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Abstract. A globally static space-time with asymptotically Euclidean behavior re-
presenting a finite body of a perfect fluid and a vacuum region is shown to be diffeomorphic
to Euclidean space and its metric spherically symmetric whenever the magnitude of the
gravitational field strength is only a function of the gravitational potential. Under some
additional physical assumptions it is then proved that this spherically symmetric solution
is not deformable, that is, does not admit a nontrivial first order perturbation that is also
a static, asymptotically Euclidean perfect fluid with the same equation of state and the
same central value of the pressure and the gravitational potential.

1. Introduction

This paper deals with the equilibrium configurations of a non-
rotating perfect fluid in a general relativistic framework. As in the New-
tonian theory, where it was proved a long time ago (see Carleman [5]
and for the more general context Lichtenstein [14]), this equilibrium
was always believed to be attained for a spherically symmetrical con-
figuration. The proof in the Newtonian theory used potential theory
on three dimensional Euclidean space in a way that probably cannot
be generalized to Riemannian manifolds.

Avez [1 and 2] suggested a very elegant argument based on Morse
theory which, however, is only applicable in the very restricted case,
where the gravitational potential U has only nondegenerate critical
points and the magnitude W of the gravitational field strength, i.e.
the length of the three-dimensional gradient of I/, is a function of U
only. Under these assumptions it follows from the asymptotically
Euclidean behavior that the 3-space is in fact diffeomorphic to IR3

and the space-time is spherically symmetric, i.e. admits 50(3) as a
isometry group with two-dimensional spacelike orbits.

The main result of this paper confirms the conjecture that the latter
conclusion is probably independent of these restrictive hypotheses.

* This work was supported in part by the United States Atomic Energy Commission
under contract number AT (04-3)-34, Project Agreement No. 125.
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It is shown that no first order static deviations from a spherically sym-
metric asymptotically Euclidean solution can exist, more precisely,
that the spherically symmetric solution is not infinitesimally deformable
in the space of all asymptotically Euclidean static perfect fluid space-
times to a given equation of state, a given maximal (i.e. central) pressure
p 0 and a minimal value Uo of the gravitational potential U. This latter
parameter is used to characterize the solution because of convenience.
It could possibly be replaced by the total gravitational mass of the system.

The mathematics used in the proof is elementary and the argument
could possibly be simplified if more were known about spaces of metrics
on noncompact manifolds. Here this difficulty is partly overcome by
using the fact that the equipotential surfaces are compact manifolds,
indeed 2-spheres. In particular, while by the methods of Deser [6, 7]
and Berger and Ebin [3] for distinguishing between isometric and essential
deformations applied to the three-dimensional metric it is not very
easy to identify a nondegenerate minimum of the energy for the spherically
symmetric solution, this analysis is simplified when the equations are
broken up into their restrictions to the equipotential surfaces and the
^/-dependence.

In the third section the result of Avez [1] is slightly generalized by
dropping the assumption that the potential U have no degenerate critical
points. This would be useful if it could somehow be shown that W = W(U)
is true in general for an asymptotically Euclidean perfect fluid under
certain physical assumptions - still a quite reasonable conjecture.
If it could be done, it would follow that every static spacetime represent-
ing a (physically reasonable) perfect fluid that is asymptotically Euclidean
is diffeomorphic to 1R4 and spherically symmetric.

Since it can be done at no additional cost we include the Newtonian
case in the treatment - for comparison only since the methods of [5]
and [14] are here considerably more effective.

2. Static Perfect Fluids

a) Static Space-Times

The definition is the one of Lichnerowicz [13], p. 109.
A space-time M is called static iff there exists a 3-dimensional manifold

Σ and a diffeomorphism ψ : M ->Σ x ΪR such that
(i) Cx = ψ~1({χ} x 1R) are timelike curves for all xe Σ.

(ii) Σt = ψ~1(Σx{t}) are (globally) spacelike hypersurfaces for all
te R

(iii) Cx for all XE Σ are tangent to a Killing vector field ξ on M
that is orthogonal to all Σt.
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Then, if M is geodesically complete, as we assume in the following,
so is Σ with the induced metric. We also assume that Σ is orientable.

