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Abstract. The two-space dimensional φ4 interaction is renormalized by unitary
transformation. A sequence of unitary operators is defined which transform a sequence
of cut-off Hamiltonians, arranged in order of increasing cut-off energy, to a sequence of
operators converging strongly on a dense set of states. The proof is outlined, calculations
leading to required L2 estimates on the kernels of a finite number of diagrams are not here
detailed.

In this paper the two-space dimensional φ4 theory is treated by the
methods initiated in references [1] and [2]. This model has been re-
normalized by Glimm [3,4] and essentially the present treatment, using
unitary transformation, is a "minimal modification" of the method of
Glimm giving rise to a unitary transformation. Arranging a sequence of
cut-off Hamiltonians in order of increasing cut-off energy, we will
construct a sequence of unitary operators, such that the transformed
Hamiltonians converge strongly on a dense set of states. It is expected
that the sequence of unitary operators do not converge, and give rise to
the same representation of the field operators as the transformation of
Glimm [5]. We also collect some estimates for the norm of polynomials
in the field operators restricted to states with given numbers of particles
particularly obtaining expressions that are useful when the polynomials
are momentum conserving. It is expected that these estimates will be
useful in future work; here they replace estimates on the kernels of
arbitrarily complicated graphs in Glimm's procedure.

We start by presenting estimates on the norms of certain operator
expressions. Let

be an operator constructed from the annihilation and creation operators
of boson and/or fermion fields. (The number of fermion operators among
the creation and annihilation operators is assumed the same in each
term.) There is a sum over momenta as the fields are constructed in a
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box of period 1 in each spatial dimension. Let |(n)> denote a state of
norm one and containing n particles.

Estimate I. This is the now classical estimate :

\\0\(n)y\\^c\K\2(n+l)R+s<2. (2)

Estimate II. Assume there is at most one particle allowed in any
mode. This is automatic for fermions, for bosons it involves implicitly
inserting projection operators onto the states with this property in all
expressions.

\\0\(n)y\\^c\K\,. (3)

Estimate III. Make the one particle per mode assumption of estimate
II and in addition assume 0 is momentum preserving.

\\0\(n»\\^c\K\2(n + ίf+s-u2. (4)

Estimate IV\ Assume O is momentum preserving and write the
kernel K(k1 , . . . , ps) as K = Σ&ι where Kl is zero except when

then
(5)

Estimate V. Assume 0 is momentum preserving. We assume R > S
and 0 contains an even number of fermion operators. Let

/(n) = Sup||0|(«)>||2

Then:

/(n) = Sup||0*0|(tt)>||

Now:

0*0|(n)> = (0*0-00*)|(n)> + 00* |(n)> . (6)

Now using

Sup || 00* I (n)> | |= Sup ||0*0|(n-R + S)>|| (7)
(«) (n-R + S)

we obtain Estimate V:

Sup ||0|(rc)>||2^Sup ||(0*0- OO*)|(n)>||
(n) (n) (8)

+ Sup \\0\(n-R + S»\\2

(n-R + S)

or

). (9)

1 Private communication from A. Jaffe and J. Cannon.
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Fig. 1

To see that this estimate can improve the earlier estimates we consider
the example

0 = Σ K(/c1? ..., /c4)«« . (10)

Then (9) becomes

l) (11)

where α, i>, c, d are some constants times the L2 norms of the kernels of
the contractions in 0* 0 - 0 0* represented by a), b), c), and d) in Fig. 1.

Then we deduce from (11) that

f ( n ) ^ l\_a(n + 1) + b(n + I)4 -4- c(n + I)3 + d(n + I)2] (12)

for some constant /.
This can be compared to estimate I

4. (13)

In the case of interest a will be much larger than b, c, or d - due to
momentum conservation - and (12) will be a much better estimate than
(13) due to the lower power of (n+l) multiplying a. This example
illustrates the point of estimate V; the difference between (12) and (13)
is enough to make the following construction of the unitary operators
work. Estimate V was designed to replace by an operator language the
estimates of (Eq. (4. 159)) in Ref. [5].

Turning now to the model Hamiltonian in two-space dimensions in
a box of period one.

V=g$:φ4:dx.

