1.

Since Te o, ¢'T e of and e T e .of for all 0 <t < 1. Therefore P (t) € /.
In fact P (¢) is a projection for each t and hence P (t) e 22 (Z). Clearly P (t)
is a norm continuous function of ¢, and since P (0) =E, P (1)=F, consti-
tutes a norm continuous path in £ (&¢) from E to F. Q.E.D.

We may summarize the results of this section in the following:

Theorem 1.5. Let E and F be two projections in /. Then E may be
connected to F by a norm continuous path of projections in </ if and only
if E~Fand I -E~I—F.

§ 2. Reduction of General Loops to Simple Loops

The aim of this section is to provide a proof of the following theorem:

In the unitary group of a von Neumann algebra, any loop is homotopic
to a sum of simple loops.

The proof will be accomplished with the aid of a technical lemma
whose statement and proof are deferred to the appendix. Reference to
this lemma is made at a key point in the argument.
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We shall require several preliminary steps. The first Lemma is
well-known.

Lemma 2.1. Let f,(z) be a continuous function of (t,z), t€[0,1],zeC
and N be the set of all bounded normal linear operators with the norm
topology. Then the mapping from (t,Q)e[0,1]x A" to f(Q)e A is
continuous.

Proof. Let K be a compact set in C and A'(K) be the set of Qe A
with its spectrum in K. Let ¢ > 0 be given. Let § > 0 be such that

If (2) — £ (2)| < &/4

for all ze K and ¢, t"e[0, 1] satisfying |t' —t"|<d. Let P,(z,t) be a
polynomial of ¢, z and Z such that

[P, (z, t) — £, (2)] <&/4
for allte [0, 1] and z € K. Such a P, exists by the Weierstrass approxima-

tion thegrem.
Let 6 > 0 be such that

1Q'=Q"<é, 0,0 eN(K),te[0,1]
IP(Q, 1) = P(Q", )| =&/4.

Such a § is seen to exist from the following type of estimates:

implies

kélQ'""‘(Q’—Q”) k-1

< 301 IO - I T
<n7Q -]

o™ -0l =

where L is a bound for |z|, ze K.
We now have

I1£:(Q") — £-(Q")
S 6(Q)— PAQ, ) + IPAQ', ) — P(Q", 1)l
+IRAQ", 1) — Q") + 1£,Q") — (2]
<é
whenever ¢, t"e[0,1], |t —t"|<d, Q'Q"e MK) and |Q' —Q"|| <§.
Q.E.D.

Lemma 2.2. A loop U(A): 01 =<1 in the unitary group #U(f) of a
von Neumann algebra of is null homotopic in U(Z) if |UA)—1I| <2
for all A.



76 H. Araki, M.-S. B. Smith, and L. Smith:

Proof. Since U(4) is norm continuous,
sup [UQA)—1]<2.
Ae[0,1]

Hence there exists a, 0 <a <m, such that the spectrum of U(4) lies in
the set {expif: —a<0=<a}for0<A<1.

Let f,(z) be a continuous function of (¢t,z), 0<t <1, ze C such that
fi(expif)=expitd for —a<6=<a, 0=<t=<1. Then f,(U(4) is unitary
in &/, norm continuous in (¢, 1) with f;(U(4))=U(1) and fo(UQR)=1,
where the continuity is due to Lemma 2.1. Q.E.D.

Given unitary operators U,, U,, satisfying || U; — U,|| <2 we reserve
the notation L(U,, U,) for the path connecting U, and U, in the explicit
manner now to be explained. Since |U; — U, | <2 we have a unique self
adjoint operator Q in {Uff U,}" satisfying the following conditions:

ol <=,
Ut U, =expiQ.
The path L(U,, U,) is defined by
LU, U,)(A)=U, expilQ:0=A<Z1.
Note that the distance between any two points on L(U,, U,) is bounded
by ||U;— U,]. For
IL(U,, Up) () = L(U,, Uy) ()]
= I —expi(d — ") Q| <[t —expil|Qll|= U, - U,||.

Notations and Conventions. We fix throughout the remainder of this
section a von Neumann algebra &7 acting on a Hilbert space . All
loops and paths that we consider lie in the unitary group % (<) of /.
All operators lie in 7. If a lemma asserts the existence of a loop path or
operator it is understood that the operator lies in &/ and the loop or

path in% (/). If this is not explicitly proved then it is an easy verification
left to the reader.

