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Abstract. Various definitions of thermodynamic equilibrium states for a classical
lattice gas are given and are proved to be equivalent. In all cases, a set of equations is given,
the solutions of which are by definition equilibrium states. Examples are the condition of
Lanford and Ruelle, and the KMS boundary condition. In connection with this, it is shown
that the time translation for classical interactions exists as an automorphism of the quan-
tum algebra of observables, under conditions which are weaker than those found for
quantum interactions.

1. Introduction

In this paper, various definitions of a thermodynamic equilibrium
state for a classical lattice gas will be compared.

According to the grand canonical prescription, the equilibrium state
for given temperature and chemical potential is found as the limit of
finite volume Gibbs states. In some cases however (phase transitions)
the limit is not unique. Therefore one may try to define equilibrium
states directly for the infinite system. There are two ways known.

1. The Variational Principle. An equilibrium state is a translationally
invariant state, that maximizes the pressure [5]. By the occurrence of
the mean entropy, translations play an essential role.

2. The KMS-condίtion and other Equivalent Conditions. A set of
equations is given, solutions of which are by definition equilibrium
states.

In the present paper we will concentrate on the second way. We will
find, that it works independent of the presence, if any, of lattice trans-
lations. Therefore they will not be taken into account.

In Section 4, a number of equivalent equilibrium conditions are
given. One of them is a condition by Lanford and Ruelle [7] and
Dobrushin [12,13]. When restricted to invariant states, this condition
is equivalent to the variational principle [7].

In Section 6, the KMS-condition is shown to be equivalent to the
conditions of Section 4.

As a preliminary step to the KMS-condition, time translations are
studied in Section 5. In order to get a non-trivial automorphism, we
have to imbed the classical algebra into the quantum algebra (Section 2).
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The automorphism is found to exist for interactions satisfying Eq. (1).
This condition is somewhat weaker than those by Robinson [3], Ruelle
([1], p. 192), and Manuceau and Trotin [10]. However, these authors
treat the much more general case of quantum interactions.

In Section 7, limits of Gibbs states are shown to satisfy the KMS-
condition. In Section 8, the connection with the Gallavotti-Miracle [9]
and Kirkwood-Salsburg equations is given.

Let us give now some definitions. In the present paper, our lattice
will be nothing but a countable set of points. Usually, one takes a v-
dimensional lattice, in which case there are v independent vectors that
map the lattice onto itself. In the present paper, however, lattice trans-
lations don't play any role. If they are not considered, the word "dimen-
sion" is meaningless.

The lattice points can be empty or occupied with at most one particle.
To a set X of n occupied points there corresponds an n-body potential
Φ(X); for the classical lattice gas, Φ(X) is just a real number [4, 5,7,9].
So now an interaction is defined as a mapping Φ from the finite sets
X C Z into the real numbers. The following conditions are imposed on Φ
(cf. [7,9])

1. Φ(0) = O.

2. Σ|Φ(X)| = | |Φ| |,<oo, for all xeZ.
xeX

In one case (Section 8) we will need an extra condition

3. sup| |Φ|U=| |Φ| |<oo. (2)
xeZ

Again, usually Φ is taken translationally invariant. In that case, | |Φ||X

is independent of x and Condition 3 is automatically fulfilled.
We will say that an interaction Φ has finite range, if for any xeZ

there is a finite set Λ(x) such, that

Φ(X) = 0 if xeX9XφΛ{x). (3)

A finite range interaction satisfies Condition 2.
The total energy of a set X of occupied points is

(4)
sex

In the following, equilibrium states for the infinite lattice, belonging
to the interaction Φ, will be considered. For a finite sublattice A the
correlation functions Q{Λ){X\ XcΛ, according to Gibbs are

e~U(Y)

XCΛ I XCYCΛ
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The factor β (inverse temperature) and the term -N(Y)μ (chemical
potential) are absorbed in the energy U(Y). The various definitions of
infinite volume equilibrium states are based on this prescription.

When considering the thermodynamical limit, we will write

lim f(Λ) = f,
Λ->oo

if

for any sequence {Λn} with the properties

1. Λn+ίDΛn.