The metric on M can be characterized by g = φ*(— e2U dt2 + e~2Uy)
where y is a complete Riemannian metric and U a real valued function
on Σ and dt2 the standard metric on 1R. The function U is called the
gravitational scalar potential of the static field. Then ψ*(e2U) = g(ζ, ξ).
(Cf. Ehlers and Kundt [8] for a general discussion of static fields in this
formalism.)

As usual a static space-time M (and the corresponding (Σ, y, U))
is called spherically symmetric if SO (3) is an isometry group of (M,g)
whose orbits are (generically) spacelike surfaces.

b) Equations of a Static Perfect Fluid

The Einstein equations for a perfect fluid with mass-energy density
Q and pressure p in M,

4 4

Kβ ~ i R 9*β = 8π [(ρ + p)uauβ + pgaβ]
 x

assume in the static case the form

R^lδ.UdjU-lpy.j, (2.1)

ΔU = M (2.2)

where all geometric quantities refer to the 3-metric y, A denotes the
Laplace operator with respect to y and

The Bianchi identities for the 3-metric y are equivalent to the conditions
(i) the fluid satisfies an equation of state of the form ρ = ρ(p),

(ii) pressure and density are functions of U only, and are determined
up to a constant by the equation of state by means of

U = 0, (2.3)

which can be written as

dp

dU
= - 2M . (2.4)

Note that if (1) holds then (2), (3), and (4) are equivalent.
The equations of a perfect fluid subject to no other forces than its

own gravitational attraction according to Newtonian hydrostatics are

AU = 4πρ and dp + ρdU = 0

1 C o n v e n t i o n s a r e as in L a n d a u / L i f s h i t z [ 1 2 ] , e x c e p t t h a t α, β, ... = 0 , 1,2, 3; /,;, ...
= 1,2, 3; A,B, ... = 2, 3 ; c = l , G = l .



88 H. P. Kunzle:

where Σ ~ 1R3 (diffeomorphic to 1R3) and y is the Euclidean metric on 1R3.
If we treat the relativistic and the Newtonian case at the same time
letting v = 0 or 1 for Newtonian hydrostatics or general relativity, re-
spectively, then

p = %πpe-2vU and M = 2 L 7

and the full set of equations is given by

= 0 or dp/dU = -2M, (2.5)

AU = M, (2.6)

R^lvidiUdjU-pyJ. (2.7)

c) Physical Assumptions

The essential condition in the Newtonian theory is ρ ̂  0 on Σ.
This is already sufficient to prove the spherical symmetry of an equi-
librium configuration if vacuum is assumed outside a compact domain
and lim (7 = 0, according to Lichtenstein [14].

In the relativistic case some limitation on the pressure is no doubt
needed though a necessary condition is not known. (In Ref. [11] static
space-times with positive mass density are constructed that have non
Euclidean topology, but p^ — ρ. They are not perfect fluids but could
probably be made into such without a change of topology. See Bondi [4]
for general limitations on ρ and p following from the assumption that Σ
is topologically Euclidean and spherically symmetric.)

We assume for simplicity the certainly physically reasonable condi-
tions

0 ̂  3 vp S Q or equivalently 0 ̂  3 vp S M (2.8)

and

0<-^-=α2^oo (2.9)
dρ

where α is usually interpreted as the velocity of sound in the fluid. Condi-
tion (9) implies for example that M decreases outwards, for

= - 4 π [ ( o Γ 2 + 3v) (ρ + vp) + 2v(ρ + 3vp)] e~2vU

dU

whence

dM

dU
= 4πa'2(ρ + vp)e~2vU + 5vM - 3vp . (2.10)
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d) Asymptotically Euclidean Spaces

It is essential that Σ is topologically Euclidean near infinity. The
conditions of asymptotical flatness used in gravitational radiation
theory are therefore not (a priori) sufficient. We follow again Lichnero-
wicz [13] in defining (Σ, y, U) to be asymptotically Euclidean iff

(i) there exists a compact K C Σ and a diffeomorphism φ : Σ\K -»1R3\B
where B is a closed ball centered at the origin,

(ii) with respect to the standard coordinate system in 1R3

3

C7 = 0( |xΓ 1 ) , dkU = 0(\x\~2) where |x|2 = £ (xψ .
ί = l

For simplicity we also assume that the matter distribution is finite,
more precisely,

(iii) there exists a compact Q C Σ such that ρ =p = 0 in V = Σ\Q
and M > 0 in the interior of (λ

As a consequence of these assumptions (i)—(iii), (6) and (8) we then
have (cf. [13], p. 126 et seq.)