Lemma 2.3. Any loop is homotopic to a sum of triangular loops A;
with three sides consisting of :

L;={expilQ;; 0411},
Lj,j+1=L(expins expinH),
z,j+1={expi(1—i)Qj+1; 0=is1}
where Q,, ..., Q, are self-adjoint operators satisfying
10l <m, i=0,...,n,
lexpiQ; —expiQ;+4[l <é, i=0,...,n—1

and ¢ is a fixed number 0 <9 <2.



Homotopical Significance of Factor Type 77
Proof. Any loop can be divided into several arcs {U(4)), U(4;4,)}
0=A1g<A4;--+<4,=1 such that
IU() ~ U@ <8: 2, S A= Ayus
j=0,...,n—1. Let Q; be defined by
U(4)) =expiQ;

with the spectrum of Q; contained in [ —n, n]. Note Q;€ {U(4;)}" and

19l = .

JUsing (2.1) we see that the loop consisting of the two sides {U(4,)* U(4);
AjSA=Z A4} and U(A)* L; ;1 is homotopic to 0. Therefore the path
consisting of {U(4); 4;£A=<4,,,} is homotopic, with end points fixed,
to the path L; ;. (Fig. 1).

MJ)

ula

Lj+1 j+!

Fig.1

Next note that the closed path consisting of the two arcs L,, L,
is null homotopic. Thus we see that the loop {U(4): 0 <1 < N} is homo-
topic to the sum of triangular loops 4;,j=0, ...,n—1. Q.E.D.

Lemma 2.4. Suppose that Q, and Q, are self adjoint operators in oZ
such that |Qqll, |Q.] =7 and |Q; — Q,| <2e™ ™. Then the triangular
loop with three sides

L, ={expiaQ,; 0<A<1),
L, ,=L(expiQ;, expiQ,),
L,={expi(1 —2)Q,; 0SA<1)
is homotopic to 0.

Proof. Let Qu=uQ, +(1—-wQ0,:0=u=<1 We have

QM) — QU =1 — 1" 1Q1 — Qall <2e™™ for u',pu"€[0,1]. Hence
lexpiQ(u') — expiQ(u")l
= QW) — QW) exp max {|| QI , QI3

<2.
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Thus by (2.2) the loop consisting of the two sides (expiQ;)* L , and
{(expiQ,)* expiQ(u) |0 S p =1} is null homotopic. Let A(u) be the tri-
angular loop with sides

{expilQ(u); 0=4=1},

{expiQ(u); n=spw =1},

{expi(1—2)Q,; 0SA<1).
Then the preceeding discussion shows that the triangular loop
{Ly, Ly ,, L,} is homotopic to A(1) (Fig. 2).

exp iQ(u):0<usl

exp iQ (u)

Fig.2 Fig. 3

The triangular loops A(u), 0 <u =<1, provide a continuous deforma-
tion of A(1) to 4(0) (Fig. 3). Since 4(0) is clearly null homotopic it follows
that the triangular loop {L;, L, ,. L,} is also null homotopic. Q.E.D.

Lemma 2.5. Let U;, U, be unitary operators in s£. Let A, 4, be compact
connected arcs on the unit circle with mutual distance r > 0. Let the length
of the arc A, be a>0, and let ¢ be a given positive number. Then there
exists 0(g, r, a), depending only on ¢>0, r >0, a>0, such that whenever
E, and E, are spectral projections of U, and U, for A, and A, respectively,
|E, - E,|| <& whenever |[U, — U,| <d(e, 1, a).

Proof. Let {(z), ze C, be a continuous function which is equal to 1
on a fixed 49 of length a and 0 at any point on the unit circle S* with
distance from 49 larger than r. Since f(U) is norm continuous in U e (/)
by (2.1) (set f,(z) =f(z) in (2.1)), there exists &(e, r, 47) > 0 such that

If(U) - (U <e
whenever
U —U"|| <b(e,r,49), U, U cU(A).
Since
f(Ul)El =E,, f(Uz)E2=O
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we have
[E; E, | = | E(f(Uy) — f(U,) E,ll <e

for | U, — U,| <é(e,r, 4%). For any other arc 4, of length a there exists
a real number 0 such that A, =e"®A9 and if we use the function
f,(z) = f(e ™% z) instead of f(z) the preceeding computations are still valid.

