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Abstract. Symmetries are investigated from the locar viewpoint. Using the Haag-Ruelle
construction, the action of a local internal symmetry on the asymptotic states is determined.
A condition of "asymptotic locality" is derived and used to show that the symmetry acts
linearly and locally on the asymptotic fields. Within a field theoretical framework it is
shown that the internal symmetry must commute with the Poincare group. The general
structure of an internal symmetry is determined. The uniqueness of the representation of
the Poincare group is discussed, and a simple example of an infinite component field is
given to indicate what occurs when there are infinitely degenerate particle multiplets.

1. Introduction

There has been renewed interest in recent years concerning the struc-
ture of symmetries, primarily due to the consideration of groups such as
SU(6), which contain particles of different spin within a single multiplet,
or groups which might contain mass-splitting, that is, particles of different
masses within a single multiplet. The question arises as to whether it is
possible to combine the Poincare group and another symmetry group
in a non-trivial way [1].

In this article symmetry groups are considered from the local view-
point [2, 3]. To each region R of space-time is associated a set of opera-
tors B(R) representing the measurements or operations which can be
performed with laboratory apparatus confined to the region R. If R1 and
#2 are space-like separated regions, the condition of locality states that
B(R1) commutes with B(R2)\

] = 0 for J R 2 c K i (1)

where R( denotes the region space-like to Rlf In the field theoretical
framework locality is expressed by

[φα(x),ψ»]=0 for (x-j;)2<0. (2)

In such a local theory we expect a symmetry operation to reflect the
local properties (1) or (2). Consider a true symmetry of the physical
system, i.e. a symmetry operation represented by a unitary operator G
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acting on the Hubert space of physical states. This symmetry can be
looked at in two ways, as an action on the states of the system or as an
action on the observables. From the second viewpoint we expect the
symmetry to transform the set of observables B(R) associated with the
region R onto the set of observables associated with a region jRG :

GB(R)G'1=B(RG).

Now it has been shown by Zeeman [4] that the most general mapping
of regions R~+RG which preserves the causal relations among regions
is an extended Poincare transformation and a dilatation. (The dilatations
can be ruled out as physical symmetries because they lead to unphysical
mass spectra.) Thus we expect that the most general action of a local
symmetry can be described as an extended Poincare transformation
followed by a transformation which maps the set of observables of each
region onto itself. We restrict our attention to these latter symmetries
which leave each region invariant. These could be called intrinsic or
internal symmetries since they do not have a direct geometrical action.
As a concrete example we could think of charge-conjugation or isospin
rotations. Thus we consider a symmetry which maps the observables
of each region onto themselves :

GB(R)G~1=B(R). (3)

The analogous condition in field theory would be that Gφ0i(x)G~1 is a
local function of the fields φ at the point x. However this concept of
local function is not very well defined, and a more natural condition
would be

)G-1,0μ(y)]=0 for (x-y) 2 <0. (4)

The analogous condition to (4) in the case of local observables would
then be

[GB(Ri)G~\B(R2)']=Q for R2CR(. (3')

In addition to condition (4) or (3') we add the condition that G leave
the vacuum invariant :

G|vac> - |vac> . (5)

Conditions (4), (3'), and (5) constitute the basic conditions on the local
internal symmetry G and will be the starting point for the analysis of the
general form for such a symmetry. No assumptions will be made con-
cerning the nature of the group of internal symmetries or the group of
the combined internal and Poincare transformations. In particular it is
not assumed that the symmetries form a Lie group. The analysis will be
carried out for a single symmetry operator G.
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It is also pointed out that although we have discussed only observ-
ables and commuting fields, in general one deals with a local theory
which may contain operators which anticommute for space-like separa-
tion. For simplicity of discussion it will be assumed that the observables
describe the entire local structure and only commuting fields will be
discussed. However the same results can be obtained by assuming G has
a local action on a field algebra generated by Bose and Fermi type
elements.

The main results will be to show that G must commute with the
Poincare group and to determine the action of G on the asymptotic
particles and fields.

2. The Translation Invariance of G

We first consider the translation invariance of G and review results
previously obtained [3]. In the Hubert space of physical states there is a
unitary representation of the translations U(x) which act in a local
manner on the observables:

U(x)B(R)U(xΓ1=B(R+x)

where R -f- x denotes the region obtained by translating each point in R
by the amount x. The generator of the translations, the four-momentum
P, lies in the forward cone:

P2 ^ 0 P4 ̂  0 (6)

where P4 denotes the time component of P and the metric is
P2 = (P4)2 — (p)2. The condition (6) is the spectral condition.