2. For any finite McZ there is an integer m such that Am D M.

2. Observables

In this section we will briefly repeat the definitions of the quantum
algebra of observables and the classical algebra of observables. We will
indicate how the classical algebra can be considered as a subalgebra
of the quantum algebra. Let us start with the quantum algebra [1, 2, 3].

With each lattice point xeZ there is associated a two dimensional
Hubert space § x . Observables in x are bounded operators in ξ>x. There
are four independent ones; let us take the creation, annihilation and
particle number operators

a(x\ α*(x), α*(x) a{x\ a(x) a*(x).
They satisfy

(x)(x) + (x)α(x)

To a finite set A C Z there correspond the Hubert space

&4 = (><)&c>
xeΛ

and the algebra of observables in A

A basis for ξ>Λ is

{a*(X)Ω,XQΛ}, (6)

where Ω is the vacuum state, and

xsX



Equilibrium States 85

If ΛίcΛ2, the algebra α ^ ) can be identified with <^{Aί)®\Λ2ιΛl\
in that sense

(7)

If ΛίnΛ2 = 0, the algebras α ^ ) and a(Λ2) commute.
Due to the isotony relation (7), one can define

αL = (Jα(/L);α = α L .
Λ

The C*-algebra of observables α is the norm closure in 93(§z) of the
algebra of local observables αL.

Let us now consider the classical algebra of observables, as defined
in [4-6]. An observable in A is a function A(X) of all subsets XcA,
or equivalently, a function A(X) satisfying

), XCZ.

It can be identified with the operator

A = Σ MX) a*(X) a(X) a(A/X) a*{A/X), (8)
XCΛ

which satisfies
(a*{X) Ω,Aa*{Y) Ω) = A{X) δxγ .

So in the representation given by the basis vectors (6), A is a diagonal
matrix with diagonal elements A(X). Its norm is then

\\A\\ = sup\A(X)\. (9)
XCΛ

Now a classical observable is a function A(X) with

A{X)= lim yφfnΛ), (10)
Λ->oo

uniformly in X. It corresponds to the quantum observable

A=lim £ A(X) a*(X) a(X) a(A/X) a*(A/X). (11)
Λ-»oo χcΛ

According to Eqs. (9) and (10), the limit exists in the norm, and

\\A\\=sup\A(X)\.

The classical algebra of observables can be considered as the C*-algebra
<g(K) of continuous functions on K, the family of all subsets of Z, with
respect to the following topology. To specify a set XcZ, one has to
determine for any point xeZ if it belongs to X or not. In that sense

x e Z
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Now take on each set {0,1}X the discrete topology, and on K the associated
direct product topology. According to Tychonov's theorem, K is compact.

In this topology, two sets X and Y are "close to" each other, if they
have the same intersection with some "large", but finite set ΛcZ.
Therefore, Eq. (10) expresses the continuity of A(X).

3. States

As usual, a state will be a positive linear form of norm 1 on the algebra
of observables. A state ω on the quantum algebra α is called a classical
state, if it is unequal to zero only on the classical algebra. Equivalently,

ω(a*(X)a(Y)) = 0 if X+Y.

A classical state ω on α defines a state on the classical algebra ̂ (K),
that is a measure on K. We have [7]

ω(A) = J μ(dX)A(X) = lim £ μA(X) A(X). (12)

The second equality can be regarded as the definition of the integral
as a limit of Riemannian sums. Corresponding to a finite A, the set K
is divided into 2N(Λ) intervals of the form

IΛ(X)={YeK:YnA = X}. (13)

The measure attached to the interval IΛ{X) is

μΛ(X)= f μ(dY')= J μΛ(X,dY); (14)
IΛ(X) IΛ(X)

it is often convenient to write

with
Y' = XvY,XcA, YCZ/A.

