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Abstract. Ward identities for matrix elements of covariant two-point time-ordered
operators in the presence of an arbitrary number of subtractions are investigated. Neither
the existence of naive T-products nor the existence of equal-time commutators between
current densities will be assumed. It is shown by means of the Jost-Lehmann-Dyson
representation that T*-products can always be defined such that normal Ward identities
with respect to one current are valid. The simultaneous validity of normal Ward identities
with respect to two currents requires a relation between equal-time charge-current commuta-
tors.

Our results show that the usual realization of current algebra in the form of Ward
identities is possible even if subtractions are necessary. Some examples are discussed in
detail.

1. Introduction

Ward identities (WI’s) are of great importance for the derivation of
low energy theorems [1]. In particular they are the basis for the applica-
tion of current algebra in the form of the hard-pion methods [2]. Therefore,
it is of great interest to investigate in detail the validity of such WI’s.

In this paper we attack the problem of the validity of normal WI’s
for matrix elements of time-ordered products in the framework of
general quantum field theory.

We exclusively consider the case of T-products of two field operators
where at least one will be a current. Then we speak about a normal WI
if a relation of the following kind is valid

L T(u(x) A, W) P1> = (P T(0%,(x) A, 1>
+ 54(X =) <¥,| [Q(j)(xo)s Ay(Y)] B2

Q(j)(xo) =] d3xj0(x)

@

with
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for any local field A, and arbitrary quasilocal states ¥; and ¥,. Histori-
cally, (I) has been derived first by using the naive definition of the
T-product® and canonical equal-time commutators (ETC) between j,
and 4, [3].

This derivation has several shortcomings:

a) The naive T-product may not exist. This happens in perturbation
theory, e.g. if a Feynman amplitude diverges and, therefore, needs
subtractions.

b) Even if the naive T-product exists it might be non covariant [1].

¢) In case of non-conserved currents the ETC between a “charge”
and the local field 4, may not exist. A perturbation theoretical example
for such a situation has been given recently by the present author [5].

d) Even if the ETC between Q; and A, exists the ETC between j,
and A, might deviate from its canonical value (appearance of gradient
terms — so-called “Schwinger terms” — which also may be infinite [5, 6]).

Let us now briefly discuss what people have been done in the last
couple of years in order to overcome these difficulties.

First one trivial remark: As we ask for the validity of a normal WI
we must require that the ETC between a charge and the field 4, exists.
In most of the recent nonperturbation theoretic work on WI’s it has been
assumed that

«) the naive T-product exists,
B) ETC’s between the local operators j, and A, exist.

Then the question may be asked whether the divergence of the
seagull term — which has to be added to the naive T-product in order to
get a covariant T-product — and the Schwinger term in the ETC cancel
each other. First this problem has been examined in the framework of
canonical Lagrangian field theories resulting in a positive answer [7].
But the derivations given by these authors can be considered as formal
only because the difficulties met for the definition of products of field
operators at the same space-time point have been ignored completely.

More recent work did not refer to Lagrangian field theory but only
assumptions «) and ) have been made with the restriction that at most
first order Schwinger terms appear in current-current ETC’s. Gross and
Jackiw [8] assumed in addition that for the case of two-currents (4,=g,)
the naive T-product T'(0%j,(x) g,(»)) is covariant. Their result is [8]:

! We speak about naive T- or R-products if the multiplication of a distribution f(x)
with the step function @(x,) is defined by means of an unsubtracted Hilbert transform in

f(a5,9)

—_— 1
momentum space, i.e. @ f(q) = ~2~n—l—j dq, A
0~ 40—
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1) The WI with respect to one current (called “single WI” in the
following) can always be satisfied by means of a suitable choice of the
seagull.

2) Simultaneous WTI’s for both currents (called “double WI” in the
following) require a special form of the Schwinger term in the [g,,jo1-
ETC.

Similar work restricted to conserved currents but allowing for an
arbitrary number of currents in the T-product has been done by Dashen
and Lee [9]. As in their work no Schwinger term in the [g,,j,]-ETC
has been allowed? it is not surprising that all multiple WI’s are satisfied
after a suitable choice of the seagulls [9].

But very recently it has been recognized by Adler and Boulware [10]
and other authors [11] that one may have irreparable deviations from
normal WI’s in perturbation theory if the corresponding Feyman ampli-
tude is divergent, i.e. if the naive T-product does not exist.