Consider the operator

If G commutes with translations then G(y) is independent of y. In any
case it can be seen that since G is an internal symmetry then G(y) is also
an internal symmetry. One then considers the function

F(y,x)= <vac| [GO^G(jθΛM*)]|vac>

where bί and b2 are arbitrary operators from some region R. By com-
bining locality, which gives conditions on F(y, x) in coordinate space x,
with the spectral condition, which gives conditions on the Fourier
transform F(y, p) in momentum space p, one can show that F(y9 x) is
actually independent of y. From this it can be shown that G(y) is inde-
pendent of y and thus that G commutes with translations. Details can be
found in Ref. [3].
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This result means that there is no mass-splitting for an internal
symmetry group. All particles in a multiplet have the same mass. This
result also shows, for example, that there does not exist a unitary operator
G such that the action of G on a set of fields φa(x) is given by

where ^αμ depends on x.
We now go on to study the Lorentz transformation properties of G,

and thus we consider the unitary representation of the Lorentz group
U(Λ) which acts in the correct local manner on the observables:

U(Λ)B(R)U(ΛΓl=B(RA)

where RA is the set of points obtained by performing a Lorentz trans-
formation A on each point in R. The Lorentz transformations together
with the translations give a representation of the Poincare group. It will
be shown within a field theoretical framework that G must commute
with the Lorentz group. Thus in particular we conclude that G must
commute with rotations, and thus all particles in a multiplet must have
the same spin, thereby excluding groups such as SU(6) as internal
symmetry groups.

3. Asymptotic States

In order to determine the action of the symmetry G on the particles
in the theory, we must have a connection between the local algebras or
interacting fields and the asymptotic free particle states. This connection
is given by the Haag-Ruelle construction, or alternatively by the LSZ
asymptotic conditions. The Haag-Ruelle theory has not yet been extended
to include massless particles, and primarily for this reason we add the
condition that there are no zero mass particles in the theory. The question
of the effect of this condition on the general results can only be answered
after a more complete theory of massless particles is developed.

Assuming no zero mass particles, the Haag-Ruelle asymptotic
states can be constructed in the usual manner [5], and assuming a
complete particle interpretation to the theory, these asymptotic states
give rise to the entire Hubert space of physical states. It will be assumed
that there are a finite number of particles at each mass value. Infinitely
degenerate multiplets are considered in Section 9.

From the condition that G commutes with translations it follows that
G must map states of each fixed momentum p onto themselves, and thus
G maps one-particle states onto one-particle states. To determine the
action of G on the many-particle asymptotic states, we review briefly the
construction of the asymptotic states, and show that G acts multiplica-
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tively on the π-particle states. That is, G acts on an π-particle state as the
tensor product of its action on the one-particle states.

The asymptotic states are constructed as follows. Let Q be a local
operator which has non-zero matrix elements between the vacuum and
a one-particle state of mass m, and let Q(x) be the translated operator
U ( x ) Q U ( x ) ~ 1 . Then define

q = Sd*(x)Q(x)h(x) (7)

where h(x) is an infinitely differentiable function which falls to zero
rapidly as x approaches infinity, and has support in momentum space
confined to a neighborhood of the mass-shell p2 = m2. Then when q
acts on the vacuum it will create a one-particle state of mass m. In fact
a set of operators qt can be constructed such that qt creates a particle of
type i from the vacuum:

and such that φi(p) is infinitely often differentiable and non-vanishing
[5]. Here i denotes the spin and any other quantum numbers describing
the particles of mass m.

Then the operator

when acting on the vacuum creates a one-particle state with wave-
function ft(p) if gt(x, t) is selected such that

&(*, ί) - f d*(p) - exp \i(p x - ]/p2 + m2 ί)]
^ . ΦiW
That is

<Z(/,ί)|vac> = f>
independent of ί.

