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Abstract. Let R{G) be the skewsymmetric representation of the algebra G characterized
by the following main property: if G' CG is some subalgebra of G (possible noncompact)
then R(G') is integrable and reducible in the direct sum of irreducible representations of
subalgebra G'.

The paper is devoted to the development of the elementary theory of the described
representations, culminating in the proof of one version of Schur's lemma.

Introduction

The skewsymmetric representations of the Lie algebra are usually
met in connection with unitary representations of the corresponding
group. From this point of view they have been investigated also by
Nelson [1] who found condition of the construction of the unitary
representation R(G) of the simply connected group G from skew-
symmetric representation R(G) of its Lie algebra G-the condition of the
integrability of R(G).

So we have, in the case of infinitedimensional skewsymmetric re-
presentations, two essentially different classes of representations:
integrable and nonintegrable. Because assumption of the integrability
R(G) does not always have a physical meaning, the nonintegrable re-
presentations of the Lie algebra can be interesting from a physical point
of view [2].

Also the use of the infinitedimensional Lie algebras in theoretical
physics leads to the study of the representations of the Lie algebra without
limiting on the integrable ones [3, 4]. In this case we do not usually
have the corresponding group G so that the concept of integrability
of R(G) loses its meaning.

Except for finitedimensional representations of the Lie algebras,
the relatively simplest case arises for the semisimple ones, due to the
results of Harish-Chandra [5]. If we denote G'CG the maximal compact
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subalgebra of G, then R(G')cR(G) is reducible in the direct sum of
irreducible representations of G. The number nt of the representations
equivalent to the representation Rf(G') in this direct sum, is finite and the
set of all such numbers has a finite upper bound. The representative
Hubert space H may be written in the form

where Ht is representative finitedimensional Hubert (i.e. unitary) space
of the irreducible representation of G' (these representations are non-
equivalent for ί+j) and dimension of the unitary space Kt equals nv

Due to these basic properties, the construction of the integrable
skewsymmetric representations of the semisimple Lie algebras can be
done by algebraic methods [6, 7].

This paper is devoted to the study of the skewsymmetric representa-
tions R(G) of any Lie algebra G, characterized by the following main
property. If G' C G is subalgebra of G (possible noncompact), then R{G')
is integrable and reducible into the direct sum of the irreducible re-
presentations of G'. If G is semisimple and G' its maximal compact
subalgebra we obtain the above mentioned representations of G.

Representations of this kind are met in the theory of elementary
particles in connection with algebras coupling algebras of internal sym-
metries with the algebra of Poincare (one particle representations) [8, 9].

Adding to the mentioned main property some mathematical assump-
tions defining the so called G'-representations of G, we can construct
these representations mostly in an algebraic way as in the case of semi-
simple G.

Note in this connection that in comparison with the wide possibilities
given us by nonintegrable representations of Lie algebra, our mathematical
assumptions restrict us to the relatively close class of representations
described above. An interesting example of the more general representa-
tions of the certain Lie algebra is given in [15].

We start our considerations with basic definitions of the representa-
tion of the Lie algebra, its hermiticity and partial integrability. By the
discussion of the possible domains of the representation (supports of
representation) we come to the concept of partially analytical representa-
tion.

The second chapter is devoted to the definition of the discreteness
of the representation with respect to some subalgebra G' and to the
discussion of the concept of the G'-irreducibility of these representations.
An exact definition of the class of the representations of our interest is
given (so called G'-representations).
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The mathematical assumptions leading to the concept of G'-re-
presentation were done mainly with respect to the proof of Schur's
lemma which is the content of the last chapter.

I. Basic Concepts

At first we shall define, following [10], the representation of the Lie
algebra 6.