It is, therefore, necessary to examine WI’s in a general framework
without assuming the existence of the naive T-product. Some work along
that line has been done by Wilson [12] restricted to three-point func-
tions and allowing for at most two subtractions.

Itis the aim of the present paper to generalize the work of Wilson [12].
Therefore, we neither do assume the existence of naive T-products nor
the existence of ETC’s of current densities and also allow for an arbitrary
number of subtractions in the definition of the T*-product. For technical
reasons (use of the Jost-Lehmann-Dyson representation) we don’t work
with the T*-product but with the closely related retarded (R)-product
defined covariantly3.

Unfortunately, due to the use of the Jost-Lehmann-Dyson representa-
tion we are restricted to the consideration of matrix-elements of two-
point retarded operators.

Single WI's and double WI’s will be examined in Chapters 2 and 3
respectively. Chapter 4 is devoted to some applications of our general
results to two-, three-, and four-point functions.

2. Single Ward Identities

In this chapter we examine the question whether the usual form of the
Ward identity with respect to a single current j,(x) can be obtained by
means of a suitable redefinition of the covariant R-product R(j,(x) A4, (»))-

2 Exactly this happens in the Lagrangian framework [7].

3 It is immediately clear that WI's for T*-products and covariant R-products respec-
tively have the same form.



278 P. Stichel:
2.1. General Form of 0%R(j,(x) A,(y)). We start with some defini-

tions and notations.

Commutator Matrix Elements.
Fj 4, ()= Lu(x/2), A, (= x/2)]1 ¥4 1)

where A, is an arbitrary local field operator (y describes the tensor
character of 4) and where the states |'¥;) are arbitrary particle states with
sharp momentum p;.

F; 0 (%) =<, [0%)u(x/2), A(—x/2)]1 ¥, - ()]
Retarded Commutator Matrix Elements.
FR 4, ()=0(x0) Fj, 4 () etc. 3

This is a formal definition of the retarded commutator. A precise defini-
tion in momentum space will be given below.

Fourier Transforms.

Fi,4,(@)= [d*xe 9 F, . (x) etc. @
According to (1), (2), and (4) we have then

—ilq—A4/2¥'F;, (@)= FjAy(q) )
with A=p, —p,.
Since j, and A are supposed to be local fields, our commutator
matrix elements satisfy the Jost-Lehmann-Dyson (JLD)-representation
[13, 14]. In particular we have for F i4,(@)

Fiu (@)= fd*ufds e(go — uo) 3(( — u)* —3) @(u, 5) (6)

with the usual support of ¢ [14].

Now we need the JLD-representation for F j.4,(q) in such a form that
(5) and (6) are satisfied explicitly. This problem has been solved by the
Volkels [15]:

Fi a(@=ifd*ufdse(qo— o) 6((q —u)* —s)

4/2-2
[P (0= 429+ p(ws) 7

+(q+ 4/2—2u), (s — (u— 4/2)%) E(, s)— W, (u, 5)|.
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We may define covariant retarded commutator matrix elements by
means of N-fold subtracted JLD-representations

F 1 —u)? 2\N
F}IiAy(q)= - 2—jd4u§ds ((q u) +a )

(s+a*)(g—u+ie)*—s)
' [P (q+4/2—2u),

s—u_dpp @- AW+ o, s)

(q +4/2-2u), ®

—u+ie)—s
O(s —(u—4/2)*) E(u, )+ P((zlz)vm(CI)

- W, (u, s)] - —fd”' fds

where we denote by P,,,(q) a polynomial in g of order x. The number N
in (8) should be understood to be the smallest positive integer such that
each term exists separately. From this follows that F A obeys an JLD-
representation with at most N + 1 subtractions.