The operator q(x) is not a local operator since Q(x) in expression (7)
is integrated over all space-time. However q(x) is an almost local opera-
tor 1 since h(x) falls to zero rapidly for large x. This can be used to show
[5] that q(fι, t) ... q(fn, ί)|vac> has a strong limit as ί->oo:

|/t . . . f n > = ] i m q ( f l , t ) . . . q ( f n , t ) \ v a c > .
ί-»00

Moreover, this limit is not sensitive to the choice of q(x) as stated in the
following theorem [6] :

If q 2 ( x ) is almost local with respect to qί(x), and if

qi (/, 0 = ί d3 (x) (?! (x, ί) g, (x, t) and q2 (/, t) = f d3 (x) q2(x9t)g2 (x, t)
1 Two operators q1 and q2 are said to be almost local with respect to each other if the

commutator [g]5 q2(x)~] goes to zero faster than any inverse power of |jc| as jc->oo.
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create the same one-particle state from the vacuum

then q^f, t) and q 2 ( f , 0 can be used interchangeably in the construction
of the states |/i .../„>.

The state \fl .../„> can be interpreted as an asymptotic rc-particle
state because the Poincare transformations act multiplicatively on these
states :

where fλ is determined by the action of U(λ) on the one-particle states |/> :

U(λ) |/> = \fλy .

This can be shown in a manner analogous to the discussion given below
of the action of the internal symmetry G on the asymptotic states.

One can then introduce creation-destruction operators such that

!/!.../„> = Nrf (Λ).. . «'(/„) |vac>

where N is an appropriate normalization constant.
Consider now the action of the symmetry G on the asymptotic states.

Since G maps one-particle states onto themselves we have

where |/> and |/G> are one-particle states. Also, since G acts locally on
the observables as given by (3') it follows from (7) that Gq(x)G~l is
almost local with respect to q(y). From the above mentioned theorem,
one concludes that Gq(f, t)G~γ can be used to construct the asymptotic
states with wave-function /G, and thus

G\fί...fny=Glimq(fl9t)...q(fn,t)\vacy
ί-> 00

OG-1 ... Gq(fn,t)G~1 |vac> = |/1G .../,,c>.

Thus G acts multiplicatively on the ^-particle states. This important
property holds for any local symmetry operator. From this we can
immediately conclude several results. Since a one-particle "in"-state is
the same as a one-particle uout"-state, it is seen that G has the same
action on an π-particle "in"-state as on an n-particle "out"-state, and
thus G commutes with the 5-matrix. Also, if G(λ) is a one-parameter
internal symmetry group generated by a charge Q

G(λ) = eίλQ

then Q is an additive quantity which is conserved.
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The most general form for the action of G on a one-particle state is

where g{j is a unitary matrix for each p, and we sum over the repeated
index. From the multiplicative character of G it follows that

i.e. G acts linearly on the asymptotic creation operators, a direct result
of the local character of G [7]. It has thus been shown that although G
may have a very non-linear action on the interacting fields, G acts
linearly on the asymptotic fields. We will next show that G acts locally
on the asymptotic fields.

Before proceeding we make the following remark. In the above
discussion in which it was concluded that G acts multiplicatively on the
asymptotic states, it was essential that G act in a local manner on the
observables B(R). For consider a unitary operator which commutes
with the Poincare group, the S-matrix, and define

B(R) = SB(R)S~1 .

Clearly B(R) form a local system with the same transformation properties
under the Poincare group, but B(R) is not relatively local to B(R). The
asymptotic "ouf'-states associated with B(R) are just the asymptotic
"in"-states associated with B(R). It is only when the condition of relative
locality is imposed that one obtains the same asymptotic states.

4. Asymptotic Locality and the Action of (7 on the Asymptotic Fields

We introduce the notion of asymptotic locality, which is the property
that the local structure associated with a system of operators is preserved
in the transition from interacting fields to asymptotic fields.

Given a local operator Q e B(R) and its translates Q(x\ one can define
an operator β(x) which is linear in creation, destruction operators, by
the expression

Q(x) = X J d\p] <pi I Q(χ)\ vac> a\(p] + <vac| Q(χ) |pi> fl.(p) (8)

where the summation includes only those particle states having a single
mass value m. In fact it was shown in reference [5] that Q(x) is the
asymptotic operator associated with Q(x), in the sense that in the limit
ί-> oo the matrix elements of Q(x) approach those of Q(x) when smeared
with suitable test functions.