Theorem 1.
(a) U < 0 on Σ, lim U = 0 (i.e. for all ε > 0 there exists a compact

K C Σ such that \u\ < ε in Σ\K),
(b) lim |PL7| = O,

χ-> oo

(c) U has no maximum and no minimum in the vacuum region V and
no critical point in some neighborhood of oo unless the space is flat,

(d) Dc= {xe Σ/U(x) S c} is compact for all c < 0,
(e) Sc = dDc= U~λ {{c}) - S2 for \c\ sufficiently small.

By means of the classical expansion techniques it can be shown,
moreover, that near infinity U = —m/\x\ +0( |x |~ 2 ) and

W = \V U\ = (yij dtV djU)1''2 = m/\x\2 + 0(\x\~3)

where m is the total (active gravitational) mass of the system defined by

m = — f M i = — \\VU\e (2.11)
4π J

D 4π e'D

where D is any domain containing the support of M, e the volume
element of Σ and e the volume element to the induced metric on 3D
(cf. [8], p. 68).
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e) (2 + 1)-Dimensional Formulation of the Field Equations

In any domain of Σ where U has no critical point the field equations
can be written in terms of the induced metric γ of the equipotential surface
Sc, its second fundamental form and the gradient square of U. Locally,
in a 3-dimensional manifold we can even introduce an orthogonal co-
ordinate system, but it will later be useful to have the complete formalism
available (cf. Avez [1] and Sachs [17]). Let therefore W2 = \7U\2

= yιj dill δj U and nt = W~λ dtU. Then, if in terms of a coordinate system
(xi) = (U,xΛ),(A = 2,3)

ds2 = yndU2+2PA dxΛ dU+ yAB dxA dxB,

where yAB is the induced metric of Sc, all capital indices are raised and
lowered with respect to yAB, quantities derived from yAB are barred,
the second fundamental form of Sc is defined by ΩAB = VA nB and ' = δ/dU
then

y'AB = 2W-1ΩAB + 2VuPB) (2.12)

and the field Eq. (7) translate into

dAΩ=VBΩ
B

A, (2.13)

R - Ω2 + ΩABΩ
ΛB + 2v(W2 + p) = 0 , (2.14)

ΩΩAB-2ΩC

AΩCB-W~ι VA VB W + 2W~2 dAWdBW

(2.15)

whence, by contraction with yΛB and substitution from (14),

WΩ' - W~ι AW + 2W~2 dAW dA W + ΩABΩ
ΛB

(2 16)
-2v(W2-p)-WPΛdAΩ = 0. '

Eq. (6) is equivalent to

W' = M W'1 - Ω + PA dAW. (2.17)

3. Spherically Symmetric Solutions

a) Geometry of the Equipotential Surfaces when W= W(U)

In this whole section we assume that W — \V U\ is a function of the
potential U only.

In any domain G where U has no critical point, using the coordinate
system (U, xA\ we have dAW = 0, thus by (2.17) Ω = Ω{U\ i.e. dAΩ = 0.
It then follows from (2.16) that ΩABΩ

AB is a function of U only. Finally
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(2.14) gives R = R(U). Thus, Sc is a surface of constant curvature for every
regular value c of U.

Lemma 1. If M is a two-dimensional Riemannian manifold with metric
yAB and KAB a symmetric tensor such that

(i) FΛKAB = Q and (ii) yΛBKAB = K = const

then there exist a harmonic 1-form Φ on M such that KAB = (1/2) (K — Φ2)yAB

+ ΦAΦB where Φ2 = yΛBΦAΦB.