((g—u?’+a*)"" ! ou,s)
( + aZ)N+ 1((q u + i8)2 _ S) (ZZI)V)(q) (9)

(@)= J" d*u[ds
By means of an elementary calculation we may now compute

—ilg— 42 Ff 4,(@)

and obtain
—ilg—4/2 FR . ()= FR, (@) + 2—; [ d*u [ dsd(s—(u—4/2)?) ()
- E(u, 5)+P((§3v+1)(Q)
with
PSY s (@)= —ilg— 4/2) [%m [ fds
(g—u)?+a*)"W,(u,s) i (@—w?+a?
(46— (—app) T 2 Py (10

(= A4/2)? + a*

s—— 4y P9~ PN

The sum of the last two terms in (10)’ can be developed into a power series
in g — 4/2. Therefore, we have due to (9)

PGN(@=—ilg—4/2)[ PG %, (@) + P5hy, ()]

_FL (4 ()
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where the upper index P in the last term means that in (9) the principal
value integral has to be taken.

The normal Ward identity requires the g-independence of PG . 1,(q)
in (10). According to (11) this is the case if we choose e.g.

((211)\1)“(4) + P((ELI)V)“(Q) 0. (12)

In order to decide whether (12) is sufficient for getting a normal WI
we have to distinguish several cases. This will be done in the following
sections.

2.2. Conserved Current. The conservation law 0*j, =0 is equivalent
to F, j4,(q)=0. This does not imply ¢(u,s)=0 since due to the non-
uniqueness of the Dyson representation there exist non-trivial distribu-
tions ¢ such that

fd*ufdsego—uo) 0((q —u) —s) p(u, s)=0 (13)
holds.

The requirement F 4,(9)=0 we, therefore, fulfill by means of a
suitable choice of the polynormal P$(g) in (9). In any case, the redefini-
tion of our retarded product due to (12) means in the conserved case that
¢ has been eliminated in (8). We obtain for our redefined F“}i 4,(@) )
according to Egs. (10y—(12)

(g+4/2— 2u)u s(s

Gt s 06— A/2) Ews)

- 1
F}f‘Ay(q)= — gfd%tfd

(q—u?+a?)? (g+4/2—2u),
— g 14l S(s+a2)N((q—u+is)2—s)[ s—(u—dj2p a-4Rw
(q—w? —(u—4/2)
—pw, U J. (14)

We note that

a) the only arbitrariness in (14) is due to the choice of the subtraction
point a2,
b) instead of N subtractions we only need N — 1.

Thefollowingstatement shows that our redefined retarded commutator
satisfies the normal WI.

Statement. In the case of a conserved current we have

%f d*u[dsd(s—(u—4/2)°) E, s) = ¥3 [[Qy(x0), 4,011 ¥1> . (15)
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Proof. By means of translational invariance and the definition of
the Fourier transform we get

1 ~
<P, | [Q(j)(xo)’ Ay(o):” Y= ‘2“7?,( dQOFngy(qoa 4/2). (16)

On the other hand we obtain by means of (7) and (13)

§dqoF;,a,(qo- 4/ =i d*u[dsd(s—(u—4/2°) Ews)  (17)
because

a) the W-part of (7) does not contribute to F 04, o> 4/2),
b) the ¢-contribution to F jo4,(d0, 4/2) may be rewritten as
1

iP m j. d"u _f ds 6((q — u)z — S)q=A/28(q0_u()) (p(ur S)

which vanishes due to (13).

2.3. Non-Conserved PCAC-Current. We define PCAC by means of
the requirement that F jRAV(q) defined by (9) does not need any subtrac-
tion®.

Then our redefined retarded commutator satisfies the normal WI,
because according to (9) and (7) we see immediately that

a%j”d“ujds O(s — (u—4/2)*) E(u, s)—Fﬁ,V(A/Z)
={(¥,1[Q;,(0), 4,(0)]| ¥ .

2.4. Non-PCAC Current. A non-conserved current will be called a non-
PCAC current if the representation for F fAV(q) in (9) requires at least one
subtraction. Then we have in any case a free constant in the definition of
F jRAV(q), ie F H 4,(4/2) is arbitrary and, therefore,

—i(g—A4/2y FR 4 (q)— FF, (q)

can take any desired value. In general, the ETC between Q;, and 4,
will not exist in this case, but we can always choose our free constant such
that we have a “naive-normal” WI where the r.h.s. is given by means of the
“naive-canonical” ETC.

(18)

3. Double Ward Identities

In this chapter we put the field 4,(y) equal to another current g,(y)
and ask whether the WI’s with respect to both currents j, and g, can be
satisfied simultaneously.

* This definition has to be changed if 4, is a current too. Compare for this case Sec-
tion 3.2 below.