It will now be shown that the mapping Q(x)-+Q(x) preserves the
local structure associated with Q(x). In particular suppose Qί and Q2
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are contained in B(R1), where R1 is a double cone centered about the
origin with base x\ < r. Then Qί commutes with β2(x) whenever x e R'2,
where R2 is the double cone centered about the origin with base |jc| < 2r.
We now show that Q1 commutes with β2(x) f°r x in tne same region R'2.
The commutator of Q± and Q2(x) is given by

= <vac|[β1,β2(x)]|vac>III

where <vac|[βj, β2(x)]|vac>m denotes the contribution of the one-
particle states of mass m to the vacuum expectation value of the com-
mutator. Defining

Jc'M = <vac|[β1,β2(x)]|vac>

we must show that the part of F(x) containing a delta-function singu-
larity δ(p2 — m2) in momentum space must vanish in the same region
R'2 as F(x) itself. The argument is based on a Jost-Lehmann-Dyson
representation for F(x) which is derived as follows.

Since the support of the Fourier transform F(p) in momentum space
is contained in the region p2 ^ 0, F(x) is the boundary value for s = 0 of
a tempered distribution in five variables F(x, s) which satisfies the wave
equation [8]

(d2 -V2- d2) F(x, s) = 0 .

The condition that F(x, 0) = 0 for x G jR2 implies that the boundary
values of F(x, s) on the plane t = 0 must vanish except in the "strip"
| jc |g2r, all s. This follows from uniqueness theorems for the wave
equation [9]. If F(x, s) is now expressed in terms of its boundary values
on the plane t = 0 we obtain

F(x, s) = J d3(xf) d s ' ί A f a x-x',s- s')Λ (x'9 s')

+ d t A
5

0 ( t , x - x \ s - s ' ) f 2 ( x f , s ' ) - ]

where A^is the propagator for the five-dimensional wave equation and
/t 2 have supports contained in the region |jc| ^ 2r.

Expressing AQ(X, s) in the form

A5

0(x, s) = - T Γ I ̂ 4W dPs

 ε(P4) δ(P2 ~ Ps) expi(p x - pss)

(2π) _JJ dpsA0(x,p2)Qxp(~ipss)
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where A0(x) is the usual commutator function in four dimensions, and
setting s = 0 in Eq. (9), the following representation for F(x) is obtained:

F(x)= ] dpsld\x'}lΔ^x-x\p2

s}f,(x',ps}

where /(*', ps) denotes the Fourier transform of /(*', s) with respect to s.
Now it can be seen that since fιi2(x,ps) vanish for | jc |>2r and ^0(

x)
vanishes for space-like x, the contribution to F(x) from each p2( = p2)
value will vanish for xeR'2. In particular i ϊ f 1 2 ( x , ps) has a delta function
singularity for pi = m2, the corresponding contribution to F(x) will
vanish in the same region as F(x) itself. This completes the demonstration
that the local structure is preserved in the mapping to asymptotic
operators. This property will be called "asymptotic locality".

In the case of field theory, we conclude that if

[ψα(x), φμ(y)-]= 0 for (x-3,)2<0
then

[&(*), <£μ()0] = 0 for (x-j;)2<0

where φΆ is the asymptotic field associated with </>α and is given by
Eq. (8). It is thus seen in a simple way that if a set of fields belong to a
single Borchers' class, then their asymptotic fields will also belong to a
single Borchers' class.

We are now in a position to investigate the action of the symmetry
G on the asymptotic operators Q(x). We first observe that since

Ga!(p)G-1=gij(p)a](p)

it can be concluded that

GQ(x}G~l

- GQ(x)G~

where the last symbol denotes the asymptotic operator associated with
GQ(x)G~1. In other words, the asymptotic operator associated with
GQ(x)G~ί is given by the action of G on the asymptotic operator Q(x).
It then follows, since GQ(x)G~l is local relative to Q(y), that GQ(x)G~1

is local relative to Q(y}. That is, G acts locally on the asymptotic operators
if it acts locally on the observables B(R}.
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In the case of fields, one would conclude from

,φμ(y)-] = 0 for (x-y) 2<0
that

χ G - 1 , ( - = 0 f o r

Thus it has been shown that G acts linearly and locally on the asymptotic
fields. This condition allows a great simplification in the analysis of the
general structure of G. Up to this point the discussion has been very
general, applying to any local theory. We will from this point on restrict
our attention to field theory, and in particular, to an interpolating field
theory. That is, we assume that for each particle in the theory there exists
a field with non-zero matrix elements between the vacuum and one-
particle states. This allows a simplified discussion of the action of the
symmetry G on the asymptotic fields, and will lead to the conclusion that
G must commute with the Lorentz group. The analysis is carded out in
the next few sections. It should be possible to make a similar analysis
without the assumption of interpolating fields, provided there are a finite
number of particles at each mass, although a more detailed analysis of
the operators Q(x) would have to be given. In this connection, see also
Section 9.

