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Abstract. The equations of motion of a spin one particle as derived from Levy-Leblond's
Galilean formulation of the Bargmann-Wigner equations are examined. Although such an
approach is possible for the case of free particles, inconsistencies which closely parallel
those encountered in the Bargmann-Wigner equations of special relaticity are shown to
occur upon the introduction of minimal electromagnetic coupling. If, however, one con-
siders the vector meson within the Lagrangian formalism of totally symmetric multispinors,
it is found that the ten components which describe the vector meson in Mίnkowski space
reduce to seven for the Galilean group and that in this formulation no difficulty occurs for
minimal electromagnetic coupling.

More generally it is demonstrated that one can replace Levy-Leblond's version of the
Bargmann-Wigner equations by an alternative set which leads to the correct number of
variables for the vector meson. A final extension consists in the proof that for all values of
the spin the (Lagrangian) multispinor formalism implies the Bargmann-Wigner equations.
Thus the problem of special relativity of seeking a Lagrangian formulation of the Barg-
mann-Wigner set is found to have only a somewhat trivial counterpart in the Galilean case.

I. Introduction

A systematic study of the Galilean group in quantum mechanics has
recently been carried out in a series of papers by Levy-Leblond [1—3].
While such an investigation might appear to be of little interest in an
era in which special relativity has achieved virtually universal acceptance,
it has nonetheless served the highly useful function of pointing out that
certain of the predictions of quantum mechanics follow merely from
Galilean invariance with no reference whatever to the Lorentz group.
Of particular interest in this context is the case of the magnetic moment
of the electron which has been shown by Levy-Leblond to have the same
value in Galilean relativity as in the Dirac theory [3]. A closely related
result is the fact that a nonrelativistic particle cannot possess intrinsic
electromagnetic properties other than an electric charge and a magnetic
dipole. This then at least suggests that a knowledge of the predictive
powers of a non-relativistic theory is not to be disdained and can in fact
serve as a basis for a more profound understanding of the impact of
special relativity on quantum mechanics.
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In this paper the wave equations derived by Levy-Leblond from a
Bargmann-Wigner approach [4] are considered for the case of a spin one
particle interacting with an electromagnetic field. In Section 2 following
a brief review of the spin one-half theory it is shown that the incorpora-
tion of minimal coupling into those equations of motion leads to an
unacceptable increase in the number of degrees of freedom, thereby
motivating a search for an alternative approach to the vector meson. In
Section 3 it is demonstrated that the method of completely symmetric
multispinors provides a simple framework for a theory of a spin one
particle in which no inconsistency is found to occur upon inclusion of an
electromagnetic coupling. The equations of motion in this approach
are found to be a subset of those used by Levy-Leblond involving,
however, only seven of the ten components used in his formulation. In
the concluding section it is shown that a Bargmann-Wigner set which
differs from that of Levy-Leblond can be derived from the multispinor
formalism in much the same way as in the relativistic case with, however,
the important advantage here that the derivation is found to generalize
readily to the case of arbitrary spin.

II. The Minimally Coupled Vector Meson

In order to provide a convenient basis for the discussion of the vector
meson it is useful to briefly summarize here Levy-Leblond's formulation
of the Galilean invariant spin one-half theory [3]. One begins by noting
that the restriction that the wave equation be of first order in all derivatives
implies the form / a t, \

ίhA—-+B-'V+C)ψ = 0
ot i J

where A, B and C are numerical matrices. The further requirement that
ψ satisfy the usual Schrodinger equation

dt 2m

leads to a set of conditions on these matrices which allows one to infer
that ψ must be a four component spinor and that the above matrices can
be taken to have the form

0 σ

σ
0

2m
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where we use the two commuting sets of Pauli matrices ρf and σf to span
the 4x4 dimensional spinor space. The matrices σf transform as a spatial
vector under pure rotations as can be readily verified from the complete
transformation law

φ'(x', f) = β**-1/^.')A*{υ, R)ψ{x, t) (2.1)

corresponding to the Galilean transformation

x' = Rx + vt + a ,

f = t + b.