Q.E.D.

Lemma 2.6. Let Q, and Q, be self adjoint operators in £. Suppose that

n=N

Q1= Z n(n/N)En’

n=-N
n=N
0= ¥ m+H@NF,

where E, and F, are spectral projections of Q, and Q, respectively, and N
is a natural number. If

IF,(I-E,~E,.)| <e=2N)?
and
Fy=0
then
Q1 — .l <2m/N .

Proof. We have
0,—-0,= Z F(Q,—0Q,)E,
= Z (FnEmQI - QZFnEm)

For m=n or n+1 we see that
F(Q, —Q,)E,,=F,E,(n/N)(m—n—1/2)
=+(2N) 'nF,E,.

For the rest, from the hypotheses we have

F, Y E,|<e.
Hence mni1
“QI_Q2”<8(”Q1“+”Q2“);1+(2N)—1n( ;FnEn + ;FnEn+1 )
Since

’2 =Y IFEwI* <Y IE,pl? =yl

Y F,Ey
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for v € A, we see that
<1.

2 F,E,
Similarly "
”Z FnEn+1 ” é 1 .
Hence
191 — Qall <4Nme + (n/N) = (2m/N)
where we have used the estimates || Q|| ==, | Q.| =n. Q.E.D.

Lemma 2.7. There exists 6 >0 with the following property: When-
ever Q, and Q, are self-adjoint elements in </ satisfying

-nl<Q;=nl, j=12,
lexpiQ; —expiQ,[l <0,
then the triangular loop with sides
L, ={expilQ,: 011},

L; ,=L(expiQy, expiQ,),
L,={expi(1—2)Q,: 0<A1<1}

is homotopic to a sum of simple loops.

Proof.Let U;=expiQ;,j = 1, 2. Let E, be the spectral projection for Q,
on the half open interval ((n—(1/2))n/N, (n+(1/2))n/N], n=—N,
—N+1,...,N. Similarly, let F, be the spectral projection of Q, for the
half open interval (n n/N, (n + 1) t/N],n=—N, —N +1, ..., N — 1, where
N is an integer chosen so that N > ne”.

By (2.5) there exists d(e, w/(2N), n/N) such that if [Q;—Q,l
< (e, t/(2N), ©/N) then

|F,I—E,—E,, )| <e for n=—N+1,..,N—=2,
IF-x(I—E_y—E_yi1—Epy)ll <e,

[Fy-1(I—Ey_i—Ey—E_y)l <e,
and
[(En+E_y)(I—F_y—Fy_y)l <e¢.

Since || F, E|| <eimplies | F,E'| = ||F,E;E'|| <& for any subprojection E’
of E;, the assumptions of the appendix are satisfied with E,=F_y,
Ep=Fy_1,Ec=1—F_y—Fy_,Eo=Ey+E_y,E,=E_y,,,E;=Ey_,,
E,=I1—E,—E,— E;. Therefore there exists projections Eq, Eq, with
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Eoy LE,, and
Eo1+Eg,=Ey=Ey+E_y,

IE4Eosll =IF_yEosl <é€'(e),
|EgEoill = I Fy-1Eoll <&"(e),

where
li—{rol ge)=0= 11_1_% e"(e).
We define .
Q,= Y (mn/N)E,,
n=-N
N—-1
Q,= Y (n+(1/2)(w/N)F,,
n=-—N
and
1=Q1—2nEy+2nE,,
N—1
= Z (nn/N)En_nE()l +7TE02.
n=—-N+1
Obviously
Q1 — Qull ==/(2N)
and
105 —0,l ==/(2N).
Also
I F-y(I —Eo1 — E_y44)ll
SIF-yU—=Eo—E_yi)ll + |F-yEozll <e+&'(e)
and

[Fy-1(I—Ex_1— Eo))l
SIFy-1—=Ex_1 —Eoll + | Fy_1 Eo1ll <e+¢"(e) .

Replacing Ey by E,,, E_y by E,;, we see that Q7 replaces the role of Q.
Letting
E, if n£N, —N,
E, =1 Ey, if n=-N,
E,, if n=N,

we may write
N

Q= Y n@N)E;
n=-N
We then see that the hypotheses of (2.6) are satisfied for Q7 and Q5
with ¢+¢'(g) <(2N)~ 2 Hence for such ¢, |Q] — 05| <2n/N. By our
choice of N

191 — Qi
192 —Qall t <2e77.
197 — Qall

6 Commun. math. Phys, Vol. 22
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By applying (2.4) we may therefore conclude that the following three
triangular loops are homotopic to 0:

L, ={expilQ,: 011}
The triangular loop with sides { L; ;. =L(expiQ,, expiQ})
L, ={expil1-2)Q;: 0SA<1}).