5. The Choice of Asymptotic Fields

We consider now an interpolating field theory: a system of finite
component fields φΛ(x) such that there exists a field operator with non-
zero matrix elements between the vacuum and each particle state. The
asymptotic fieίds for a given mass vaίue are given by Eq. (8) of the
preceding section:

From the results of the previous sections, the symmetry G acts linearly
and locally on these asymptotic fields. It is convenient in the analysis
of the structure of G to make a particular choice of asymptotic fields. We
briefly review the discussion of J. Schwartz [10] concerning the reduction
of a system of free fields to a certain canonical form.

Given a system of free fields, all having the same mass p2 = m2, one
can form, by differentiation, a system of fields transforming according
to the (0, s f) representation of the Lorentz group, for some collection of st.
That is, each field can be put in the form φΛl αm(x) where φ is symmetric
in α and transforms as
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where uαα, is the representation of the (covering group of the) Lorentz
group given by unimodular two-by-two matrices.

In addition the fields can be chosen to satisfy the "reality condition"

αιβi . . . sαmβί>βi . . . M (10)
where

Ό -1

0

σαμ — <5αμ> an(3 cΓ1 '2 '3 are Paulί matrices.
The commutator of fields transforming according to a single irre-

ducible representation of the Lorentz group is given by

α

where S denotes symmetrization with respect to α. The commutator of
α

fields belonging to different irreducible representations of the Lorentz
group is identically zero.

The interpretation of these fields is the following. The fields can be
Fourier analyzed in terms of particle creation-destruction operators. The
reality condition then implies that the destruction operators within a
single field are associated with the same particle as the creation operators.
The number of components of each field is equal to the number of spin-
states of the particle. The vanishing of the commutator between different
fields expresses the independence of the creation operators associated
with the different fields. Thus there is a one-to-one correspondence
between fields and particles. Each particle of spin s is associated with a
single field transforming according to the (0, s) representation of the
Lorentz group. For further discussion of these fields in terms of creation-
destruction operators, see Weinberg [11]. The original system of fields
can be obtained by again differentiating the (0, s) fields. Thus this canoni-
cal set of fields is completely equivalent to the original fields.

Denoting for convenience

it follows from (11) that

tφΛί...am(x,^ψίμι...μJy^=Sδaιμι...δamμJ*(x-y) (12)
α

where \ptμι μm denotes the time derivative of ψμι μm.
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We can now show explicitly that if GφXί ...OCm(x)G~1 commutes with
Φaι...aLk(y) f°r (* — J>)2<0> then GφG'1 is a polynomial in derivatives
acting on the fields φ.

Consider first an arbitrary operator Q which is linear in creation-
destruction operators. Q can be expressed in terms of the fields and their
time-derivatives on the plane ί = 0:

where we sum over α and over the different m- values. Then from Eq. (12),
/ and g are given explicitly by

Therefore Q(x) is given by

fi(x) = J rf3 00 - [β(χ), v>αι . . . α>, 0)] 0, αι . . . Λm(y, 0)

When Q(x) is relatively local to the fields φ(y), the commutator of β(x)
with ψ(y) has the form

where K(—id) is a polynomial in derivatives acting on zf 0, and therefore

Thus GφG~l is a polynomial in derivatives acting on the fields φ. From
this we will show that G must commute with the Lorentz group.

Before proceeding, we make the following remark. The above dis-
cussion has the following consequence. Let φΛ(x) be a system of inter-
acting fields, and denote by P(R) the polynomial algebra of the fields
smeared with test functions with support in the region R. Let Q be an
operator belonging to the polynomial algebra P(R) with R a double
cone centered about the origin with base [jc[ < r. Then since

[β,<M*)] = 0 for xεR
it follows that

[β,to]=0 for xeR
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and therefore the functions f(x) and g(x) given by Eq. (13) will vanish
for \x\ ̂  r, and thus Q will belong to the polynomial algebra of φa

associated with the same double cone R. That is,

(where Q is actually linear in the fields φ).