In writing (2.1) we have defined

f(x9t) = —

and

where D*(R) is the usual two dimensional representation of spin one-half
which acts in the space of the σ matrices. It is of interest to note that if one
makes the decomposition of ψ into two component spinors φ and χ, i.e.

Φ

the spinor φ is found not to mix with χ under Galilean transformations.
This implies the invariance of the bilinear form

which can alternatively be interpreted as expressing the fact that j( l + ρ3)
behaves as a scalar under Galilean transformations. Although there
exists another matrix - ρ2 - which is a scalar under all transformations
continuously related to the identity, one can easily verify that under the
parity operation

and that ρ2 is actually the analogue of the pseudoscalar matrix y5 of the
Dirac theory.
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It follows immediately from the above discussion that the Lagrangian
density can be written as

(£ = ihψ* — (1 + Q3)-^rΨ + Ψ*Qi<* -~r Vψ + mψ*(l - ρ3)ψ .

In the case of a second quantized theory one infers from this form the
commutation relations of the field operator ψ by the inversion of the
matrix A in its nonsingular subspace. This would imply that

y (1 + ρ3) iψ(x, t\ y*(*', ί)} y (1 + ρ3) = Y (1 + ρ3) δ(x - x')

or

where for the sake of definiteness we have assumed the usual Fermi-Dirac
statistics for spin one-half particles despite the absence of a formal spin-
statistics theorem for Galilean field theories [2]. As a final observation
concerning the spin one-half theory it is of interest to consider minimal
coupling for which one has the coupled equations

+ σ-(p-eA)χ = 09

σ - (p — eA)φ + 2mχ = 0

where we use the shorthand notation (p, E) for I— F, ΪTI — I . Upon
\ i tit)

elimination of the dependent components χ one obtains

or

(E-eφ)φ- ( P ~ ^ ) 2 φ+~

thereby displaying Levy-Leblond's previously quoted result for the
magnetic moment.

In selecting a technique for the generalization of the preceding
approach to higher spin theories there are a number of options available.
Levy-Leblond chooses a Bargmann-Wigner formulation which is con-
veniently described in terms of the multispinor ψaι a2... α2V(*, t)
(Ui = 1,2, 3,4) which is symmetric in the N variables αf. Such an object
clearly has

(N + 3)!/ΛΠ3!



Bargmann-Wigner Method 101

components. If one defines the Galilean invariant operator

G=~{l + ρ3)ih—+Qίσ -rV+m(\-ρ3),

a Bargmann-Wigner set can be specified by

G ί V = G α i α ί V α 1 . . . α l - 1 α ί α ί + i . . . α w = O (i = 1, 2 , ... N) . ( 2 . 2 )

Levy-Leblond argues that since the Eq. (2.2) serves to express those
components for which αf = 3,4 in terms of the remaining components,
one has only the 2N "upper" components as possible candidates for
independent variables. Because of the symmetry of the multispinor, how-
ever, this number reduces to the desired N + 1 independent components.

In order to examine the implications of this Bargmann-Wigner
approach in the spin one case, one introduces the second rank spinor φ.
Such an object has the representation

which is the customary decomposition of a symmetric second rank
spinor into three vectors (17, L, M) and a scalar (W). Application of the
Bargmann-Wigner Eqs. (2.2) now implies

M = pxU, (A)

(B)

0, (C)

(D)

L = 0, (F)

pL = mEW. (G)

There is clearly a considerable redundancy in this set (as in the cor-
responding relativistic case) and one can consequently consider some
subset of these as defining the theory. Unlike the relativistic case, how-
ever, one does not have the tensorial representations which imply an
essentially unique choice for the defining equations. Levy-Leblond
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chooses the set

M = pxU, (A')

p L = mEW, (BO

L = pW-EU, (C)

pxM = mL-mEU, (D')

where (A) and (A7) are identical, and (B') is the same as (G). Equations (C)
and (D') are evidently the sum and difference of (C) and (E). The remaining
equations (B), (D), and (F) are a consequence of the primed set as (A')
clearly implies (D) while (A') and (C) yield (F). Finally (BO and (DO are
seen to give the result