Eq. (14) yields the interpretation of μΛ{X); it is the probability that the
points in X are occupied, whereas the other points of A are empty. In
terms of the original state ω,

μΛ(X) = ω(a*(X) a(X) a(A/X) a*(A/X)). (15)

By Eq. (12), the state ω is uniquely determined by all quantities
μΛ{X). It follows from Eq. (14) that they must satisfy the consistency
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relations

XCΛ (16)

YCM/Λ

Therefore ω is already determined by its correlation functions

ρ(X) = μx(X) = ω(a*(X) a(X)). (17)

With ρ(0) = 1, we have [6]

μΛ(X)= Σ e ( 7 ) ( - l ) N ( y ) - N ( X ) . (18)

Remark that this equality corresponds to

a*(X)a(X)a(Λ/X)a*(Λ/X)= Σ a*(Y)a(Y)(-l)N{Y)-N(X). (19)
X CYCΛ

4. Equilibrium States

Following Lanford and Ruelle [7] and Dobrushin [12, 13], we
will say that a classical state satisfies the equilibrium condition (E 1)
with respect to the interaction Φ, if the corresponding measure satisfies

^ ( l u W , dY) μΛ(,dY) exp[-ί/(Xu{x}u
(Jbi)

for all finite Λ,xeΛ,XcΛ/{x},YcZ/Λ.

This condition is plausible from the Gibbs grand canonical
prescription; as mentioned before, the inverse temperature factor β and
the chemical potential term — μ have been absorbed in the interaction.

Lemma 1. The function

BX(X)= Σ Φ(S)=U(X)-U(X/{x}\ xeX
cXuM

is continuous. So is its exponential.

Proof. We have

\Bx(X)-Bx(XnΛ)\ =

so JBX(X) is continuous (Eqs. (1) and (10)).

Σ φ(S)
SCXuW

xeS
SφΛ

^ ΣxeS
SφΛ
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Let us remark here that the terms U in Eqs. (20) and (21) are. not
necessarily finite separately. However, their difference, as defined by
Eq. (21) is finite by Eq. (1).

For the case of a translationally invariant interaction Φ, Lanford
and Ruelle [7] proved the following theorem.

Theorem 2. Let Φ be invariant. Then an invariant state satisfies (E1)
precisely if it is an invariant equilibrium state.

The notion of "invariant equilibrium state" is introduced in [7] it
is an invariant state that maximizes the difference of mean entropy and
mean energy, thus giving the pressure [5].

Let us give now a condition equivalent to (E1).

Theorem 3. A state satisfies (E1) precisely if

(E2) IΛ(X) (22)
for all finite Λ,xeΛ,XC Λ/{x}.

Proof. It is clear that (E2) follows from (El) by integration over all
YCZ/Λ. This is allowed because of the continuity of the exponential,
lemma 1. Now assume that (E2) is satisfied. Take any M D Λ Y± C M/Λ,
and consider the interval

Then

f / i , (Iu {*}, dY) = μM(X u {x} u Yx)

= J μM(XuY1JY2)Gχpl-U(Xu{x}uY1uY2)+U(X^Y1uY2)-]

= J μΛ(X, d Y) exp [ - U{Xu {x} u Y) + U(Xu 7)] ,

where Eq. (14) and (E2) have been used. The equality of the first and
last members for any interval IM(Xu Y^dΛ{X) implies, with Eq. (12),
that

f μΛ(Xυ{x},d Y)A(Y)
IΛ(Xv{x})

= j μΛ(X9dY)A{Y)&φl-U(Xv{x}vY)+U(XvY)]
IΛ(X)

for any continuous function A(Y\ which is equivalent to (El). This
proves Theorem 3.

If the interaction Φ is of finite range, Eq. (4), the condition (E2)
reduces to a very simple form.
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Theorem 4. A state satisfies (E2) with respect to a finite range inter-
action Φ precisely if

(.cJrlv)
for all xeZ,Λ3Λ(x\XcΛ/{x}.

Proof. If Λ DΛ(x\XCΛ/{x}, YCZ/Λ,

( x } u F ) - I / ( ϊ u Y) = ί/(Iυ{x})- U(X). (24)

Then (EFR) immediately follows from (E2).
Now take any finite Λ, and xeΛ,XC Λ/{x}, Yc Z/Λ.

Let M = ΛKJΛ(X). Then, with Eq. (16) and (EFR),

{x})= Σ
M

YιCM/Λ

= J μΛ(X,dY)expl-U(Xυ{x}uY)+U(XυY)].
IΛ(X)

By Eq. (24), the integrand depends only on Y1 = Yn M, which justifies
the last equality. This proves Theorem 4.

Restricting condition (E2), Eq. (22) to Λ = Xv{x}, we obtain the
following.