Proof (Avez). There exists a function / and a 1-form Φ such that
KAB_=fyAB + ΦAΦB.By(iϊ)f=\f2(K-Φ2).By(i) VAKAB = 2ΦA V[AΦB]

+ (VA ΦΛ) ΦB = 0. Contracting with ΦB gives (δΦ) Φ2 = 0. It follows that Φ
is coclosed. Then ΦΛ V{A ΦB] = 0. But, locally, there exists a coordinate
system such that Φ1 =0, Φ 2 φ 0 , hence V[2Φ1] = 0, i.e. dΦ = 0, thus Φ
is closed. []

In particular, if M ~ S2, according to the Hodge-de Rahm theory,
there does not exist any harmonic 1-form, thus KAB=l/2KyAB (see,
for example, [10, p. 76]).

Applying this lemma to ΩAB on Sc, when Sc is a sphere (i.e. iff the
curvature of Sc is positive), we find ΩAB= l/2ΩyAB. Since locally we can
assume that PA = 0, it follows from (2.12) that

fλB=W-1ΩyAB. (3.1)

where W~x Ω is a function of U only. Therefore, if on some initial sphere
Sc the standard coordinate system (θ, φ) is used such that

ds2 = yABdxA dxB = r2(dθ2 + sin26> dφ2) (3.2)

where r2 = 2/R = r2(U), then (1) can be integrated coordinatewise and
shows that the form (2) of the metric remains valid for the neighboring
surfaces Sc. Now ΩABΩ

AB=l/2Ω2 and from (1) and (2)

Ω = 2W—=2W@f where ,« = lnr, (3.3)
r

so that the remaining nontrivial field equations become

2 2 (3.4)
and

W2@'2 = r-2 + v(W2+p). (3.5)

Recall now from Morse theory (Milnor [15], p. 14) that two surfaces
SCί and SC2 are diffeomorphic if there is no critical value of U in [q, c 2 ].
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From this, and the preceding remarks we get

Lemma 2. If all ce\_cu c 2 ] are regular values of U and any (whence all)
Sc is a sphere then DCίC2= U~1[_(cί,c2)"] is diffeomorphic to S2 x 1R and
the metric in DCίC2 is given by

ds2 = W~2 dU2 + r2{dθ2 + sin

r(U) and W(U) are determined up to constants from (4) and (5).
In other words, (DCiC2,γ, U) is spherically symmetric.

b) Asymptotic Behavior of U

From Theorem 1 and Lemma 2 it follows that Sc~S2 for all c>c^
where c^ is the greatest critical value of U. If moreover U is assumed to
be a Morse function (i.e. has only isolated critical points and not two with
the same value) then the method ov Avez [1] gives the result immediately.
We do not need this assumption, however, if we proceed directly.

Integration of (4) gives

W=£ (3.6)

where m2(U) = 2 j MrA dU for some Uo. Since in the vacuum region

m(^0) is a constant, in fact equal to the total mass (2.11) of the system,
we assume that m > 0, since otherwise W = 0 would imply a flat vacuum
region.

For the vacuum region (5) can be explicitly integrated leading to
the exterior Schwarzschild (or Newtonian) potential in our coordinates.
In particular, since W never vanishes U has no critical points in the
vacuum region.

c) Behavior of U Near a Critical Point

First observe that, since we assume W=W(U) to hold on all
of Σ, either Sc= L/~1({c}) is a regular submanίfold (for regular values c)
or 5C is contained in the critical set of U. Thus it is enough to consider
all critical values of U.

Let now x0 be a critical point of U. From W=W(U) and dt U(xo) = 0
it is easy to deduce

{w^υ^iυ^υr, (3.7)



Symmetry of Static Fluid 93

where ί/̂  = V} V{ U(x0). With respect to an orthonormal frame at x0 the

only possibilities thus are

(I) [/„ = •£ Mo <50 , ( ^ 2 ) ' = | M 0 ,

1 \

(II)

/I

(III) ([/„) = Mo 0

0/

(3.8)

(Note that Mo > 0, since (7 has no critical point in vacuum.) In each
case (W2)f>0, thus a critical value is always isolated.