Definition 1. The representation R(G) of the Lie algebra G is homo-
morphism of the algebra G into the set of linear operators in some Hubert
space H so that:

a) there exists the dense linear subspace DC H, which is invariant
with respect to all operators of R{G) i.e. R(x)DcD for every xeG.
Linear subspace D will be called the support of R(G).

b) R([x, y])f = (R(x)R(y)-R(x)R(y))f for every x.yeG and every

In the physical application of the representation R(G\ the essentially
selfadjointness (e.s.a.) of the physically interpreted operators [11] is
required: it means e.s.a. for some operators i R(x\ R(x)eR(G). E.s.a.
operators ί R(x) are symmetric i.e. R(x) are skewsymmetric and this
property we request, usually, from the rest operators of R(G) on the
support Z), because the commutation relations connect all operators of
R(G) on the support D and because the commutator of the skewsymmetric
operators is skewsymmetric.

Definition 2. The representation R(G) of the Lie algebra G is called
skewsymmetric if operators R(x)eR(G) are skewsymmetric for every
xeG.

The skewsymmetric representation R(G) is called skewhermitian
if operators i R(x) physically interpreted are e.s.a.

The hermicity is not, however, the only restriction limiting the physical
use of the skewsymmetric representations of R(G) [2]. If we interprete
generators of some subalgebra G'CG physically as the infinitesimal
transformation in physical space and if we can experimentally verify
the existence of the finite transformation (forming Lie group G' with
Lie algebra G'), we must restrict ourselves to such representations of G,
that R{G')cR{G) induces unitary representations of G;. The representa-
tion R(G) is then called partially integrable with respect to the sub-
algebra G' C G.

Definition 31. The skewsymmetric representation R(G) with the
support D we call partially integrable with respect to the subalgebra
G' C G, if there exists the unitary representation R(G') of the simply

1 This definition contains a wider class of representations than the definition of partially
integrable ones in [2] and agrees with [16].
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connected Lie group G' with Lie algebra G such that the representation
of G' derived from R(Gf) equals to R(G') on D.

If G' = G we call R(G) integrable representation. The question of
integrability of skewsymmetric representations of the Lie algebras was
solved by Nelson [1] by use of the concept of the analytic vector2.
Nelson showed that skewsymmetric representation R(G) with the support
D is integrable if Nelson operator A = R2(x1)-\ \-R2(xd) (xΓbasis
of the Lie algebra G) is e.s.a. (Theorem 5 of [1]).

Following Lemma 5.1 of the mentioned paper, the operator A is
e.s a. if and only if the set of analytic vectors of A is dense in H.

Consider now the integrable representation R(G) of the Lie algebra G
with support Zλ This representation gives rise to the unitary representa-
tion R(G) of the corresponding group G which induces by differentiating
representation R'(G)DR(G) of the algebra G.

As mentioned in [2], there exist two important dense linear subspaces
of H invariant with respect to the R'(G) which can be taken as the support
of R'(G)

a) Dan - the set of all analytic vectors of the Nelson operator Δ.

b) Dan - the set of all analytic vectors of the representation R(G)3.

The connection of these two supports is given by inclusion Dan 3 D*n

and every vector of D a n is also an analytic vector of every operator of R(G).
It is seen that every integrable representation R(G) induces representa-

tion R'{G) with support formed by the common analytic vectors of all
operators R(x) e R{G). This fact motivate the following definition.

Definition 4. The representation R(G) is called partially analytical
with respect to G' C G if the support D of R(G) is formed by the common
analytic vectors of the operators of R(G).

For G' = Gwe call R(G) analytical representation.
It is clear that a partially analytical representation with respect

to subalgebra G is partially integrable with respect to G'. It follows
immediately from the fact that vectors of D are analytic vectors of Nelson
operator of the subalgebra G. Further, the analytic representation is,
at the same time, the representation hermitian, in the sense of the
Definition 2. The concept of the partially analytic representation with
respect to some subalgebra was introduced especially for the possibility
of proving (under further assumptions) the version of Schur's lemma
(see Chapter 3).

00 1
The vector feH is called analytic vector of an operator A if ]Γ — \\Aιf\\tι<co

for some t >0 .
3 The vector fe H is called an analytic vector of a representation R{G) if the mapping

g-^R(g) f of G into H is analytic in some neighbourhood of the identity.