{x})= J μXκj{x}(
(E3) Ixυ{x}W

for all finite X,xφX.

It will be shown in Section 6 that both (E2) and (E3) are equivalent
to the KMS boundary condition.

5. Time Translations

In order to come to time translations, we assign to each finite set A
a Hamiltonian H(A)eo(Λ) (cf. [3]). It must satisfy

, H(A) α*(Y) Ω) = U(X) δxγ,

for any X, YCA. That is

H(A) = X U(X) α*(X) α(X) α(Λ/X) a*(Λ/X). (26)

Because H(A) is a diagonal matrix in the representation (6), it is immedi-
ately clear that

= ^&φiitU(X)]a*{X)a{X)a{Λ/X)a*(Λ/X). (27)
XCΛ
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Let us show now that the above sequence of Hamiltonians defines
a group of automorphisms on the quantum algebra of observables α.
The limit

lim A\A) = lim exppίtf (Λ)] A e x p [ - itH(Λf] . (28)

will be proved to exist for any Aea.
First consider A = a*(x\ the creation operator in the point x.

Lemma 5. For any A containing x,

a*{x)\Λ) (29)

= α*(x) Σ Qχp{itlU(Y^{x})-U(Y)^a^Y)a(Y)a(A/{x}/Y)a^(A/{x}/Y).
YCΛ/{x)

a*(x)t=]ima*(x)\Λ) (30)
Λ.-+00

exists in the norm for any complex t. The operator α* (x)t is norm analytic
in the complex t-plane.

Proof. Using the expression (27) for exp[iίff(Λθ], one immediately
obtains Eq. (29). We can write

where £ ( / } is the classical observable corresponding to the function
Bx(XnA\ Eq. (21). The continuity of BX(X), Lemma 1, implies the
existence of the limit (30). Clearly the operators a*(x)\A) are norm ana-
lytic. Because the limit (30) is uniform in any bounded region of the
complex ί-plane, it follows that a*(x\ is analytic. This proves Lemma 5.

The time translation for observables in one point x is now given by

β*(x)t = β*(x) exp [itBx\ a(x)t = a(x) exp [— itBΛ
(31)

[α*(x) a(x)l = α*(x) α(x), [α(x) a*{x)]t = a(x) a*{x).

It is clear then, that the limit (28) exists for any local observable and any
complex ί.

Let us define ά(A) as the algebra spanned by observables of the form
AB, where A e a(A) and B is any classical observable. Let further

α L =U δ (Λ) (32)
Λ

It follows from Eq. (31), that the algebras ά(A) are mapped onto themselves
for any complex t. We have the following theorem.
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Theorem 6. For any A e άL and any complex t, the limit (28) exists
and defines a norm analytic operator At. The mapping A->At defines a
group of automorphisms on any ά(A) and on άL.

For any Aea and any real ί, the limit (28) exists. The mapping A^At

defines a strongly continuous group of *-automorphisms on a.

Note that the time translation of A e α in general can only be defined
for real t. If An-+A, the limit

^ = A{

t

Λ\

is uniform in A only for real t.
Let us conclude this section with the following remark. Instead of

the Hamiltonian H(A), Eq. (26), one can take for any configuration
S C Z the Hamiltonian

H(A, S) = Σ [yiXvSJ - U{S±)] a*(X) a(X) a(A/X) a*(A/X). (33)
XC Λ

Here, Sί = Sn(Z/A). This Hamiltonian leads to

YCΛ/{x)

x a*(Y) a(Y) a(A/{x}/Y) a*{Λ/{x}/Y).

However, the time translation automorphism, Theorem 6, is independent
of S.

l im ylj ' = = l im Jx^ z=z A.^,

for AeάL, t complex, and for A e α, t real.

6. The KMS Boundary Condition

A state ω on the algebra α will be said to satisfy the KMS boundary
condition with respect to the interaction Φ if (cf. [8, 3])

i. J dtf(t) ω(BtA) = J dtftt - i) ω(ABt)

for all A, B

For classical interactions, so that the time translation has the analyticity
properties of Theorem 6, one can write down without trouble the equiva-
lent conditions

ii. ω(BtA) = ω(ABt+i) for all Aea,BeaL,

iii. ω(α*(x) A) = ω(Aα*(x)t) for all AeaL,xeZ .