L,={expilQ,: 011}
The triangular loop with sides { L, ,.=L(expiQ,, expiQ5)
L, ={expi(1—21)Q,: 0SA<1}.

L, ={expiiQ,: 011}
The triangular loop with sides { L, ;»=L(expiQ5, expiQ]
Ly ={expi(1-2)Q}: 0<i<1}.

Note that expiQ’ =expiQ] because [Q], Ey]=[E,,, Q7]=0 and thus
expi(Qi —2nEy+2nE,,)=expiQ;. Note also that the distance from
any pointon L, ;., L, , or L, ;. to U; =expiQ; is smaller than

191 = Qull + 197 — @2l + 192 — Qo

Therefore the four paths UL, ., UL, 5., UFL, , and UfL, ; form
a loop which by (2.2) is null homotopic.

Combining all the preceeding observations, we see that the original
loop is homotopic to the loop consisting of L;, and L,.. But since

expilQ) = exp[2nilEy] exp[ —27miAE,,] exp[iAQ]

due to [Q), Ey]=[E,,, Q7]1=0, the loop consisting of L;. and L,. is
homotopic to the sum of the two simple loops {exp2nilEy:0<AZ1})
and {exp(—2nilE,,):0<A<1} completing the proof. Q.E.D.

Summing up (2.3) and (2.7) we have the following:

Theorem 2.8. Let <7 be a von Neumann algebra with unitary group
U (l). Then n (U (<A)) is generated by the homotopy classes of the simple
loops.

Proof. Note that taken together (2.3) and (2.7) say that every loop in
U (/) is homotopic to a sum of simple loops. Q.E.D.
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§ 3. The First Homotopy Group of the Unitary Group of a Factor

In this section we will apply the theory developed so far to the
special case of a von Neumann algebra factor.

Theorem 3.1. If < is a factor of infinite type (that is o/ is of type
I, I or II1), then 7 (@ (7)) =0.

Proof. By (2.8) we have only to show that a simple loop {exp2niAiQ:
0 <1<1} is homotopic to 0. Since exp27niQ =1 we see that Q = > nE2

for n=0,+1, +2,... and E2 are mutually orthogonal projections.
Hence we need only consider the case of a simple loop {exp2nilE|
0 <1 <1} where E is a projection.

First we consider the case where E is a projection of infinite relative
dimension in /. There exist in .« mutually orthogonal projections
E,, E, with infinite relative dimension such that E=E, + E,. Also there
exist mutually orthogonal projections Fy, F,, F;, F, of infinite relative
dimension with F; +F,+ F;+ F,=1. By (1.1) there exist norm con-
tinuous paths of projections

Fl(:u)oéluéla l=19273

such that

E(O)=F15 i=152739

F()=E,, F,()=E,, B1)=I-F,.
Let

U2, 1) = [exp2mi2F, (1)] [exp2mid Fy ()]
[exp2riAF;(u)] [exp—2mid(I —F,)].

Clearly

u@,0=1I,

U, 1) =exp2nil(E; + E,)=exp2niE.

Thus the loop {exp2nilE:0=<A=<1} is null homotopic in ().

Next we consider the case where E is a projection of finite relative
dimension. Then I — E has infinite relative dimension and E=1— (I — E).
Since I and I —E commute with each other {exp2nilE:0<1<1}
is homotopic to the difference of the two simple loops {exp2riA(I — E):
0<1=1} and {exp2riAl :0< A1 =<1}. Since &/ is of infinite type both
I and I— E have infinite relative dimension and thus the loops
{exp 2miA(I — E): 0= A =<1}, {exp2riil :0 <A <1} are null homotopic
in% (/) by the earlier part of the argument and the result follows. Q.E.D.

Remark. Kuiper [3] has shown that %(</) is actually contractable
for a von Neumann algebra factor of type I,. Breuer [1] has obtained
a similar result for certain von Neumann algebra factors of type IIg. We
conjecture that #(sf) is always contractable for a factor of infinite type.