To study the implications of the other equations near a critical point
we introduce a normal coordinate system centered at x 0 and adapted
to a frame of eigenvectors of t/^ . Then

22 + y3

+yU -U0 =

in case I, II and III, respectively. Thus, the function z = y 1'2(U — Uo)
where y — ̂  Mo, \ Mo or \ Mo in case I, II or III behaves exactly like a
radial polar, radial cylindrical or cartesian coordinate, respectively,
in the Euclidean tangent space to x0 in the limit for \y\ -> 0. The functions
W, r, M, p depend only on z and it is easy to discuss their limits when z
approaches zero.

Eqs. (4) and (5) become in terms of z,

rdzW
2+4W2dzr = 4yz

and
(3.9)

(3.10)

Now by (8) Wo = 0 and (W£)f = 4y, whence W2 = 4y2 z2 4- 0(z3). Due to its
geometrical meaning r must be a regular function oϊz,r~r0 + rιz + 0(z2),
say. Similarly, M and p must be regular functions of U near x 0 (recall
that MQ is related to the velocity of sound), M = Mo + yM'^z2 + 0(z4)
and by (2.5) p - p0 - 2y M0z

2 + 0(z4).
Comparison of the coefficients of the first powers of z shows that

necessarily case I occurs iff r0 = 0 and case III iff r0 φ 0. All functions
are then completely determined by (9) and (10).

Now suppose Uo = c^, the greatest critical value of 17. Then if x 0 e Sc^

is of type III 5^ must be a sphere of radius r0 as only possible limit of the
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spheres Sc for c [c^ or z | 0 . But since C/= C/o 4- 1/2 M 0 z 2 in this case (7
would have to increase again for negative values of z, which would
contradict the fact that all Sc~ S2 for oc^. It follows that x 0 must be
of type I, that is an isolated nondegenerate minimum of U. Then, how-
ever, U increases in all directions from x0 so that x 0 is in fact the only
critical point of U and moreover, Σ ~ R 3 (cf. Morse [16]).

We collect these results in

Theorem 2. If in a static space-time M representing a compact body
of a perfect fluid with ρ + 3vpΞ>0 and an asymptocically Euclidean
vacuum region the gravitational field strength Wis a function of the potential
U then M is diffeomorphic to R4 and spherically symmetric.

Note that it follows from (4) and (5) that r' > 0 everywhere, so that
both r and U are functions monotonically strictly increasing from the
center outwards. If the equation of state ρ = ρ(p) and the central value of,
for example, the pressure, p0, and Uo are given p, M, r and WSLYQ uniquely
determined by (2.3), (2.4), (4), (5) and their initial values given in the last
subsection. The value Us of U at the surface of the body is the solution
of p(U) = 0 and the total mass can be obtained from ms= W(Us)r2(Us).
Similarly, prescribing ρ(p), ms and rs determines everything.

4. Static Deformations of a Spherically Symmetric Solution

a) Isometric Deformations

Let if be the set {(y, U)} of asymptotically Euclidean pairs of space
metrics and potentials on a given Σ ~ 1R3 that satisfy the equations of a
perfect fluid with a given equation of state ρ (p) and a fixed Uo = min (U/x e Σ)
and p0 = p(U0). According to the last section there is a unique (y, U)E^
(up to isometry) that is spherically symmetric. In any case, p(U) and
M(U) are uniquely determined, hence also Us as solution of p(U) = 0.

Since in the Newtonian case (where of course γ is fixed) it is known
that there is only one element of £f, namely the spherically symmetric
one, it is reasonable to expect that in the relativistic case there should
be only one equivalence class (with respect to isometry) of (7, U) in y. The
purpose of this section is to prove this in the infinitesimal version namely
that there are no first order deformations of (y, U) which do not arise
merely from coordinate changes.