E(p-U-mW) = 0, (2.3)

i.e. the time derivative of (B).
It is apparent that the choice made in writing the primed set of

equations is quite arbitrary and although it is virtually impossible to get
any ill effects for free particles there is considerable danger that the intro-
duction of interactions could destroy the consistency of the theory.
Before demonstrating that this does indeed happen in the present
formulation it is instructive to count the number of degrees of freedom
in the theory. Clearly (A') merely defines M in terms of U (since no time
derivative occurs in that equation) so that M can be considered a depend-
ent variable. If one looks at (C) and (E) (rather than their linear com-
binations (CO and (DO) one sees further that L is defined by (E) in terms
of M and W. Thus one has the true equation of motion (A) for the vector
U which means that there are at least the desired three degrees of freedom
in the theory. Furthermore if W can be expressed in terms of U by a
constraint no unwanted degrees of freedom will occur. The Eq. (2.3)
would provide such a constraint provided that the time derivative can
be removed. Rather than dwell on the possibility of extracting (B) from
(2.3) it will merely be pointed out here that whatever is the case for the
free particle the function W is not constrained upon the introduction of
an electromagnetic coupling. This result immediately follows upon
inclusion of minimal coupling into the set (AO through (DO- If for con-
venience one drops the scalar potential and defines Π = p — eA,
Eq. (2.3) becomes

Π {ΠxM) = m(mEW-Π EU)
or

i — HM = mEW-ΠEU
m
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which is now an equation of motion for W. Thus one concludes that the
Levy-Leblond set is not consistent for electromagnetic coupling in that
it does not represent a theory with the correct number of dynamical
variables. This has as a practical consequence the fact that one cannot
disentangle the equations of motion for U and W and it is therefore
impossible to identify the magnetic moment. We now turn to an alter-
native formulation of the Galilean vector meson which allows an escape
from these difficulties.

III. A Lagrangian Approach

The difficulties in Levy-Leblond's Bargmann-Wigner approach,
while not identical to, are nonetheless quite reminiscent of the in-
consistencies which characterize the minimally coupled Bargmann-
Wigner equations of special relativity. Since these latter complications
are found not to occur in a strictly Lagrangian formulation, this tends to
suggest that a fully consistent Galilean theory of vector mesons could
conceivably be obtained within a Lagrangian formalism. More explicitly
one considers the symmetric bispinor ψab (which transforms according
to (2.1) in each spinor index) and seeks a Lagrangian of the form

££ = ltlψ*hAaa.hh.— Ψa'b' + ΨabBaa'bb'' J ^Ψa'b'+ ™Ψ%bCaa'bb'Ψa>b' P 1 )

where Aaa,hh., Baa,hh, and Caa,hh, are to be determined so as to guarantee
the Galilean invariance of (3.1). Using the fact that \{\ + ρ3) is a scalar
matrix it is clear that one Galilean invariant possibility for these
matrices is

Aa'bb' = -J (! + Qs)aa> (* + Qs)bb'

Baa'bb' = tel<r)αα' ~J i1 + Q*)bb' + " J ί1 + Q?)aa' (Ql°)bb' > ( 3 2 )

Caa'bb' = - J (1 + Qs)aa> (1 ~ Qs)bb' + ~J (* ~ Qs)aa' (* + Qs)bb'

or

& = ~W*abίGaa.Γbb. + Γaa,Gbh^Ψa,b, (3.3)

where we have introduced the shorthand notation
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for the invariant matrix together with the Galilean operator G as defined

in the preceding section. The task of actually demonstrating that (3.3)

is the most general possible form of i f is a considerably more formidable

task. In fact a tedious calculation shows that if one requires only in-

variance under or thochronous Galilean transformations, one has two

possible additional terms in J^, i.e. one can add to the matrices B and C

the following combinations

B = λA [ ρ 2 ] β β , — (1 + ρ 3 ) σ + — (1 + ρ 3 )σ [ ρ 2 ] w , I ,
I L 2 \bb' 2 Jαα' J