6. The Lorentz Invariance of Local Internal Symmetries

We consider a system of free fields φa(x) which are transformed
under the unitary operator G in the following manner :

GφΛ(x)G-ί=KΛμ(-id)φll(x) (14)

where K is a polynomial in derivatives acting on the fields φ. Taking
matrix elements of (14) between the vacuum and one-particle states, and
using G\pίy = 0ij(p)| P7>, it follows that

dji(p) <PJ\ΦM\ vac> = Kaμ(p) <pi\φμ(0)\ vac> . (15)

Using the fact that

where U(p) is a velocity transformation (boost, pure Lorentz trans-
formation) which brings a rest state up to momentum p, Eq. (15) can be
written in the form

9ji(P) Γaμ(p) <0/|</v(0)|vac> = Kxβ(p) Γμλ(p) <0i|^(0)|vac>

where Γ μ λ ( p ) is the representative of the velocity transformation in the
finite-dimensional representation of the Lorentz group according to
which the fields φα transform. In the particular representation for free
fields discussed in the previous section, Γμλ will be a direct sum of (0, s)
representations. Then

since φμ(0) \ vac> transforms as a particle with spin s and third component
of angular momentum μ under rotations, and since each particle is
associated with a single field. Thus it follows that

(This could also have been obtained directly from Eq. (14) by expressing
the fields φ in terms of creation operators and spinors.)
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We now have the following expression for the unitary matrix g:

= Γ(-p)K(p)Γ(p). (16)

It will now be shown that the only way the left-hand side of (16) can be a
bounded function of p is for g to be independent of p. From this it will
easily follow that G commutes with the Lorentz group.

To study the structure of Γ(p), note that Γ(0, s) is given by the sym-
metrized direct product of F(0, 1/2) matrices. Consider the form of
Γ(0,1/2)(P)'

Γ(p) = e~ίqP'κ — eqP'J = eql2v'

= cosh(g/2) -h sinh(g/2)p

where ω/m = coshg, p/m = sinhg and p is a unit vector in the direction of
p. Then Γ(0, 1/2) can be expressed in the form

m

(o + p Γ2(P,P)

where

! !
m m

-I p σ

m
ι1

m
p σ

The matrices Γ\ and Γ2 are polynomials in p and ω for fixed direction
p. if s is integral, Γ(0, s) contains an even number of Γ(0, 1/2) factors.
Take half in the form with Γj and the other half in the form with Γ2 .
Then the factors involving J/αΓΓp and ]/ω — p cancel, and we conclude
that for integrals 5, Γ(0, s) is a polynomial in p and ω for fixed p. (See the
discussion at the end of this section for the case when s is half-integral.)
It is now seen that Eq. (16) expresses g(p) as a polynomial in p and ω for
fixed direction p. Since g(p) is bounded, and p can go from plus to minus
infinity with ω constrained on the mass shell, we conclude that in fact
the polynomial must be independent of p and ω. Thus g(p) can depend
only on the direction p. On the other hand, it is easily seen that the right-
hand side of (16) is continuous at the origin p = 0 and thus g is indepen-
dent of p. We have thus shown that g(p) is independent of p.

In order to conclude that G must commute with the Lorentz group,
consider the operator

G(λ)= υ(λ)GΌ(λ
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where U(λ) is a Lorentz transformation. Since G(λ) is a local internal
symmetry if G is, we can apply the above argument to G(λ) to conclude
that Qij(λ, p) defined by

is independent of p for every Lorentz transformation λ. In particular,
consider a velocity transformation U(p\ and apply U(p) GU(p)~l to a
rest state:

U(p) GU(p)-1 |0i> - U(p)G\-pΐ> = U(p)gij\ -/>j> = 9ij\0jy .

This means that G(λ) = G for all velocity transformations. However,
since products of velocity transformations generate the entire Lorentz
group (the product of two velocity transformations is a velocity trans-
formation followed by a rotation) we conclude that G(λ) = G for all
Lorentz transformations, thus showing that G commutes with the
Lorentz group.

Because G commutes with the Lorentz group, it is actually the case
that no derivatives can occur in the expression (14) for GφG~l . One way
to see this is that the nth order derivatives of a (0, s) field will transform,
due to the Klein-Gordon equation, as (n/2, n/2) x (0, s), and the (0, s)
representation is not included in the decomposition of this product.
Since GφG'1 must transform under Lorentz transformations in the
same way as φ, it follows that no derivatives can occur in the expression.