10 Commun math. Phys , Vol. 20
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II. G-Representations, Irreducibility

The irreducibility of the finitedimensional representation of the Lie
algebra G is defined in the same way as the irreducibility of the representa-
tion of the Lie group. Because every representation of the Lie algebra
is integrable in this case, the representation R(G) of the Lie algebra G is
irreducible if and only if the representation R(G) of the corresponding
Lie group G with Lie algebra G is irreducible too. In the case of infinite-
dimensional representations the situation is considerably complicated.
Defining the irreducibility of the R(G) in the usual way as a nonexistence
of the nontrivial invariant closed subspaces of the representative Hubert
space H (topological irreducibility), then integrable reducible representa-
tions R(G) can induce the irreducible representations R{G).

As an example can serve the known Schrόdinger representation of
the algebra [/?, q] = ί 1 on the space L2( — oo, oo) by operators p = d/dx,
q = x with suitable support D. This representation is integrable in the
irreducible (unitary) representation of the corresponding group and
every L2(a, b)cL2(—oo, oo) is invariant.

If we want a definition of irreducibility of R(G) such that integrable
irreducibile R(G) shall lead to irreducible R(G) we must tolerate the
existence of some invariant subspaces. This possibility is not on principle
excluded, however it is simpler to define the irreducibility of the integrable
R{G) in the following way.

Definition 5. The integrable representation R(G) of the Lie algebra G
is called irreducible if the representation R(G) is irreducible.

As to irreducibility of the partially integrable representations, we
shall define this concept only for the class mentioned in the introduction4.
At first we give their exact definition.

Definition 6. A skewsymmetric representation R(G) we shall call
discrete with respect to the subalgebra G' C G if

a) R{G) will be analytical with respect to G'

b) R(G')= (j) Ra(G') where Ra(G') are irreducible representation of

the group G'.
If the several representations Ra(Gf) equivalent to one representation

is present in the mentioned decomposition of R(Gr), this decomposition
is not unique. If Ωb (b= 1, . . . , p ^ oo) denotes the set of indices of the
mutually equivalent representations in the decomposition of R{G') and if

aeΩb

4 For the possible definitions of the irreducibility of the general representations of
the Lie algebras see [16].
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then decomposition

R(G')=®Rξ(G')
b

is now unique. The corresponding decompositions of the representative
Hubert space is following

H=®Hb

F; Hξ=@Ha. (1)
b aeΩb

With respect to the equivalence of the representations Ra(G% aeΩh

we can write

where Kb is the unitary space with the dimension equalled to the number
of elements of Ωb. The consequence of Eq. (2) is the relation

Rζ(G') = Rb(G')®Ib

where Ib is the identity operator on the space Kb

5.
The irreducibility of the discrete representation R(G) with respect

to the subalgebra G' we shall understand essentially the impossibility
of the reduction of R(G) in the direct sum R1{G)®R2{G) of the representa-
tions of the same type. Simultaneously we must obtain a definition
agreeing with Definition 5 for G' = G.

However, the following situation can arise without further additional
assumptions. Consider the integrable reducible representation of the
algebra R(G) with support D. We can reduce R(G) in agreement with
Definition 5 in the direct sum of representations and this reduction is
not, in general, unique.

Let, therefore, R(G) = R1(G)®R2{G) be some reduction of R{G)
and let H = Hλ 0 H2 be corresponding decomposition of the representative
space H. If DnHa will be not dense in Ha for some a = 1, 2, then a cor-
responding reduction of R(G) will not exist, in agreement with De-
finition 1, because Dc\Ha does not have the properties of the support
of representation of G. If this case would arise for all possible decomposi-
tion of H, R(G) will be reducible (see Definition 5) but we shall not de-
compose R(G) in the direct sum of the representations.

Therefore, we shall define the irreducibility of R(G) for discrete R(G)
with the certain "minimal density" of the support D only.

Definition 7. Let R{G) be discrete representation of G with respect to
G' C G. Let further, if K is invariant subspace of the representation
K(G') then KnD is dense in K. The representation R(G) will be called
G'-irreducible if every subspace K such that R(G')KcK and R{G)
{DnK)cK is trivial.