Remark. This program can also be phrased as follows. Let

ψ : Diff(Σ) x 5? -> </>
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be the action of the group of diffeomorphisms of Σ on y . If

then ip(y>M)[Diff(Σ)] is the orbit of (7, U) under Diff(Σ). Then, if the tangent
space to the orbit through (7, U) coincides with the whole tangent space
at (y,U% i.e. if Teψi7ιϋ): Te{Όiϊϊ{Σ))->T{yUγ¥ (e = identity in Ό\S(Σ))
is surjective, (7, U) is called infinitesimally stable under Diff(Σ). In this
terminology we propose to prove that the spherically symmetric (7, U)
in y is infinitesimally stable under Diff (Σ).

Let again (7, U) be the spherically symmetric solution in Sf. Since U
has only one nondegenerate critical point the same must be true for all U
in a sufficiently small C2-neighborhood V of (7, U) in ff. Therefore any
(7, U)eir can also be described in terms of 7 and W as functions of
U and, possibly, angular variables on Sc. All Sc for c φ ί / 0 will still be
diffeomorphic to S2, though no longer necessarily of constant curvature.

It follows that the tangent space to (7, U) can be described in terms
of a symmetric tensor field ft and a function ω on Sc for all values c of [/,
more precisely, the first order deformations can be given by

and
W=W{l+λω) (4.2)

where λ is the parameter of the curve in ff tangent to (ft, ω) in (7, U).
For a fixed value U = c it is known that the symmetric tensor h on the
compact Riemannian manifold Sc can be uniquely decomposed into a
symmetric tensor with vanishing divergence and a Killing derivative, i.e.

hAB = ΦAB + 2V{AξB) (4.3)
where _

FAΦAB = 0 (4.4)

and the vector field ξ on Sc is the Killing field of a 1 -parameter group
of diffeomorphisms of Sc (cf. Berger and Ebin [3]).

We now consider the 3-metric 7 as a family of 2-metrics 7, of functions
W and vector fields P on Sc, parametrized by 17, namely such that
ds2 = (W~2 + PcP

c)dU2 + 2PAdxAdU + yABdxAdxB. A {y,U) is then
in the orbit under Diff(Σ) of (7, U) if the corresponding (7, W, P) can be
obtained from (7, W, 0) by a diffeomorphism φ of the form

xΛίφ(xί] = φA(xB, U), U[_ψ(x)-] = U(x). (4.5)

Infinitesimally, for 7 and FF as in (1) and (2), this is the case if

hAB = 2ViAξB), (4.6)

ω = 0 (4.7)
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since γ and W transform under the transformations (5) like tensors and
scalars on Sc.

The vector field P, however, transforms under (5) according to

/ / Λ\ dφc _ dφ~lB dφc

 A . .
4φ(x)) ——j- + y, B p̂  αx . Thus, if ς is the induced

ox ox dU
vector field on Sc of a 1-parameter group φλ of diffeomorphisms,

Since PA = 0 we find if

PA = λQA (4.8)

(using (2.14) for γ) that

QA = ξf

A-2<Z'ξA. (4.9)

The problem is now to show that if hAB, ω and QA are such that
(γAB, W, PA) given by (1), (2), and (8) lies in if, there exists a ξA such that
(6), (7), and (9) are satisfied. Clearly this requires showing that ω = 0
and, because of the uniqueness of the decomposition (3), that ΦAB = 0.
But if ΦAB = 0 (6) has a solution ξ*(xB, Ό\ say, then all solutions of (6)
are obtained by adding to ξA arbitrary vector fields with vanishing
Killing derivative. Thus it remains to solve

* = QA (4.10)

for ζA with V{A ζB) = 0. A necessary condition for the existence of ζA

is that (see (12)) „
QAB=^AQB] = 0. (4.11)

It is also sufficient, since ζA{xB, U) = r2 \ζA{xB)+ $ QAr~2 dU) for any

Uί and ζA(xB) with ^ ( ^ = 0 clearly solves (10).

b) Linearized Field Equations

The field equations can now be linearized in a straightforward way.
(Observe that if all the indices of the first order quantities are raised

and lowered by means of yAB, we have in view of (2.14) and (3.3) for any
tensor KAB : (KB