For the equivalence of i. and ii., see [8]. Let us indicate how iii. implies ii.
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Going over to the adjoint operators in iii., one gets

ω(a(x) A) = ω(Aa(x)i) for all xeZ,AeaL.

Then
ω(a*(x) a(x) A) = ω{Aa*{x) a(x)).

From this it follows that ω is a classical state. For example, let x e X, x φ Y
Then

ω(a*(X) a(Y)) = ω(a*(x) a(x) a*(x) α*(X/{x}) a(Y))

= ω(a*(x) α*(X/{x}) a(Y) α*(x) α(x)) = 0.

We have that
(35)

if A e aL and B is located in one point. Then (35) follows for any B e αL,
and because ω is classical, for any B e αL. This yields condition ii.

We now come to the main theorem.

Theorem 7. For a state ω ona the following conditions, all with respect
to the classical interaction Φ, are equivalent.

1. ω satisfies KMS,
2. ω is classical and satisfies (E2), Eq. (22),
3. ω is classical and satisfies (E3), Eq. (25).

Proof The implication 2=>3 is trivial. Let us prove 1=>2. We already
saw, that a KMS state must be classical. Applying the KMS condition
to μΛ(Xv{x}), we find

μΛ(Xu{x}) = ω(a*(x) a(x) a*(X) a(X) a(A/{x}/X) a*(Λ/{x}/X))

= ω(a(x) α*(x)fα*(X) a(X) a(A/{x}/X) *

Substituting Eq. (29), we obtain

μA(Xu{x})= lim

which is (E2).
Let us finally show that 3 implies 1. Because ω is classical, we have

that

ω(a*(x) a*(X) a(Y)) = ω(a*(X) a(Y) a*(x)t) = 0,

unless xφX,Y = Xv{x}. But in that case we have from (E3) and the
argument above reversed, that

ω(α*(x) a(x) a*(X) a(X)) = ω(a{x) a*{X) a(X) α
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With Eq. (19), this proves that

for any local observable A. This concludes the proof.

7. The Limit of Finite Volume States

We will show in this section that a limit of finite volume Gibbs
states satisfies the KMS condition.

Let a configuration ScZ and a finite volume M be given. Then
the state ωms) is defined as follows

For ΛCM,XCΛ,

= { Σ }
γcM (36)

x Σ C ί H ί J
YCM/Λ

Here Sx = Sn(Z/M). For A' C Z/M, X' C A', we define

if X'

0, if X'*SnA'.

With this definition and Eq. (33), we have

ω^s\A) = {Tr [exp(- H(M9 S))]}"* Tr \_A exp(- ff(Λf, S))] , (38)

for any A e α(M).
Let us consider the set of states ω(MtS) for S fixed and for any M.

It is a subset of the unit ball of the dual space of ^(K) (Section 2). Because
K is compact, the unit ball in <€(K)* is w*-compact ([15], Ch. 3, § 12.7).
Therefore there exists at least one state α>, which is the w*-limit of some
sequence ωiMn's\ That is,

μΛ(X)=HmμiΛln's)(X) for any A,XeA. (39)
n—y oo

The limit may depend on the subsequence Mn as well as on the configura-
tion S ([16,11,20,18]; [13,14]).

Theorem 8. Any limit, in the sense of Eq. (39), of Gibbs states, Eqs.
(36, 37), satisfies the KMS condition.

Proof. With Eqs. (34) and (38), one has

ωms)(a*(x) A) = ωms){Aa*{x)f>s)),
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for any Aea(M). Taking the subsequence MM-*oo, one obtains the
KMS condition (cf. [8], p. 225-227). This concludes the proof.

The above considerations immediately lead to the following result.

Theorem 9. The KMS condition and the equivalent conditions (El-3)
are satisfied by at least one state.

It is an interesting question, if the converse of Theorem 8 is true.
That is, is any KMS-state a limit of Gibbs states, in the sense of Eq. (39)?

8. Equations for the Correlation Functions

With the help of Eqs. (12) and (18), rewrite the right member of (E3),
Eq. (25). The result is

ρ(Xu{x})= Σ fc(IuT)-ρ(IuWuTP(xuW,I, T)

(E4) τcz/{x}/x (40)
for all finite X.xφX.