5 The same symbol used before sign of the tensor product will denote the identity
operator on the space Hb.

10*
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The definition has the following properties
a) It is equivalent, for G' = G, to the Definition 5.
b) If R'{G) D R(G) (i.e. D' D D) is further representation of the algebra G

then G'-irreducibility of Rf(G) is equivalent to the G'-irreducibility of
R(G). To the proof it is sufficient to verify the following equivalence

R(G){DnK)CKoR'{G)(D'nK)cK.

This equivalence is trivially fulfilled for K = H. If K =j= H we can write
H = K@Kλ and

R(G)(DnK)cKo(R(G)f,g) = 0

for every feDnK and every geDnK1 because DnK is dense in K
(analogical equivalence valid for R'(G)). Let / ' eD'nK and let fneD9

f„-+/'. Because operators of R'(G) are skewsymmetric and R'(G)DR(G)
we have

{R(G) /„, flf) = 0=>(K'(G)/', 0) = lim (/' - /„, Λ(G)^) - 0

for every geDnK1 and therefore R'(G) (D'nK)cK. The proof of the
equivalence in the second direction is trivial because D' C D.

c) If G[ C G'2 are subalgebras of G then we can easily prove that
Gi-irreducibility of R(G) implies G^-irreducibility.

For the verification of the "minimal density" of the support D of
R(G), we must know especially all invariant subspaces of the representa-
tion R(G'). The simplest way is to find the most general projector E
commuting with all operators of JR(G'). Using results of [17] it is easily
to prove that

where Eb is a projection on Kb. The set of all invariant subspaces of R(G')
we obtain from relation

choosing projections Eb. We see that "minimal dense" support D contains
vectors xb®fb where fb is any vector Kb.

It is clear that an example of the "minimal dense" support is given
by the following relation

(3)

6 We understand the symbol <g) in two slightly different ways. If K and H are closed
linear spaces (i.e. Hubert ones) then KφH means closed space under corresponding tensor
product norm. In the remaining cases K (g) H is the linear space of all finite linear combina-
tions of the vector x®y, xe K, yeH.
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where Db is analytical support of the representation Rb(G) and symbol X
denotes the algebraic direct sum. Support of this sort we shall use in the
following.

The proof of the version of Schur's lemma presented later still lacks
one additional assumption - the finitedimensionality of, at least, one
space Kb. Due to this fact we limite ourselves by the stronger assumption,
especially, dimX<oo for all considered b, because it seems to be the
most frequent case in practical applications. These representations we
shall call in brief G'-representations.

Definition 8. The G'-irreducible representation R{G) with support
given by Eq. (3) such that dimi£ b<oo for any b will be called G'- re-
presentation.

III. Two Theorems

Lemma.Lei Rι(G) and R2(G) be irreducible analytical representations
of the algebra G on the spaces H1 and H2 with supports Dx and D2. Let
S2ι and S12 be two mappings of H^ into H2 into H1 respectively with
the following properties

1) S21D1CD2, S12D2CD1 ,
2) {S12f,g) = {f,S21g), feD2, geDl9

3) (Sί2R2(G)-R1(G)S12)D2 = 0,
{S21Rί(G)-R2(G)S21)D1=0.

Then either S12f = S2ίg = 0 or ^ ( G ) and R2{G) are unitarily equiv-
alent, K 2 ( G ) - ί 7 " 1 RΛG)U, and S12f = λ- U f, S21g = λ"1 U'1 g for any
feD2,geDι where λ is a real number.