6%
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We wish now to deal with the case where o7 is a factor of finite type.
First we introduce a homotopy invariant for simple loops in such a factor.

Notations and Conventions. Henceforth <7 will denote a von Neumann
algebra factor of finite type. We denote by ¢ the normalized trace func-
tion on 7.

Definition. Let a loop L={U(1):0<A=<1} in (&) be divided
into several arcs at

O=lo<i<--<i,=1,

such that for a fixed positive number J, 0<d <1

[UA) - U@ <o
whenever
MEAN <A ZAi41:i=0,...,n—1.

That is the distance between any two points on the same arc is bounded
by 6. Then using
< m-— 1 m
logQ= ) (=" '—(Q-1D
m=1 m
we define

I,(L)= ) ¢(ogUk ,U)
j=1

where U;=U(4,), i=0, ..., n.

Theorem 3.2. With the notations preceeding, if ¢ is chosen sufficiently
small, 1,(L) is well defined, independent of the points of division, and an
invariant of the homotopy class of the loop L in U ().

Proof. There exists d,> 0 such that for any Q;, Q, with ||Q,| <do,
10, <8y, loge?: €22 —Q, —Q, can be written as a norm convergent
infinite sum of multiple commutators of Q; and Q, by the Baker-Hausdorff
formula. Since ¢ vanishes on commutators we have

@(loge?: e2) = p(Q,) + ¢(Q>)
= ¢(loge?) + p(loge®)
whenever |[e2! — Il <§ and ||e22 —I| <6 for some small 6.
Therefore whenever the mutual distance of the U’s is small we have,

from n (Ujk_l Uj) = U':’: Umf,

j=m+1
Y. (logUt, U)=p(log Uy Uy).
j=m+1

Let O0=Ap<A <--<4,=1 and O=po<py <--<p,=1 be two
given divisions of [0, 1]. Consider the union of the two divisions, that is



Homotopical Significance of Factor Type 85

the subdivision using all the A’s and all the u’s. Provided that J is chosen
in the foregoing manner, I,(L) for the A division and I,(L) for the u
division are equal to I,(L) for the joint division because of the additivity
computed in the previous paragraph. Hence I,(L) is well defined.

Any continuous deformation of loops in % (<) can be divided into
small triangular deformations. Using again the above additivity, I,(L)
is invariant under each triangular deformation and hence I,(L) is a
homotopy invariant. Q.E.D.

Theorem 3.3. If o/ is a factor of type II, then n, (% (sZ)) is isomorphic
to the additive group of reals, in which nt,(Z WU (<4)) is the integers.

Proof. By (2.8) a general loop in %(</) is homotopic to a sum of
simple loops of the form {exp2nin;AE;:0<A<j}, j=1,...,N, where
the n; are integers and the E; are projections.

Since « is of type I1;, each E; can be divided into m; mutually ortho-

mj
gonal subprojections with equal relative dimension in o/ : E; = Y. Ej.
k=1

Thus each {exp2nin;AE;:0 <A <1} is homotopic to a sum of m; loops
{exp2nin;AE;:0=<A=<1}, k=1,...,m;. Since o/ is a finite factor
dim(I — E)=1—dimE for any projection E in /. Thus in particular
dim(1-E;)=1—-dimE; :k=1,2,...,m;
and since
dimE; =dimE; :k=1,...,m;

we see that each projection Ej; can be deformed through projections
in o/ to E;; by (1.5). This gives a deformation of the corresponding loops
to {exp2nin;AE;; :0<A=1}. Thus each {exp2min,AE;:0<A<1} is
homotopic to {exp2ninm;E;; :0<A=1}.

In this manner we can make all n;m; equal to some fixed integer n
and dimE;;,j=1, ..., N smaller than 1/N. Note that n will be a common
multiple of ny,...,ny big enough so that dimE;<1/N, j=1,...,N.

