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Abstract. The problem of finiteness of multiplicities of irreducible unitary representa-
tions of a compact subgroup is considered for decompositions of irreducible unitary
representations of locally compact groups. A simple solution is found for inhomogeneous
compact groups and for a physically interesting class of groups with a non-abelian radical.

I. Introduction

We want to discuss the following problem: let U(G) be any irreducible
unitary representation of a Lie group G with K being a maximal compact
subgroup of G. Decompose U(G) with respect to K, i.e., U(G) I K, and
ask: for which groups G are the multiplicities of all irreducible unitary
representations U[Cί](K) in the decomposition of U(G) finite for all α,
where α labels the irreducible unitary representations of K. Non-com-
pact Lie groups G possessing this property are sometimes called "groups
which admit a large compact subgroup" (Ref. [1], p. 641).

The decomposition U(G) I K is needed for physical applications of
dynamical groups, which are in general non-compact embeddings G of a
compact semi-simple symmetry group K' possessing an irreducible
unitary representation U(G) such that t/(G) j K' = Ured(K'\ where
Ured(Kf) is a given reducible unitary representation of K'. The simplest
embeddings of K' are those in which K' is isomorphic to the maximal
compact subgroup K of G.

The simply connected embeddings G can be classified using the Levy-
Malcev decomposition G = N (x S, where N and S are simply connected
Lie groups, the Levy factor S being semi-simple and the radical N solvable.
Because Kf is semi-simple and compact, it has to be embedded in S,
K' C S, and we shall distinguish the following cases (Tn is an π-dimensional
abelian group):

* On leave of absence from Faculty of Nuclear Science, Czech Technical University,
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a) G = S9

b) G = r π < E Λ
c) G = K*σ,S9

where σ and σ' are homomorphisms of S into the automorphism group of
Tn and N respectively. For non simply connected groups there are more
possibilities, which can be classified easily for the connected ones.

We present a new solution of the multiplicity problem for connected
Lie groups G with a semi-direct decomposition of type b) and we derive
results for special examples of c). The usual mathematical technique to do
this is to use a group algebra of well behaved functions over G. We refer
for G = S to papers of Harish-Chandra where he announces [2] and later
proves [3] that all connected semi-simple Lie groups with a faithful
finite-dimensional representation have large compact subgroups, and to
Godement's paper [4] in which this property is proved for G = Tn <χ σK.
They also derive upper bounds for the multiplicities (see also Ref. [10]).

So a result for the cases a) and b) is already known. However, because
the proofs for both a) and b) are rather complicated, it is worthwhile to
look for a more direct technique which can also be applied to c). It is the
aim of this paper to describe such a method which is based on a lemma
by GeΓfand, Graev and Pyatetskii-Shapiro. They analyse the operators

Vφ=$φ(g)U(g)dμG(g) (1)
G

for a given continuous unitary representation U(G) of a locally compact
group G in a Hubert space Jtf* dμG(g) is a right-invariant Haar measure
on G. Denote by L(G) and I}(G) the spaces spanned by continuous
complex functions on G with compact support, and by absolutely inte-
grable complex functions on G, respectively. Then Uφ has the following
properties:

Lemma 1. (Ref. [5], Chap. I, Sec. 2.3).
// the operator Uφ is completely continuous in Jf for every φ e L(G),

then ffl splits into a direct sum of a countable number of G-invariant
subspaces 3^[<*] such that J^[(*] carries m(a)~times the irreducible unitary
representation U["](G) with m(y) finite (m(a) is the multiplicity) 1.

Lemma 2. (Ref. [2]; p. 515 of Ref. [4]; Sec. 8 of Ref. [10]). Let U(G)
be an irreducible unitary representation of a locally compact group G in ffl
ana K be a closed compact subgroup of G; assume that 2tf splits into a
direct sum of a countable number of K-ίnvarίant subspaces 34?^ each
carrying m(α)<oo copies of an irreducible unitary representation of K;
then Uφ is completely continuous in Jtif for every φeL(G)1.

1 The assumption of unimodularity of G used only for technical reasons in the cited
papers has been dropped.
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II. Multiplicity Theorem for Inhomogeneous Compact Groups

1. We start with a

Theorem. Let G = T(E σK be a connected semίdίrect product of a
compact Lie group K and an abelian group2 T. Then U(G) decomposes into
a direct sum of irreducible unitary representations U[<x](K) labelled by α,

U(G)lK=@m(x)UW(K), (2)
α

where all the multiplicities m(α) are finite.

2. For a proof we need a representation theory for G, which is well
known [1,6]. Since the semidirect product G is regular and unimodular,
any U(G) can be constructed as induced representation3 UL(G) in a
Hubert space 3f L of vector-valued functions / over G via

= L(h)f(g)
and

) (g,βίeG).

Here L(H) is an irreducible unitary representation of H = T(χK0, K0

is a stationary subgroup of some K-orbit in the character space T of T.
The elements h e H can be written as h = tk0, t e T, k0eK0; L(H) has
the form

L(h) = χ(t)D(kQ)

with D(KQ) being a finite-dimensional irreducible unitary representation
of K0 and χ e f. The norm in ̂  is

</,/>L is the scalar product in the representation space of L(H)\ dμx(x)
is the right-invariant measure on the homogeneous space X « G/H.