The quantity K is defined as

Ίf(V V ΓΓ\ v ( 1 \iV Γ)~JV i)f l V n Γ TTίYi IV^J_ Γf/Y i i VY\ (Λ\\
xv\Λ, -A ,̂ I ) — 2_j \ — *•) CXp|_ — U\Λ. \J I )~r U\Λ.^\J 1 )J . yΌ-)

YCT

We can enlarge the set of equations (E4) as follows.

<?(*)= Σ Γ Σ (-lf(ίS)ρ(X1uSuT)\K(X9Xl9T)9
TCZ/XLSCX/Xί J

for all finite Xή=0,Xt CX9X± Φ I

If condition (E 1), Eq. (20) is written in the form

μA(X,dY) = μA(Xl9dY) exp[- U(Xu Y) + U{XXu 7)]

for all finite Λ,XcΛ9X1CA9YcZ/Λ9

the full set of equations (E 5) can be derived from it in the same way
as (E4) has been derived from (El). The equivalence of (E4) and (El)
then yields the equivalence of (E4) and (E5).

An open question is, how many of the equations of the set (E 5) can
be omitted at most. In other words, what are the minimal subsets of
(E 5) that are equivalent to the full set (E 5).

One might expect that such a minimal subset is obtained if one takes
for any finite I Φ 0 some fixed X1 C l , I ^ X , instead of all such Xλ.
Then, loosely speaking, the number of equations and the number of
unknown quantities ρ(X) are equal. (If Z is finite, this is true.)

If one chooses X1 such, that it contains one point less than X, one
obtains the equations of Gallavotti and Miracle-Sole ([9]; [1], p. 82).
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For two-body interactions, they reduce to the lattice analogue of the
Kirkwood-Salsburg equations ([7]; [l],p. 72).

For two-body interactions Φ(x, y\ Eq. (41) becomes

K(X?X l JT) = exp[-l/(X)+[/(X 1)]Π {-1+ Π exp[-Φ(x, y)]} .
yeT xeX/Xi

If one defines Φ(x, x) = + oo, Eq. (42) becomes

{ l + Π e
YCZ/Xi. yeY xeX/Xt

A particular choice of Xl9 N(X) - N(XX) = 1, gives the Kirkwood-Salsburg
equations. The choice Xί = 0 leads to the Mayer-Montroll equations

In general, the important merit of the Kirkwood-Salsburg and
Gallavotti-Miracle equations is, that they admit a unique solution if
the temperature is high enough. Such a result of Gallavotti and Miracle-
Sole [9] applies to translationally invariant potentials. Here, it remains
valid for interactions which are bounded in the sense of Eq. (2).

However, if the Gallavotti-Miracle equations have a unique solution,
the conditions (E1-5) and the KMS-condition must have the same unique
solution (Section 7). Furthermore, this unique state is the limit of Gibbs
states, Eq. (39), independent of the subsequence Mn and the configura-
tion S.

Let us finally mention a result for the quantum lattice gas. A gener-
alization of the Gallavotti-Miracle equations has been found by Green-
berg [22] and Robinson. It has been shown by Lanford [23] that these
equations can also be derived from the KMS condition.

9. Conclusion

The remarkable fact that we can do without lattice translations,
is due to the fact that only the state is considered. As soon as one desires
thermodynamical quantities as the mean entropy and the global pressure,
there has to be some sort of translational invariance. For a lattice
without translations, see also the papers by Griffiths [17] and Kelly
and Sherman [19] on ferromagnetic interactions.

In the main part of the present paper (Sections 4-6) the equivalence
of different equilibrium conditions (KMS etc.) has been proved. In
Sections 7 and 8, the connection with Gibbs states and with the Galla-
votti-Miracle equations has been given. We have

Limit of Gibbs states => KMS etc. => Gallavotti-Miracle eqs.
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If the Gallavotti-Miracle equations have a unique solution (high temper-
atures), the implications in the opposite direction are also true. It is an
open question, if these implications can generally be proved.

In a separate paper [21], we will treat the one dimensional lattice
gas with finite range interactions. It will be shown, that the KMS-
condition and the variational principle lead to a unique equilibrium
state, which can be calculated explicitly.
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