A)' = K'AC yCB - 2M'KB

A. Moreover, since (Γ^B)' = 0,

iyAKBC)'=ΨAK'BC.) (4.12)

Then Eqs. (2.15), (2.16), (2.18) and (2.19) yield

2M'dAω + dAh'- VB(hB

A)' = 2dAQ
B- VBQ

B

A, (4.13)

4(r~2-hvp)ω + 2W2&'QA

i = Ah- VA VBhAB + r~2h + W2@'h', (4.14)

Δω -2W2M'ω' - 4 v p ω ~ i W2h" -\Mh' + MQA

A + W2(QAy = 0 , (4.15)
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and
2ω + h' -2QA = 0, (4.16)

respectively, where the quantities referring to the background metric
are no longer in black type.

Substituting h' from (16) and h" from its l/-derivative into (15)
leads to an equation for ω alone,

Aω + W2ω" + (3M - 2M' W2)ωf

2 - 2 / (4.17)

To use the decomposition (3) for hAB in (13), (14) and (16) denote by
d and δ exterior differentiation and codifferentiation on differential
forms in Sc. Then A = — dδ — δd, which for 1-forms K = KAdxA is
explicitly AK = (VB VBKA -RB

AKB) dxA = (VB_ VBKA) dxA - r'2K (see,
e.g. Goldberg [10]). If we define KAB= V{AKB), systematically for
any 1-form K, and let Φ = Φi and QA = QA + ξ'A — 2M' ξA it turns out that
ξA drops out of the Eqs. (13), (14) and (16); for we get successively from
(13), (16), and (14)

d{Φ' + 2^'ω) = δdQ -2r'2Q, (4.18)

2ω' + 4MW ~2ω + Φ' + 2δQ = 0 (4.19)
and _

AΦ + r" 2Φ = 2W2^'ω' + 4(M0t' - r'2 - vp)ω . (4.20)

c) Solution for ω

Eq. (17) can be written in terms of the 3-dimensional Laplacian A
which has in the spherically symmetric case the form

Δf=W2f" + Mff + Δf

for any function / on Σ. Since, if g is any function of U,

)" + l2W2{\ngy + MW + lM{\ng)' + W2g'/g-1~]ω}

we can choose g such that 2W2(lng); + M = 3M — 201'W2 whence up
to a constant, g = m/r. Then, after some calculations, (17) is seen to be

equivalent to Λ~ τ?~ (Λin
Aω = Fω (4.21)

where ώ = mr~1 ω and

F(U) = -M' + 2M2 W~2- 6MM' + 3vp + v W2 . (4.22)

If now the deformed solution is to lie in ff we must have W = W{\ + λω)
= mr~2 + 0(r~3) for r->oo with, possibly, a different m and

W2 = {diδJW
2)0y

iyj + 0(\y\3) in terms of a normal coordinate system
near the center.
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It follows by arguments similar to those in the last chapter that

ώ = 0(z2) near the center (4.23)

and ώ = 0(r~1) or 0(r~2) for r-»oo. In particular, ώ is regular everywhere
on Σ.

If now F(U) in (21) were everywhere positive on Σ it would follow
immediately that ώ vanishes. This is not quite true, however, due to the
(only negative) term —6M0Ϊ. (Near the center F = — i(3vp0 — Mό) + 0(z),
which is manifestly negative.) A closer analysis is therefore needed.

As a regular function on each Sc ώ can be expanded in terms of spherical
harmonics. Let

ώ=ΣKι(U)Yι(θ,φ) (4.24)

where Yι is any (normalized) linear combination of spherical harmonics
of order /, i.e. satisfies ΛYι + l(l+ l)Yt = 0 and J Yt

2dΩ=l9 where A
s2

is the Laplacian restricted to the unit sphere.
Then A = r~2 A and (4.21) reduces to an equation for Kh

W2r2K'l + Mr2 KJ = [r2 F + /(/ + 1)] Kt, / = 0, 1, 2, ... (4.25)

We first investigate this equation near the center where according
to (23) Kt must vanish for all /. Since ώ is regular we can expand in terms
of at least a few powers of z.