We make two further comments concerning the above discussion.
For simplicity we have been dealing with bose-type fields. We indicate
here the modifications when fermi-fields are included. For half-integral
values of s, Γ(0, s) will contain an odd number of Γ(0, 1/2) factors. These
Γ(0, 1/2) factors can be paired as in the above discussion, but there will be

one factor left over. Thus Γ(0, s) is of the form / - /WO, s) where

F^O, s) is a polynomial in p and ω for fixed p. In the expression (16) for
g(p) the square-root factors will again cancel out, and we will again be
left with a polynomial in p and ω, provided there are no cross-terms
involving a representation with integral s and a representation with half-
integral s. This cannot happen because G cannot mix bose with fermi
fields: GφOL(x)G~i must satisfy the same commutation-anticommutation
relations with Gφμ(y}G~l that φa(x) satisfies with φμ(y), and this cannot
happen if G mixes bose with fermi fields.

The second comment concerns possible technical complications
because we should actually only require (16) to hold almost everywhere.
However it is actually the case that one can assume at the outset that
gtj(p) is an infinitely differentiable function of p. This follows from an
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argument based on that of Lemma 3 of Ref. [5]. From the local action of
G on the observables, it follows that (vaclg^G^ G"1 |vac> must
decrease faster than any inverse power of jc and therefore the Fourier
transform φ{(p) φj(p) gμ(p) is infinitely often differentiable in p. Since
φitj are infinitely differentiable and non-vanishing it follows that g^p) is
infinitely differentiable.

7. The General Structure of G

Using the above results, we can now describe the general action of a
local internal symmetry on the asymptotic fields. Let φ^α ι...α (x) be a
system of free fields as described in Section 5. Under Lorentz trans-
formations the field φ μ > α ι . . . α transforms according to the (0,j/2) repre-
sentation of the Lorentz group, and the index μ labels the different fields
transforming according to the same (0,7/2) representation. Then the
symmetry G must act in the following manner on these asymptotic fields :

From the reality condition, Eq. (10) of Section 5, it follows that

, . . .
and therefore ^μλ = ^μλ.

Thus ^ is a real matrix. This leads to Carruthers-type theorems [12]
relating particles and antiparticles2. Thus for example, in the case of
gauge transformations expressing the conservation of charge, there must
be an antiparticle transforming according to GtfG~ί=exp( — iθ)ά*
for each particle transforming according to G^G"1 = exp(iθ)flt, so that
suitable linear combinations will give a real representation of the gauge
group. Also, for isotopic spin, for particles transforming according to a
half-integral representation, there must be antiparticles transforming
according to the complex-conjugate representation.

We point out that since G acts in the above simple way on the asymp-
totic fields, G can be represented simply in terms of these fields. For
instance, if the internal symmetry group is a one-parameter group
generated by a charge, then the charge can be written as an integral of the
fourth component of a four-vector current which is bilinear in the
asymptotic fields.

2 Because of the simple association of particles with fields, the same matrix &μλ

describes the action of G on the particles.

12 Commun. math Phys., Vol. 17
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We mention a connection between the analysis given here and the
work of Orzalesi, Sucher, and Woo [13]. Usually one associates a con-
served four- vector current jm(x) with the generator Q of a continuous
symmetry by

G(λ) = eiλQ .

Then G will commute with the Poincare group because jm is a conserved
current. Suppose we consider a conserved tensor

and define

Then Qn will not commute with the Lorentz group, and we conclude from
the preceding analysis that G(λ) = eίλnQn cannot be an internal symmetry
group. Thus it is not surprising that, as was shown in Ref. [13], under
certain assumptions the operators Qn are actually proportional to the
four-momentum Pn and thus generate the translations.

8. The Uniqueness of the Representation of the Poincare Group

In this section we consider the following question. Given a system of
local observables, are the Poincare transformations uniquely defined by
their geometrical action on the observables? In other words, given an
association of operators with regions B(R), are the Poincare trans-
formations uniquely determined by

where Rλ is obtained by performing the Poincare transformation on
each space-time point in R.

If it were possible to have more than one representation of the
Lorentz group then the spin of the particles described by the theory may
not be uniquely determined. Under one choice of Lorentz transformation
a particle may transform as a spin 1/2 particle, and for another choice
of Lorentz transformations the particle may transform like two spin zero
particles. Or in terms of fields, could it be possible for a field to transform
like a vector field for one choice of Lorentz transformation and like four
scalar fields for another choice?