C = λί { [ ρ j ^ ' [_Q2~\bb' + \_Q2\aa' \-Ql\bb'} + ^2 {.Ql\aa' l-Qlibb' '

Although the terms proportional to λγ are eliminated by imposing the
requirement of time reversal in variance there is no corresponding
argument which allows one to discard the λ2 part of C. It will be seen,
however, that a nontrivial theory is compatible only with the choice

One can now introduce an explicit representation for the symmetric
spinor ψ by writing

[ 1 1 1 1 1

The insertion of this form into the Lagrangian can readily be shown to
yield

if = X*.ift-^-X + ft[X*. F Z - Z * F X + X*. F x F + F * - VxX]

+ 2m(F* Y + Z*Z) + λ2m[_Y* Y- Z*Z - 2(L* X + X* I)]

where it is to be noted that L appears only in the λ2 term. Since variation
of L leads to the condition λ2X = 0, this immediately illustrates the
asserted absence of nontrivial solutions for λ2 different from zero. We
consequently take λ2 = 0 and obtain the equations

4X + hVZ + hVxY 0, (3.4a)

dt

0, (3.4b)

0. (3.4c)
Since (3.4b) and (3.4c) serve to define Y and Z respectively in terms

of the curl and divergence of X, it is clear that (3.4a) is the only true
equation of motion. Thus this theory describes vector mesons with the
appropriate three degrees of freedom. It is also important to note that
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the ten components which are relevant to the description of the vector
meson in special relativity and in Levy-Leblond's Galilean theory have
been reduced to seven in the present formulation.

It is now easy to verify that the set (3.4) implies the Schrodinger
equation for all seven components. Furthermore in the presence of a
magnetic field H the minimally coupled equations

EX + iΠZ + ίΠxY = 0,

-ίΠ X +

are readily combined to yield

or

E--^— Π2)x+-^—(t.H)X = 0
2m j 2m

where t is the usual set of spin one matrices. This clearly gives the same
intrinsic magnetic moment as predicted in the relativistic theory and has
the further advantage of failing to give the additional derivative coupling
terms found by Levy-Leblond [3].

Finally it is of interest to note that if one identifies X, Y and Z with
U, M and W of Levy-Leblond's formulation, Eqs. (3.4) are essentially
identical to the Eqs. (A), (B) and (C) of the preceding section. Thus the
failure of his approach to adequately describe electromagnetic coupling
is in essence a consequence of the difficulty of identifying the appropriate
minimal set of defining equations for the vector meson. This is, of course,
a feature of the relativistic Bargmann-Wigner method as well although
in that case the existence of the tensorial representations enormously
simplifies the task of selecting the appropriate subset of the complete
Bargmann-Wigner equations. In the following section it is shown that
there exists an alternative formulation of the Bargmann-Wigner method
in the Galilean case which aids considerably in the difficult process of
extracting the defining equations of the theory.

IV. The Bargmann-Wigner Equations

In order to motivate the derivation of an appropriate set of Bargmann-
Wigner equations it is of interest to consider briefly the more familiar
relativistic case. In that example one considers a symmetric multispinor
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Ψai a2...aN

 a n d writes as a possible Lagrangian the form

N -I

Σ A»i«i"- A«<-i«ί-A < + 1«ί + i •• βaNa'N(βD)aiaUΨa\ ... a'N
i = l J

where D is the Dirac operator

D = yp + m.

The above structure is clearly Lorentz invariant and one can consequently
infer the covariant equation

N

Σ β α < α ί V α 1 . . . β l - 1 α ί α i + 1 . . . α w = 0 (4.2)
i = l

where essential use has been made of the fact that β is a nonsingular
matrix. For the case N = 2 one can show that (4.2) implies

Da,a\Wa\a2 = & a2a2W a,a'2 = 0

a result which is suggestive of the general Bargmann-Wigner set

It is, however, important to note that except for the case N = 2, Eq. (4.3)
cannot be derived from a local Lagrangian such as (4.1) unless one is
willing to allow the introduction of auxiliary fields [5].

