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Abstract. There is a well-known theorem which states that a non-zero σ-fmite left
quasi-invariant measure on a σ-compact locally compact group G must be equivalent to
left Haar measure. It is shown in this paper that there is a natural generalization of this fact
to the case in which the group G is replaced by a product space, one factor of which is a
group. With the aid of this generalization, an easy proof of the following fact, due to H. Araki,
is given: the representations of the canonical commutation relations constructed in the
usual measure-theoretic manner are ray continuous.

Almost invariably, the most desirable measure on a product space is a
product measure. However, in doing integration theory on a product
space, one is sometimes confronted with a measure which is a priori not
even equivalent to a product measure. It is therefore of some interest to
find conditions under which a measure on a product space must be
equivalent to a product measure. Theorem 1 below gives such a condition
which is, roughly speaking, that one of the factors be a group and that
the measure in question be quasi-invariant under the action of the group
on the product space. Araki proved Theorem 1 for the special case of a
Euclidean group [1; Lemma 5.2]. His proof relies on the ray continuity
of the representations of the canonical commutation relations (CCRs)
constructed in the usual measure-theoretic manner (see [1; Section 1]).
It was pointed out by Araki that the converse is also true, i.e., that ray
continuity could be deduced from Theorem 1. In fact, the ray continuity
is an easy consequence of Theorem 2, which itself depends on Theorem 1.

Suppose that G is a σ-compact locally compact group, that si is its
σ-algebra of Borel sets (i.e., the σ-algebra generated by the open sets), and
that λ is a left-invariant Haar measure on (G, stf\ Suppose further that $
is a σ-algebra of subsets of a non-empty set Z. Let si x 88 be the product
σ-algebra on G x Z. Measurability of subsets of or functions defined on
G [resp., Z,GxZ~\ will always be taken with respect to si [resp., 36,
i x l ] . Setting x(y, ζ) = (xy, ζ) for all x,yeG and all ζeZ defines a
left action of G on G x Z. The characteristic function of a subset S of
GxZ will be denoted by l s .

Theorem 1. Suppose that v and μ are σ-finite measures on (GxZ,
i x j ) and (Z, St\ resp. Then v is equivalent to λxμ if and only if
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(i) for each xeG and S esrf x f , v(S) = 0 if and only if v(xS) = 0,
and

(ii) for each Be&, μ(B) = 0ίf and only if v(G x B) = 0.

Proof. With no loss of generality, v and μ may both be assumed to
be finite. Notice that λ is σ-finite since G is, by hypothesis, σ-compact.
If v is equivalent to λ x μ, then clearly (ii) must hold, and by Fubini's
theorem, so must (i). Conversely, suppose that (i) and (ii) are satisfied.

Fix, for the moment, a measurable subset S of G x Z. Then

is measurable for each x in G ([2; p. 141, Theorem A]), and the function
(x,y, ζ)^ls(x~1y, ζ) is measurable on GxGxZ with respect to the
product σ-algebra. If A is the modular function of G, then

f μs(χ-1y,ζ)dλ(x)dv(y,Q

= J lΔ(x)ls(x,Qdλ(x)dv{y9ζ)
G*Z G

= J I J(x)lGxSMO>,Odv(y,0<U(x)
G GxZ

= $Δ{x)v(GxSlx])dλ(x)
G

by an application of Tonelli's theorem ([2; p. 147, Theorem B]). On the
other hand,

j f ls(x"1

3;,Odv(y,O^(x)=fv(
G GxZ G

So by a second application of Tonelli's theorem

j v(xS) dλ(x) =$A(x) v(G x SM) dλ(x).
G G

Since the modular function is everywhere positive, the last equation
means that v(XiS') = 0 for A-a.a. x e G if and only if v(G x S[x]) = 0 for
yl-a.a. xeG. Now by (i), v(xS) = 0 for A-a.a. x e G is equivalent to v(S) = 0.
The collection of all those measurable subsets S of G x Z for which
x->μ(iS[x]), is a measurable function on G is a monotone class which
includes the measurable rectangles, and is therefore all of i x J [2;
p. 27, Theorem A]. From condition (ii), v(G x -S[x]) = 0 for /l-a.a. x e G if
and only if μ(S[x]) = 0 for /l-a.a. xeG, which, by Fubini's theorem, is
equivalent to λ x μ(S) = 0.