Suppose we have two representations of the Poincare group:

Uί(λ)B(R) U^λΓ1 = B(Rλ) C/jMlvac) = |vac> ,

U2(λ)B(R) U2(λΓl = B(Rλ) U2(λ) |vac> = |vac> .
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Then G(λ) defined by

is a local internal symmetry for each λ. If we are dealing with a field
theory with interpolating fields, we conclude from the results of the
preceding sections, that G(λ) commutes with Ult2(λ') for all λ and λ'. Then

G(λ2) = G(λ,} υ,(λ2r
l U2(λ2) = υ,(λ2r

l G(λj U2(λ

Thus G(λ) forms a representation of the Poincare group. Consider the
action of G(λ) on the one-particle states:

Since there are a finite number of particles at each mass, the matrices
g(λ) will form a unitary finite dimensional representation of the Poincare
group, the only one being the identity representation. Thus g(λ) = I
implying G(λ) = I and U2(λ) = U^λ).

In order to see what may happen when one has infinitely degenerate
particle multiplets we now investigate a simple example of an infinite
component field and study the internal symmetries that it possesses.

9. An Infinite Component Field

Consider a system of creation-destruction operators

labeled by two momenta q and p. Only p is a true momentum in the sense
that under translations

(The three vectors p and q define four-vectors in the forward cone by
p2 = q2 = m2.) The creation operators satisfy the commutation relations

[a(q^ pa tf(q2, p2J] = δ*(qv - q2) δ3(pi - p2) .

The delta function in qί9 q2 indicates that the particle multiplets deter-
mined by p are really infinitely degenerate, the states cfi(q,p) |vac> are
orthogonal for different values of q.

Under Lorentz transformations
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In order to determine what spins are contained in the representation of
the Poincare group defined above, we look at the rest states αf(g,0).
Under rotations

Thus a^(q, 0) transforms like a state of momentum q and can be decom-
posed in the usual way into states of definite angular momentum :

ά*(jm, q, 0).

Thus for each value of the magnitude of q all integral spins occur, and
for each spin j there are an infinity of states labeled by the magnitude of
q. Thus we are dealing with an infinite degeneracy in spin as well as mass.

We can now form a local, infinite component free field by

which transforms as follows :

U(z)φ(q,x)U(zΓl = φ(q,x

U(λ) φ(q, x) U(λ)-1 = ]/^qλ)/ω(q) φ(qλ, M(λ)x)

and satisfies the commutation relations

[Φ(0ι> *i), Φ(q2> *2)] = <53(tfι - ? 2) ΛO(X! - x2) .

(The field could also be defined by

which under Lorentz transformations transforms according to

Now it can be seen that φ has as an internal symmetry group the
Lorentz group itself. An internal symmetry representation of the Lorentz
group can be defined as follows. For each Lorentz transformation λ,

G(λ) fltfo, p) G(λ)~l = Vω(qλ)/ω(q)a\qλ, p)

The operators G(λ) act locally on the field:

G(λ) φ(q, x) G(λ}~1 = ω(qλ)/ω(q) φ(qλ, x} .
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It is clear that the internal symmetry group does not commute with the
representation of the Lorentz group U(λ).

In addition, the representation U (λ) is not uniquely defined by its
local action on the field φ(q9x). We can define U2(λ) = G(λ)~l U(λ)
which will give a representation of the Lorentz group with the following
properties :

U2(λ) J(q9 p) V2(λΓl = }ffipά^)a\q, Pλ) ,

U2(λ) does commute with the internal symmetries G(λ).
If we ask what spins are contained in this representation of the Lorentz

group we find

and thus, for each q, a*(q,Q) transforms like a spin zero particle. While
in the first representation U (λ) we have particles with all integral spins, in
the representation U2 we have only scalar particles.

In fact, in the example of an infinite component field given by Streater
[14] which violates the correct connection between spin and statistics,
the action of the Lorentz group can also be redefined in such a way that
there are only scalar particles in the theory and they have the correct
connection between spin and statistics.

We have thus shown that if one allows infinitely degenerate particle
multiplets one cannot expect the internal symmetry group to have the
simple properties shown in the preceding sections, and in such cases, the
representation of the Lorentz group itself may not be uniquely defined.
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