3. Now we are prepared to prove the theorem. Restrict the represen-
tation UL to the maximal compact subgroup K of G, i.e., UL I K = U(K)
and apply Lemma 1 to U(K). Because of the isomorphism X w G/H
w K/KQ, the functions / e $?L are defined on X, or on a Borel set A e K
intersecting each coset from K/K0 just in one point kx e Λ. in one-one
correspondence with xeJΓ. Hence we obtain a Hubert space J^L of
vector- valued functions over K with

/(/c0fe) = D(k0) f(k) (k0 E K09 k e K) .

2 Locally compact and separable; the index indicating the dimension is dropped.
3 Representations of G = T(*K are of type I (see Ref. [7] and Ref. [6], pages 52, 57,

and 178).
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U(K) is defined via

[
Let us calculate now

where kf = kί k and the left in variance of μκ has been used. Any k' e K
can be factorized as

k' = k0k2 (k0eK0, k2εA),
and

κ(V)= $dμΛ(k2) f ιp(k0k2)dμκo(k0)
Λ KQ

holds. Then Uφ can be considered as an integral operator over A,

\Uφn = J K(kl9 fc2)/(/c2) dμA(k2) , (3)

with kernel
K(k1,k2)= J φ(k^k0k2)D(k0)dμKo(k0).

KQ

K(ki9k2) is continuous in fc1? fc2, because φ and D are continuous. Since
the integration in (3) goes over a compact domain A, Uφ is completely
continuous (see Ref. [7], Sees. 54 and 108) for any continuous function
φ(k), keK. So Lemma 1 applies and proves the theorem.

III. Multiplicities for Groups with Abelian Radical

1. With the result of Sec. II we have solved type b) for S being com-
pact. For noncompact S the following lemma holds :

Lemma 3. Let G = T <χ S be a connected semίdίrect product of an
abelian group T and a semisimple noncompact group S with maximal
compact subgroup K. Then the multiplicities of irreducible representations
U(K) occuring in the decomposition of irreducible unitary representations
of G in respect to K cannot be all finite 4.

For a proof it is sufficient to show that U% is not completely continuous
on 3tf L for at least one absolutely integrable function φ on G, e.g., for

To do this, we note that a linear operator is completely continuous if and
only if any bounded set <? C 3tf L is mapped by it onto a relatively compact

4 We assume faithful representations of G.
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(precompact) set (see Ref. [7], Sec. 133). Taking for 9> the unit ball

5? = {/e ^L\f(h,k) = f(h,\ 11/11 ^ 1},

we have for an induced representation UL of G that

maps 5̂  on itself. But Sf, though bounded, is not precompact since there
exists a complete orthonormal system [fn}C^ defined onjhe double
coset space K\H/HQ such that ||/J| =1 and || /„-/„' I I =jΛ for nΦn' .

2. A similar argument can be applied if G = T <g K and if £/L(G) is
restricted to a proper closed subgroup K' of X.

IV. Multiplicities for Groups with a Non-abelian Radical

1. Our method cannot be extended to simply connected solvable
non-abelian N because it requires the knowledge of all irreducible
unitary representations of the groups G = N(*K. Only for certain types
of AT is a representation theory at hand. So we will discuss this examples.
Take for N the central extension of the rc-dimensional Heisenberg group
GE(n), being a connected real Lie group with the Lie algebra generated
by Qj, Py, C, satisfying the commutation relations of the Heisenberg
algebra

C%C] = DP,C] = 0, [

The automorphism group of G£(n) is known and so the groups which can
be coupled semidirectly to GE(n)\ e.g., G = GE(n)zSO(n) [8] and
G = <3£(8)(χSί7(3) [9] are possible couplings.

2. A representation theory of G can be developed along the lines
given in Ref. [8], where only the special case S = SO(n) is treated. The
group G can be written as a regular semidirect product (Q and P are
rc-dimensional abelian groups with generators Q, and Pf respectively).

It is sufficient to show that the multiplicities cannot be finite for the
subgroup G' = G1 & G'2, G'2 = P<zK where K is a maximal compact sub-

group of S.
All irreducible unitary representations l/L(G') of G' can be induced

from irreducible unitary representations of the subgroup H = GίζK:
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Then the induced representations are defined on the space ffl L of vector-
functions / over G with values in L(H). Assume

f(hg) = L(h)f(g)

then the inner product on L(H) is constant on X « G/(GV <χ K\ and
2tf L is a Hubert-space with an inner-product defined with the right
invariant measure

dμx(q) = dnq .

and the representation acts as

3. For a discussion of the multiplicity we are interested in

[t#/] (g) = ί φ(a) tuL(g)n (a) dμG(g) = \9(g)f(gg] dμG(g) .
G G

Taking as before

0...(gφK,geG)
and

i.e., a unit ball in the Hubert space of functions over K\G/G1 <χ K, we find
that Uφ is not completely continuous on ^CL.

Then also any connected Lie group containing GE(ri)(EK as a sub-
group does not admit a large compact subgroup.

4. We conjecture from these results that groups of the type G = N C S
do not admit a large compact subgroup unless N is abelian and 5 is
compact.
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