20 Commun. math. Phys., Vol. 18
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In order to simplify the notation we use the following abbreviations:
F,,=F,, . F, =F,, etc,
qg:=q+4/2.

3.1. Conserved Currents. According to Chapter 2 we may always
choose FY (g) in such a way that the WI with respect to j, is satisfied, i.e.
we have

—ig" F () = (P10Q:(0), 9,01 ¥1) . (19)
Furthermore, the WI with respect to g, has the form

iq", FR (@)= — (¥, 1[,(0), Q1 P>

) (20)
—q+ P(2N)uv(q) .
Now our problem may be stated as follows:
Find a polynomial S, (g) such that
q“ S,.(a)=0
and
iq% S,.(@)=q% P,,(q) (21)

(Puv = P(ZN)uv) .
Then the redefined retarded commutator matrix element
ES(@)=Ff(@) +5,, (22)
will satisfy both WI’s simultaneously.

Statement 1. A polynomial S, (q) satisfying (21) exists if and only
if the condition
9~ q% P,,(q)=0 (23)
is fulfilled.

Proof. a) From (21) we see immediately that (23) is a necessary
condition for the existence of S,,,.
b) The most general polynomial solution of (23) for g%, P,, is given by

q‘-}F PuvzguvgaqvAgAa + C[u,g]v(q) qg_ q‘-)l— (24)
because
o) first we have from (23)
4% P,y =Cyy () g% (25)
where, due to the Lh.s. of (25)
Cru.a(—4/2) 4°=0, (26)
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p) define C;, ,;,(q) by means of

Ciu (@) = Cp, (= 4/2) + % Cyy 1,(9) , (27)
y) the solution of (26) has the form
Coun(—4/2)=¢,,,,4°4°. (28)

o) insertion of (27) with (28) into (25) leads to (24).
¢) with (24) we find the following particular solution of (21) for S,

Suv(q): _SuvgdqQ—Ad+qQC[u,g]v(q)' (29)

According to statement 2 the condition (23) may be reformulated in
terms of physical quantities.

Statement 2. Condition (23) is equivalent to

<09, 9, O > = <511, 0), Q)1 ¥y - (30)
Proof. a) Due to (19) and (20) Eq. (23) is equivalent to
44 K309 9, O > = ¢~ CHL [ [u(0), Q11 ¥ - 31

b) From translational invariance and current conservation we have

0 =4"C11Q)» 9.1 %>
= A" |[,0), Qo 11¥: -

c) Insertion of (32) into (31) together with the g-independence of the
equal-time charge-current commutator matrix elementsleadsimmediately
to (30).

3.2. PCAC-Currents. In this section we examine the case where one
current (j,) is of the PCAC type and the other (g,) is either conserved or
of the PCAC-type too.

Despite of the fact that j, is supposed to be a PCAC-current Fg‘; (9)
can not obey an unsubtracted JLD-representation

(32)

I i ? (u, S)
FR — d4 d gv
54 2n [dtufds (g—u+ie)—s

because this corresponds to
lim ¢, (u,s)=0
Rimdive]

leading to
JdqoF,,(q0, —4/2)=0

20*
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which is equivalent to

<T?-I [Q(g)’ 5“]'“(0)][ T1> =0.

But in most cases of physical interest this ETC is different from zero
(e.g. g, = isospin current, j, = axial vector current). One subtraction in
the sense of Eq. (9) is taken into account automatically if we assume for
Fng (q) a representation of the form (8) with N =0

[ (—q+4/2-2u),
(q—u+ie)?—s s—(u+4/2)?

~ 1
FR(g) = — Efd“ujds

(= (q+4/2, W, s)+ ¢, ) +(—q+4/2—2u), (33)

- 8(s— (u+4/2)*) Ej(u, s) — W, (u, s)} +P3,.-

Now we redefine FX,(g) such that

—i(g—4/21F(9) - F(a) (332)

becomes g independent i.e., due to Egs. (10) and (11), equal to
. - def
—;;j d*u{dsd(s—(wu—A/2)*)E, (u,s)—FF(4/2) = »,,. (33b)

This corresponds to the situation discussed in section 2.4. But the
arbitrariness of expression (33b) can be lifted if we require that Fj(q)
satisfies a normal WL

Statement 3. Suppose {¥,|R(0"],,0"g,)|¥) obeys an unsubtracted
JLD-representation (PCAC-situation). Then F, fv(q) satisfies a normal W1
withrespect to j, if and only if FJ(q) satisfies a normal W1.