Proof. At first we prove this lemma for Rί(G) = R2{G) = R{GX
D1 = D2 = D,S12^S2l = S and Hγ = H2 = H. We start with the construc-
tion of the unitary operator V. The Caley transformation of the operator S

V=(S + iI){S-iI)-1 (4)

is isometric mapping of the linear subspace D_ =(S — i I) DCD on the
linear subspace D+ =(S+iI)DCD. Let /+ be any vector of D+. Then
there exists at least one vector fe D so that /+ = (S + i I)f and

R(x)f+=(S+iI)R(x)feD+

for every x e G because oϊ R(x) fe D. Therefore subspace D+ is invariant
subspace of R(G) and in agreement with [5], D+ is invariant subspace
of R{G\ because D+CD is formed by analytic vectors of R{G). Due
to irreducibility of the representation R(G) we have D+ = H and denseness
of D+ is proved. As a consequence of this property of D+ we can extend
the operators V to unitary operator V [10].
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From commutativity of the operator S with operators R(G) and from
skewsymmetricity of R(G) we easily prove

{VR(x)f,g)=-{Vf9R(x)g) (5)

for any / e D _ , g e D+ and any x e G .
We prove the validity of this equation for any analytic vectors

f,g of R(x). Denote by r_ and r the restrictions of the operator R(x)
(x-fixed) to the domains D_ or D respectively. The closures of these
operators are skewadjoint i.e.

r _ = - ( r _ ) * , 7=-(r)*

because vectors of D_ and D are analytic vectors of r_ or r respectively.
Using this fact and trivial implications

r_ C r => r_ C F=> F* C F?

we obtain r_ = F. It means, especially, that for any analytic vector /
there exists a sequence /„ e D_,fn-+f so that R(x)fn->R(x)f.

Substituting / in Eq. (5) by /„ and limitating we extend this equation
to any analytic vector / of JR(X). The same arguments can be used for
extension to any analytic vector g of R(x).

From the Eq. (5) we obtain further the relation

valid for any natural n, any t>0 and any analytic vectors f,g oϊ R(x).
Due to this property, the sums inside of scalar product converge for

some |ί| <5 (5 may depend on /,g and x e G o f course) to expjR(x)ί •/
or exp( — R(x)t) g respectively, so that we have

( F e x p i φ ϊ ί •/, g) = (Vf, exp(-R(x)t) g) (6)

for \t\ < s. As it is shown in [1] (the proof of Lemma 5.1, p. 584) the vector
txpR(x)t -/is analytic vector of R(x) again and radius of convergence of
the corresponding sum is not less as in the case of vector /. The consequence
of this fact is the validity of the relation (6) for any t. Actually, we can write

expK(x)ί= expR(x) —
\ m

where natural number m is choosen so that \t/m\ < s and proof is completed
by m-times use of the above relation.

Therefore, Eq. (6) holds for any t and any f,geD so that we can
extend its validity to all vectors of H. Now this equation gives

[V,expR(x)t]=0.
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If elements x t e G are sufficiently near to origin, then operators expR(x)t
realize the unitary representation RV(G) of some neighbourhood U
of identity of the group G. Because of simple connectness of the group G
there exists the unique extension of RV(G) in the representation of the
group G on space H and therefore the operator V commutes with all
operators of R(G). Using the usual Schurs lemma we obtain V=al
where a is, due to unitarity of V, a complex unit i.e. \a\ = 1. By reversion
of the Caley transformation (1) of the operators S we obtain

where λ = \(a + 1) (a — I ) " 1 is a real number.
Now we prove the general assertion of the lemma. The operator

Si2' S2i mapping H± into Hu commute with the representation R^G)
on the support Dx and fulfils all assumptions of the just proved specified
assertion of lemma so that S 1 2 S2ί =λl on D1. From the second as-
sumption of lemma we have

\\s21f\\2 = ( s 2 1 s ί 2 f j ) = λ\\f\\2 (7)

for any feDί which showes that λ ^ 0.
If now λ = 0 then S 2 1 / = 0 for any feDί and therefore S12g = 0

for any g e D2 (again see second assumption of lemma).
If λ > 0 we can extend, at first, the mapping S2i to the bounded

mapping S21. As it is seen from Eq. (7), this mapping is, up to multiplicative
constant, the isometry mapping of Hx onto H2. Further we can rewrite
the second part of the third assumption of the lemma in the equivalent

(S21R1(x)g,f)= -(S2ig,R2(x)f)
geD.JeD,.