Theorem 1 is a generalization of the fact that any left quasi-invariant
measure on G is equivalent to λ. In fact, the proofs of this result and of
Theorem 1 are similar (see [5; Lemma 3.3]). Say if is a closed subgroup
of G. In view of the fact that the left coset space G/H carries a unique left
quasi-invariant measure class ([6; Lemma 1.3]), it is hardly surprising
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that Theorem 1 remains valid when the factor G is replaced by G/H.
This extension of the theorem will now be sketched.

Let H be a closed subgroup of G, and let λH be its left-invariant Haar
measure. Let p: G-+G/H be the natural projection of G onto the left
coset space G/H. Let siH denote the largest σ-algebra of subsets of G/H
making p measurable, and let λ* be the measure on (G/H, siH) defined
by p and some finite measure λ' on (G, si) equivalent to λ. Now suppose
that μ and v are finite measures on (Z, J*) and (G/H x Z, siH x @), resp.,
which satisfy

(iii) for each x ε G and S ε siH x J>, v(S) = 0 if and only if v(xS) = 0,
and

(iv) for each Be&, μ(B) = 0 if and only if v(G/H χβ) = 0.
(In (iii), xS means the image of S under the natural left action of x on

G/H.) A modification of the argument employed by Mackey in [6;
Lemma 1.3] gives a σ-finite measure σ o n ( G x Z , ^ x J ) which satisfies
(i), (ii), and σ(p~1(E)) = λH(H) v(E) for each E in siH x 0$. Then σ is equiv-
alent to λr x μ, and it readily follows that v must be equivalent to A* x μ.
This proves the non-trivial part of the following result.

Corollary. With the above notation, v and A* x μ are equivalent if and
only if v and μ satisfy (iii) and (iv).

Suppose now that v is a finite measure on (G x Z, si x &) which satis-
fies (i). Let vt(S) = v(tS) for all t in G and all sets S in si x J*. For each t ε G
and each ψ eL2(GxZ,siχj,v) = L2(v), put

v^(x,θVψ(tχ,ζ)

for all (x, ζ)eGxZ. It is readily verified that t-+ V(t) is a unitary repre-
sentation of G on L2(v). It will be shown below that this representation
is even strongly continuous.

If μ denotes the finite measure B-+v(GxB) on (Z, J*), then v and
λ x μ must be equivalent (Theorem 1). Let / be the Radon-Nikodym
derivative of v with respect to λ x μ. Then / can be chosen to satisfy
0</(x, 0 < ° ° f°r aU points (x, £) in GxZ. For any function ψ on
GxZ, set ψt(x, C) = φ(ίx, Q for all ί, x ε G and ζ ε Z. An easy calculation
shows that

v,(S)=lftdλxμ
s

dv dv f
for each t ε G and all S e si x J*. Thus „ * = f v-a.e., and so —-*- = -f

dylxμ rfv /
v-a.e. [2; p. 133, Theorem A].

Suppose that ψί and ψ2 are two functions in L2(v). Since the weak
and strong topologies coincide on the unitary operators, it is sufficient to
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show that the inner product of V(t)ψ1 and ψ2 in L2(v) depends contin-
uously on t. This inner product is

Jf [fWVi] V2 dv = J (f,/f)ll2ψltψ2fdλ x μ

GxZ

The functions (fll2ψι)t and fll2ψ2 are in L2(GxZ,jtfx&,λxμ)
= L2(λx μ), and the last integral is their inner product in this Hubert space.
Consequently, it is enough to show that t-*ψt is strongly continuous
from G to L2(λ x μ) for each ψ in L2(λ x μ). Now this is certainly the case

if ψ(x, 0 = ψχ(x) ψ2(0 f°r s o m e Ψi i n L2(G> •«/> ̂ ) a n <^ ^2 *n ^ 2 ( ^ ? ̂  A«)
[4; Theorem 30C]. Since the finite linear combinations of such functions
are strongly dense in L2(λxμ\ the proof of the following theorem is
complete.

Theorem 2. // v is a finite measure on(GxZ,stf x $), then the equation

dvtl_ ^

dv
φ(tx,ζ)

defines a strongly continuous unitary representation V of G on
L 2 ( G x Z , i x l , v ) .

Araki proved the special case of Theorem 2 in which G is the real
line [1; Lemma 2.3]. The ray continuity of the representations of the
CCRs constructed in the usual measure-theoretic manner follows easily
from this special case of Theorem 2 (see [1 Theorem 2.4 and its proof]).

In conclusion, it should be noted that G. Hegerfeldt has also given
a short proof of the ray continuity [3; Corollary 3.5].
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