Proof. a) With the representation (33) for Ffv and the assumed
unsubtracted JLD-representation for

< WZ l R(aujua avgv)l 'II1>
we get according to the results of Chapter 2 a normal W1 for F. X, ie.

i(q + 4/2) FR (q) = FR(q) — {?,1[0"],(0), Qi O)11 ¥, > (34)
if we put
W, (u, )

1
Fha. = g ST s g e

(33)
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_b) With (33) and (35) we find by means of an explicit calculation that
FX(g)is given by the naive retarded commutator matrix element

s Lo F(do,9)
Fia) = Va0 (36)
c) We have
1 ~
CPL10Q5(0), go O] ¥, > = gf dqoFo0(q0, 4/2). (37

As we have already shown in Section 2.2 Fy(qo, 4/2) receives contribu-
tions from the E- and ¢-parts of the representation Eq. (7) only.
We obtain

Fyoldo, 4/2)=08(qo — A0/2) i § d*u § ds 5(s — (u— 4/2)?) 8)

-E, (u,s)+iP F, (40, 4/2). (38)

bt
qo—40/2
d) By combining Egs. (36)—(38) we finally get

%g = CW21[Q(1(0), 9o (O] - (39)

We note that the Eq. (36) between FgR (¢) and the naive retarded commu-
tator only holds for v=0, i.e. we have

%g, ¥ {¥21[Q70), 9,(0))[¥,) for v+0 (40)

which is due to the non-covariance of {'¥,|[Q;(0),g,(0)]|¥;)>. (40)
becomes an equality only if ), as given by (35) vanishes, i.e. if the ETC
[go,0"j,] contains no Schwinger-term.

We are now prepared to attack the problem of the double WL
According to our results given above we have the following WI’s:

—ig" FR (@) =FX(q) +2,,, (41)
iq" FR(@)=FF (@) —x;, — 0% P,,(@) 42)

where we have defined I:";; and F}i such that they satisfy normal WTI’s,
ie. the zeroth components of x; and »x, respectively are the usual
charge-current ETC matrix elements due to Statement 3. Therefore, the
same situation as in Section 3.1 holds: The additional seagull term is
defined by (21) and the solution is given by the content of Statement 1.
We are left with the physical interpretation of the consistency condition
(23) in the PCAC-case.
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Statement 4. Condition (23) is equivalent to
CHL10Q(0), 9o (O ¥, > = ¥ [ [0 (0), Oy O)1 ¥ > - (43)

Proof. a) By multiplying (41) with iq’, , (42) with —ig”. and using the
WI's for FR and F FR we obtain by equating the resulting r.h.s.

— <Y, [aulﬂ(o)a Q(g)(o)]l Y +igh Ky,
=<{¥1[Q;0),0"9,(011¥,)> + ig" %;, (44)

+1i9"q% P, (q) -

Now we put g = — 4/2 in (44) and obtain
—<¥,1[0%,(0), @,y O)]1 ¥, >

: (45)
=<{¥21[Q;(0),0"g,(0)]|¥,) —id x;, .
Inserting now (45) in (44) we have
iq% %,, = 1iq"% %;, +iq" q% P,,(q) - (46)
Therefore, due to the g-independence of %, and x;, , condition (23)
is equivalent to v —x @7)

v Jv

b) Due to the fact that %, and x; transform like four vectors, (47)
is already satisfied if we have it for the time component i.e., with (39), if
we have (43).

4. Applications

4.1. Two-Point Functions. In the case of two-point functions the
double WT’s are a consequence of the single WI due to the symmetry

FR(q9)=FR(q) (48)

which arises from the fact that we have only one four vector g on hand.

Furthermore, the ETC-term on the r.h.s. of the WI’s for Ffv vanishes
due to TCP-invariance supposed the currents g, and j, behave equal
under TCP [6]. Hence we have

—ig"FX(q)=FR(q), (49a)
i FR(q)==FR(q). (49b)
This leads in the conserved case to the form

FR (@) =(9,.4* — 4,9, F(@®) (50)
and, therefore,
E(0)=0. (51)