Proceeding now to the Galilean case it is clear that the extension of
(3.3) to a general symmetric multispinor is

1 [ N

°£ ~ Λ T Ψaί...aN\ ZJ a\a\ ' " * at- i α ί - i ^ α f α ί •* α f - n α ^ + i * * ' •* «2v
iyι L f = 1

The Galilean invariance of this form is readily verified and one thus has
the equations

L, ^ α i « Ί ••' ^ β i - i α ί - i ^ α i α ί ^ + iαί + i ••• ^ aN a'NW a\ . . . a'N
 = ®

i = l

as the Galilean analogue of (4.2). There is however, the crucial difference
here that the scalar matrix Γ which appears in (4.4) (unlike the matrix β
of the relativistic case) is singular and one cannot eliminate it from the
equations of motion. One can, however, infer from (4.4) a Bargmann-
Wigner form by noting that with the definition

= ρ2Gρ2

+ ρ3)
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one has
GG = 2m(E-p2/2m)

= 2mS

where we have introduced the Schrδdinger operator S = E — p2/2m.
For the case N = 2 multiplication by Γ G yields

l2mSΓaa.Γbb. + (Γ GΓ)aa.Gbb.-]ψa.b. = 0
or

,Gbb,lΨa,b, = 0. (4.5)

The corresponding result on the second index of ψ allows one to infer

Γaa'Gbb'Ψa'b' = Γbb'Gaa'Ψa'b'

and the desired Bargmann-Wigner result

Γaa>Gbb,Ψa,b, = Γbb,Gaa,Ψa,b, = 0 . (4.6)

In view of the existence of the corresponding relativistic equations
for N = 2 it is not at all surprising that a result of the form (4.6) can be
obtained. It is, however, interesting to note that the above can be extended
to all N. To this end one notes that the generalization of (4.5) to arbitrary

N is V r r r r Γ \
Z J α i « Ί •*• 1 aj-ia'j-i^aja'j1 aj+ίa'j+1 ••• ι aNa'N\ Ψa\- a'N

or

I CΓ Γ aNa'N

* «i «Ί * ' •* aj - i a'j - i ^aja'j * aj + i a'j + i * αjv îv I Vαi . . . a'N V̂ " ' /

J
By considering two different values of the index i one readily infers from
(4.7) the result

Γ™* ϊ " " 1 Z"1 I " 1 ϊ*™1

α i α Ί ••• •* ai-1a'i-i^Jalai^ α j + i α ί + i ••• •* aNa'N Ψa\ . . . a'N

" " •* α i α Ί " -* aj-1a'j-ι{σaja'j
1 aj+ίa'j + 1 ••• -* aNa'NΨa\ ...a'N

and one has as the alternative to Levy-Leblond's form of the Bargmann-
Wigner set the equations

•* a i a Ί ••• •* a t - ί a ' i - i ^aia'ί* a ί + ί a f

i + ι ••• •* a N a ' N Ψ a ' ι . . . a ' N

 = ^' V̂  ̂ j

Since this form is derived from the Lagrangian formalism it has the
enormous advantage that the number of components in this set will be
precisely the same as in the strictly Lagrangian approach. This can be
readily verified for the case of the vector meson by noting that the
Eqs. (E), (F) and (G) of Section 2 do not occur when one uses (4.8) and
the only additional equation relative to the approach of the preceding



108 C. R. Hagen: Bargmann-Wigner Method

section is (D) (which of course, is a consequence of (A)). Thus one again
has a theory of the vector meson involving only the seven components
appropriate to Galilean relativity.

As a final comment it is perhaps useful to point out that the above
derivation of the Bargmann-Wigner equations cannot accommodate
minimal coupling. In that case one has the choice of using the entire
Lagrangian formalism or extracting the minimal set of equations from
the Bargmann-Wigner set before the introduction of the electromagnetic
coupling. (In the case of the vector meson, this merely requires the
discarding of (D).) However, even this latter approach has been reduced
to manageable proportions by the derivation of the form (4.8) for the
Bargmann-Wigner equations since one no longer has the problem
generated by the occurrence of spurious components in the wave
equations.
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