Corresponding to a cut-off momentum K, all ap, a* with \p\ > K are
discarded and counterterms Aκ (see Ref. [4]) added

=

'
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We pick a sequence Kn with

(16)

α to be later chosen. We desire to construct a sequence of unitary operators
Un such that

(17)

for |φ> the dense set of states with finite number of particles and
momentum components in a bounded region, H a symmetric operator
with this domain.

Un is constructed as the product

Un = e-Ane-An-*...e~Al. (18)

Define (Vn—Vn-\) to be those terms in the sum of normal ordered
products comprising V such that if the momenta in such a term fel5 /c2,
fc3, fe4 are arranged in order |/cj ̂  |fc2 | ^ |/c3| ̂  |/c4| then

(19)

We define the operation Γ as in [2]. For example:

* * _ ! * *

-1 ^ ̂  „ if ω , „ . „ , „ (2°)

= 0 otherwise.

Let P(a) be the projection onto states with a or less particles. Then

An = P(n2)Γ(Vn-Vn_,)P(n2) + Bn = Cn + Bn. (21)

We specify Bn indirectly.

Bn = P(n2)(ΓDn)P(n2) (22)

Dn consists of terms of the following six types
a) a product of four creation operators,
b) a product of four annihilation operators,
c) a product of six creation operators,
d) a product of six annihilation operators,
e) a product of two annihilation operators,
f) a product of two creation operators

with the maximum momentum in any term satisfying
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Fig. 2

and with coefficients chosen so that in the expansion Un

 lHKnUn the
terms described by Fig. 2 are cancelled on states with few particles,
between contributions from Bn and the An. The exact requirement will
be clarified later.

If α is picked large enough then Eq. (17) holds.
We outline the verification of (17). We begin by expanding U~ 1 HKn Un.

To simplify the expression we introduce the following notational points.
1) Write fΓB, Hor δMn

2 etc. for HKn, HoKn, δM2

Kn etc.
2) The indices in all sums range from one to n, possibly subject to

further indicated limitations.
3) Write (E, F), (E, F, G), (E, F, G, H) for [E, F], [£, [F, G]],

4) On commutators we allow five subscripts : T, F, JVF, AT T, and NF T
such as (F, G)NF, with the following meanings:

T) In the indicated commutator first discard all projection operators
P(i2) appearing in the Bt and Ct and in the normal ordered expansion
of the commutator keep only terms with two creation and annihilation
operators; terms with α*α*? a a, and α*α operator expressions. (In
diagram language - there are two external lines.)

F) In the indicated commutator first discard all projection operators
P(ί2) appearing in the Bt and Cf and in the normal ordered expansion
of the commutator keep only terms with no creation and annihilation
operators. (In diagram language - there are no external lines.)

NF) (E,G) = (E,G
NT) (£,GH(E,G

NFT) (E, G) = (E, G)Γ + (E, G)F + (E, G)NFT .

5) On a function of the variable t we use the operation /, (/ ° /) (ί)

- } /(ί) at and write /s(l) ° /(ί) = (/ o . . . o / o /) (1).
0 s terms

We now expand:

i <5 M<2> ί : φn

2 : dx] Un

= 1 + 11 + •••+XII
(23)
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with:
1 = Hon, (24)

I I = Σ ( C t > H J + V n > (25)
i

III = zl<,2> + Σ (C(, Fn)F +1Σ (Q, Cίs HO)F, (26)

|Σ>+

IΣ_,*+Σ< (*+ Σ ).

Cl,H0)F), (27)

Σi

2(cί,cί,H0)τ,
 (28)

vi = Σ (s,, //o),τ + Σ (c , \vn+(ΣL2+Σ\ (ct, HO)}\NFT , &)
' J \ [ \i = j i>Jl \l

VII = /2(1) o Σ ί2 Ur_{ e*>'(Bt, Bh H0)e-A>< U^,

+ /(I) o Σ ί ί/p\ e '̂(β., B(, H0)e-^' Uj. 1 , (30)

J < »

VIII = /2(l)o t2 C/Γ-\ e*«C, B H e ' ^ U

IX = /2(1) o Σ ί2 Uϊ\ e*«(Bh Ch H0
ί

(32)