From this relation we easily derive, repeating the procedure of the
above proof, the equation

and assertion of the lemma we now obtain quite trivially.

Theorem 1. Let R(G) be a discrete representation of G with respect
to G with the support DcH = Q) Hb®Kb (see Eqs. (1-2),) and let

b

D' = YjDb®K'bcD where Kb is some dense linear subspace of Kb. Let
b

further S be symmetric operator on the space H with the following properties.
1) SD'CD',
2) [S,R(G)]Zy = 0.

Then for any feD\Sf= ((J) Ib ® Sb) /, where Sb denotes any symmetric

operator on Kb with the domain D(Sb)DKb.
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Proof. It is sufficient to prove the assertion of the theorem for vectors
of the form fb®eb,fbeDb,ebeKb because the subspace D' is their
linear span.

Let b° be fixed and take any fb0 e Dbo and any ebo e K'bo. With respect
to the separability of all Kb we can construct an orthonormal countable
basis {ezb}, z=l, ...,άimKb for any Kb in such a way that ebO = elbo
and ezbeK'b. Now we can write

Sfb®ezb= Σ (Sl'ΐfύ^e^ (8)
z',b'

where Sz

zb are mappings of the space Hb into Hb> which maps Db into
Db>, and assumption 2) immediately gives

(Sz

z'
b

bRb(G)-RbiG)Sϊb

b)Db = 0.

From the symmetry of the operator S we easily find that mappings
Sz

z'
b

b and Sz

z'\ fulfil also the second assumption of the preceding lemma
and therefore we can use its assertion for these mappings.

So we obtain

Sϊb

b=δbb,λzz,I

on Db, because representations Rb{G) are nonequivalent for different b.
Substituting it in Eq. (8) we obtain

Sfb®ezb = fb®Sbezb

where

Because we start our considerations with any fbo®ebo = fbo®elbo
these relations shows the validity of the assertion of theorem for any
feD'.

Theorem 2. (Schufs lemma). Let R(G) be a G'-representation of G
with support DcH. Let S be symmetric operator with the following prop-
erties

1) SDCD,
2) [S,Λ(G)].D = 0.

Then Sf — λf for any feD and λ is a real number.

Proof. The operator S fulfils the assumptions of the preceeding
theorem and therefore S=Q)Ib®Sb on D. Because all spaces Kb are

b

finitedimensional (see Def. 8), all Sb can be diagonalized i.e. there exists
such basis {ezb} z= 1,..., dimKb in the spaces Kb that Sbezb = λzbezb.
Denote by Hλ the direct sum of all spaces Hb®ezb such that λzb = λ.
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This subspaces is, due to commutativity of the operators of R(G)
with 5, invariant subspace of R(G). If there exist at least two different
eigenvalues λ =j= λ' then Hλ φ H which is in contradiction with G'-irreduc-
ibility of R{G). Therefore Sbezb = λezb for any z and b so that Sf = λf
for any feD.

IV. Concluding Remarks

a) The two fundamental mathematical assumptions applied to the
discrete representation R(G) with respect to G' are partial analyticity
of R{G) with respect to G' and especial form of the support D (see Eq. (3)).
The first assumption identifies the support D of R(G) with linear subspace
of the common analytic vectors D'an of the operators of R(Gf) which is
not, in general, necessary. These assumptions, however, make it possible
to prove the version of Schur's lemma on the basis of the algebraic
property only — symmetricity of the commuting operator — without
such additional assumptions as boundedness of S etc.

b) The change of the form of the support D given by Eq. (3) can lead
to further interesting representations of G. It best illustrates, as can be
easily proved, the example of nonintegrable representation, of such kind,
of the finitedimensional Lie algebra containing Poincare algebra and
giving the nontrivial discrete mass spectrum discussed in [15].

c) If S in Theorem 2 is bounded then S = λl on whole H. It shows
that our G'-irreducibility of R(G) implies Schur's irreducibility of R(G)
introduced in [16].

d) It is clear that the main part of our preceeding considerations
in Chapters 1-3 holds also for infinitedimensional G and finitedimensional
subalgebra G'.
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