Comparing the first coefficients of the powers of z in (25) shows that
Kι(z) = aoιz

ι + 0(zι + 1) near the center. In view of (23) and (24) we see
that K0 = K1= 0.

It will now be shown that the remaining multipoles in the solution
for ώ also vanish because the function

Fj = F + ^ ^ - > 0 for all / ̂  2 (4.26)

everywhere on Σ. Indeed, if (26) holds (25) or A Kx = W2 K'{ + MK[ = FιKι

implies AK2 = 2Kt AKt + 2W2K'2 = 2FιK
2 + 2W2K'2 ^ 0 so that Kf

can not have a maximum on Σ. Since lim Kt = 0 this implies that Kt = 0
Y ~* 00

on all of Σ.
There remains the proof of (26). Because F is finite at the center and

equal to v W2 in the exterior vacuum region Fι is strictly positive near the
the center and in vacuum for all / ̂  1. To estimate Fz in the region between
we find from (22) with (2.10) F^2M2W~2 -6M@' + v(5M+ W2).
In the Newtonian case (v = 0) it is easy to conclude that this is ^ —6r~2.
For, from (3.5) and (3.6), 0tr = rm~\ such that F ̂  2M2m"2r4 - 6M~X r.
At any fixed point outside the center rm~ι has some fixed positive value
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and F regarded as a quadratic function of M is immediately seen to be
g: — fr~2. The estimate in the relativistic case is somewhat more com-
plicated. It is given in an appendix under the assumption that 0 g 3p rg ρ.

d) Solution for ΦAB and QA

With ω = 0 Eq. (20) becomes AΦ + r~2Φ = 0 or, restricted to any
sphere 5C, A Φ + Φ = 0. Since there are no regular solutions on the sphere
of this equation it follows that Φ = 0. Then, since also VΛΦAB = 0,
Lemma 1 implies ΦAB = 0. Now (18) reads δdQ — 2r~2Q = 0 and from
(19) we have

δQ = O (4.27)

whence AQ + 2r~2Q = 0, or, in terms of coordinates, Vc VcQA + r~2QA = 0.
Differentiation and use of (27) and the Ricci identity give VCVCQAB

= r~2 QAB and therefore QAB = 0 by the same argument as was used for Kt.
This completes the proof of

Theorem 3. A static spherically symmetric asymptotically Euclidean
space-time representing vacuum and a perfect fluid with 0^3vp^ρ

and an equation of state ρ(p) satisfying 0 < ^ oo in a compact domain
dρ

does not admit any (non-trivial) static deformations with the same equation
of state and the same maximal (i.e. central) pressure and the same minimal
value of the gravitational potential.

The author is grateful to Professors A. Avez and A. Taub for several helpful discussions.

Appendix

A proof that (4.26) holds in the general relativistic case can be given
by means of the following elementary estimates.

Using (3.6) and (3.5) and the new variables

m ? 1 ?

u=—, v = pr• , x~^Mru ,
r

(Note that they are all regular functions with values 0,0,1, respectively,
at the center.) We write (4.26) in the form

u 2 - 1 8 x j / l + w 2 + *;^ - 6 .

In view of the conditions 0 g 3p g ρ ox equivalently 0 ^ υ ̂  xu it will
be sufficient to show that

2 + 15xu + u2 + 6 ^ 18x | / l + w
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for all positive values of u and x. This is equivalent to

/ - 324x4 + 2\6ux3 - 63u2x2 - 108x2

+ 10w3 + 60ux + w4 + 12M + 36 ^ 0 .

For u = 0 we have / = (18x - 3)2 + 27 >0. Then letting x = αu for
0 :g M < oo and 0 :§ α < oo gives

(A.I)

with A = 324α4 + 216α3 - 63α2 + 10a + 1 and B = - 9 α 2 + 5α + 1. It will
be enough to show that / in (1) is positive for all u and all α ̂  0. This is
the case iff (a) A ^ 0 and (b) B > 0 or A Ξ> B2. But this condition does hold
as is easily seen by a closer inspection of the two functions A(<x) and B(a)
for α ̂  0.
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