There exist mutually orthogonal projections Ej,j=1,2,..., N, with
dimE;= dimE;;, j=1,..., N. Hence, since o/ is a finite factor
dim(I — E))= dim(I — E;;), for j=1,...,N. We may thus apply (1.5)
to continuously deform Ej to E;;,j= 1,..., N, through projections in /.
Thus we see that the original loop L is homotopic to {exp2zninlE:

N
0<A<1} where E= ) Ejis a projection.
j=1
Suppose next that we are given two loops of the final form, namely
L,={exp2nin,E,:0<1<1},

L, ={exp2nin,AE,:0<1 =<1},
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where E,, E, are projections and n,, n, are integers. By the same argument
as before we can deform each of the above through loops in Z(sZ) to

L, ={exp2ninlE,:0< i1},

a

Ly ={exp2ninAE,:0<A=<1}

respectively where n=n,n,, and E,, E; are projections. The invariant of
(3.2) can be calculated immediately for the loop L= {exp2rimAiE:
0<A1<=1} and is given by

I,(L)=2nimdimE,

and is an invariant of the homotopy class of the loop. Thus if L, and L,
are homotopic dimE, = dimE;. On the other hand if dimE, = dimE}
we may, since < is a finite factor, apply (1.5) to conclude E/ may be
deformed through projections in &/ to E;. Thus L, is homotopic to
L; through loops lying in % (2/) and hence the same is true for L, and L.

Therefore I,( ) completely determines the homotopy class of a loop
in % (<7). The range of I,( ) is the set of complex numbers 27in dim E
where n is an integer and E a projection. Define

I,:m @U()—R
by
I,(L)=Q2mni)~ ' 1,(L).

Since I,( ) is additive, so is Ij,( ). Since .o/ is of type II; the range of
dimE is all of [0, 1] and hence I, is surjective. Since I,( ) is a complete
homotopy invariant for loops in % (<7) it is also injective, and hence is
an isomorphism of 7, (%(s#)) onto the additive group of reals in which
7, (ZU (/) is mapped onto the subgroup Z of integers. Q.E.D.

Remark. If </ is a factor of type I, then substantially the same argu-
ment with theinvariant I ( )shows that (% (2#)) = Z by an isomorphism
taking =, (Z%(s4)) to nZ. This result is classical and the details are left
to the reader.

Remark. In a von Neumann algebra of finite type, but not necessarily
a factor, it should be possible to use the center valued trace and sub-
stantially the same argument to compute 7, (% (<7)).

Appendix (by L. Pitt): A Technical Point
Theorem. Let H be a Hilbert space, and
H=Ho+H,+Hy+ K,
A=Ay + S+ K,

be two orthogonal splittings of #,. Let E; be the orthogonal projection
onto #,,j=0,a,p,7,A4,B, C.
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If | EoEcl, |E,Eyl, | E,E,l and |, Eyl <, then
(1) |E4EoEp| < 3e.
(2) There exist projections E 4, Eqg onto #, 4, #og With #y =H#5,PHy g
such that
IEpEo4ll =12¢
and
IE4Eopll =32¢.

Proof. First we show (1). Since
E E Ep=E,I—E,—E;—E)Eg

=0—E E,Ep—E E;Ezg—E, E Ep,
we have
|EJEoEgll S |ELE Egll + |E4EgEgl + | E4E, Eg||

S|EEgl + |E4E4ll + | E, Eg| =3e.

1
To prove (2), let F=EyE,E, and F= | AdF, be the spectral re-
0

presentation of F. Let E,, = F([a, 1]), where a >0 is to be determined
later.

If 0¥Q,—0%3Q,=20, then EQ¥Q, E—EQ3Q,E=0 for any pro-
jection E and hence ||Q, Ex||2=||Q,Ex||? for all x, namely |0, E| £ [ O, E|.
Applying this to Q; =a™'F, Q, =E,, and E = E, we obtain

|Eo4Egll Sa™ ' |FEgl| Sa ' |E4EoEpl <3ea™".
Hence
IEgEoall = |(EgEo0)*| = | Eo 4 Epll <3ea™".

Next let Eqg=E,— E,,. Then (E,Eyp)* (E4Eyp) = FEyp and hence
|E Eogll = ||FEogl| > < a'’?, where |Q*Q| = ||Q||* is used. Substituting
IE4EopEal = IE4Eopl? IE4EopEpll < |E4EoEgll + IEs(Eo4Ep)l
<3e(l+a")and |E EozEcl S| E4Eoll I|EoEcl e, into

IE4Eopl = | E4EopE4ll +|E4EopEpl + |E4EopEcl

we obtain
[E Eopl (1—E Eopl) Se@d+3a™h).

By using | E,Eqgll <a'/?, we have
[EJEogl S(1—a'?)"1(4+3a Ye.

By choosing a = 1/4, we obtain (2). Q.E.D.
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