XI = /3(1) o Σ ί3 UΓ-\ "̂[(C,, C,, C,, HoW + (B,, C,, Cls HO)] e-* L7,_ t

+ /(I) o Σ ί C/Γ-1! ̂ « Σ [i (C(, (C;, Cj, f/oWW (34)

(35)
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We now consider the convergence of the different terms. I clearly
converges for vectors φ in <S>, in fact H0n |φ> = H0 |φ> for n large enough.
Ill and IV may by choice of J^2) and Jj,3) be picked identically zero.
The two terms in II approximately cancel and their sum converges on
vectors in 2. For the annihilation momentum in a compact subset of
momentum space, the L2 norm of the creation momenta of the kernel
of this sum is uniformly bounded. The approximate cancellation only
occurs where the projection operators in Ct are 1 on the state considered.
For φ in 3) there is some maximum number of particles in the state so
that for ί large enough the P(ί2) are 1 on the state and the approximate
cancellation occurs.).

In V the Bt may be picked so that no terms in α*α* or aa occur,
and (5M^2) picked so that the coefficient of α* αo *s zero. The remaining
terms Σ uka£ak are fine on φ in 2. In VI the Bt are picked to make the
terms in four creation and six creation operators to exactly cancel (if the
projection operators are 1 on the state in question). The remaining terms
in VI are helped along by the Π-like approximate cancellation of the
term in brackets.

In terms VII through XII terms individually converge except that in
the second term of IX and both terms in XII the Il-like approximate
cancellation between the terms in square brackets is required, and in X
the approximate cancellations are required between the three terms in
the brackets.

We consider the second term in VII as an example. We write
(Bj9Bi,Ho) = (Bj9Bi,H0)c + (Bj,Bi,HΌ)D where the first term indicates
the connected part of the commutator. It is obtained by omitting all the
P(ί2) terms in the Bt - omitting all projection operators. The other term
may contain disconnected diagrams due to commutators between the
projection operators and creation and annihilation operators. But note
(Bj,BhH0) = (Bj,Bi,H0)c acting on states with few particles, explicitly
in this case for states with fewer than (j2 — 12) particles.

Considering first the connected term. Suppose we deal with a state
φ with fewer than r particles; then e'^U^^φy contains fewer than
(j2 + r) particles. In certain other terms, but not here, it is necessary to
observe that the momenta in e~AjtUj_l\φ} lie in a certain region of
phase space. Let (BpBi9HQ)(c'5) be the term in the normal ordered
expansion of the commutator containing five creation and five annihila-
tion operators (for an explicit example) and Ktj the kernel of this term.
Then on φ we see we have \(BJ9 Bi9HΌ)g 5)\ ^|Ky|2(/2 + r+ ί)5- since
t/j-i, kj-ι> e~Aj\ and eAjt are unitary and /(l)°ί has norm 1 we get

, Bt, fO? 5>e-^' ϋ,_
(36)
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It is easy to see the convergence of this sum as n-> oo implies the strong
convergence of this connected part of the second term in VII on |φ>.
If α is picked large enough the sum in (36) converges for all r.

Considering now the disconnected terms. Since Uj_1 |φ> has less than
or equal to (j-l)2 particles for j large and (Bj,Bi,H0) = (Bj.>Bi,H0)c

on states with fewer than (j2 - 12) particles in the expansion of e~Ajt

I (j2 — 12) — (/— I)2 \
only terms with at least I— —— powers of Aj contribute

here. Thus disconnected terms involve high powers of some A^ If O is
self adjoint

ei0Be~ίo-B-i(0,B)- —(0, 0,£)... -——- (0,..., O,B)
2- (/C— 1)! fc-l terms

(37)

k terms

since the norm of lk(l)tk is less than or equal l//c L,
Using estimates IV and V we have \An\ ^ λ ]/n. From which follows:

Σ-T^II^KIHIΛJI"^00 (38)
n=l

replacing (Eq. (4.153)), Ref. [5]. Estimate I would give \\An\\^λn1/2

insufficient to give (38). Eq. (38) easily implies the convergence of dis-
connected terms.

This discussion reduces the complete proof of Eq. (17) to the study
of the kernels of a finite number of finite commutators to check the
analog of (36).
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