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Abstract. In a canonical field theory, the field Φ(f) and momentum π(g) are assumed
defined for test functions / and g which are elements of linear vector spaces Ψ"φ and yni

respectively. Generally, the continuity of the map onto the unitary Weyl operators U(f),
V(g) is taken as ray continuity, the barest minimum to recover the field operators as their
generators, i.e., U(f) = eiφ{f\ V(g) = eiπ(9). This leaves open the question of whether any
wider continuity properties follow and what form they would take. We show that much
richer continuity properties do follow in a natural fashion for every cyclic representation
of the canonical commutation relations. In particular, we show that the test function space
may be taken as a metric space, that the space may be uniquely completed in this topology,
and that the map into the unitary Weyl operators is strongly continuous in this topology.
The topology induced by this metric is minimal in the sense that it is the weakest vector
topology for which the maps /-• U(f\ g-+ V(g) are strongly continuous. An expression
for a suitable metric can easily be given in terms of a simple integral over a state on the
Weyl operators.

Introduction

By smearing the canonical field operators Φ(x) and π(x) in the usual
way with test functions from spaces Ψ"φ and i^π and then going over to
the unitary Weyl operators one arrives at the customary definition of
a representation of the canonical commutation relations (CCR) (cf., e.g.,
[9] or [10]). The only continuity requirement is ray continuity, i.e., in
the notation of [1], U(λf) and V(λg) are assumed to be weakly con-
tinuous in λ. One has V(g)U{f) = aφ{i(f,g)}U(f)V(g) where (/,#)
is the nondegenerate inner product between Yφ and Ψ"n.

The generality and abstractness of this formulation leaves quite
open questions about the role of the spaces Y0 and Ψ"π, the relevance
of topologies they may carry, the possibility of a wider continuity of
the representation than just ray continuity, whether the spaces Ψ*φ and
Ψ*n can be enlarged, etc.

The purpose of this paper is to clarify some of these properties of test
function spaces for CCR representations, and specifically to show that
there exists a simple and natural metric d(f, g) determined by the rep-
resentation of the Weyl operators and consistent with the linear vector
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space character, which may be assigned to the space fφ x iΓ r The test
function space may be extended to the closure of this metric space and
the mapping of test functions from this metric space onto the Weyl
operators is strongly continuous in the metric d. Intuitively, there is
every reason to expect that the representation of the operators itself
should determine — or at least partially determine — the allowed class
of smearing functions. In fact, we do find that the representation, through
the metric, determines the maximal test function space completely.

In a cyclic representation with cyclic vector φ0 everything one needs
to know about the representation is contained in the oft-studied ex-
pectation functional

E(f, 0) = (<Po, U(f) V(g) φ0) exp j y (/,

This functional frequently takes a simple form as in the example

which when r = s = 0 is that characteristic of the elementary Fock
representation. Evidently, the functional is well defined for any gel}
and fel?nϋ. We shall shortly indicate that the test function spaces
for the representation can be extended consistently to a larger space.

In part, our study was motivated by more abstract topological in-
vestigations of Woods [1].

Heuristic Introduction of Metric on Test Function Spaces

Consider the space rΓΦ and the functional E{f, 0) = (φθ9 £/(/) φ0).
The most natural metric to put on yΦ is that defined by

d1{f)=\W(f) ΨO-ΨOW,

which evidently depends only on E(f, 0). Clearly convergence of fn in
dx implies strong convergence of [/(/„) on φθ9 but on what other vec-
tors? Remarkably, as we show in Section 1, this metric leads to the strong
convergence of U(fn) on all of £>. However dγ(f^ is deficient in one im-
portant respect for it does not ensure that U(λfn) also converges for
λή=l. Specific examples exhibiting nonconvergence are easily given.
Consider the expectation functional given earlier (with r = 1 and s = 0)
for which

= 2{1 -exp[- i(/,/)] costi!f(x)dx]} .
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One finds that fn = $πun(x), where (in a one-dimensional configuration
space)

= 0; \x\>n/2,

forms a Cauchy sequence, and that di (/„)-•(). However, ^ ( Λ / J - H Ό for
arbitrary λ (e.g., λ — 0.5) and the metric would be incompatible with the
linear vector character of the space, an aspect we should most like to
preserve. To overcome this difficulty one may insist on convergence in
the collection of metrics

dλ(f)^\\U(λf)φ0-φ0\\

for all real λ. As a weighted sum one might even hope that, for example,
convergence in the metric

d2(f) = Se-λ2\\U(λf)φ0-φ0\\2dλ

accomplishes the same result. That in fact this is the case is the subject
of Section 2. There we demonstrate that a suitable metric for Ψ"Φ x Ψ*%

which preserves the linear vector space structure is given by

= 2 J e- χ2 {2 - Re \E(λf, 0) + £(0, λgj]} dλ.

Convergence in this metric, d(fn,gn)-+0, implies that U(λfn) V(γgn)-+1
strongly for all λ and γ.

Aspects of completion of the test function space in such a metric
and the extension of the representation are discussed in Section 3. It is
shown that the Weyl form of the canonical commutation relations is still
satisfied but that the extended bilinear form (/,#), although unique,
may become degenerate. That is, for some nonzero element / in the
completion it may happen that (f, g) = 0 for all g e Ϋ^. Any such element
U(f) must belong to the center of the algebra generated by U(f) V(g).
To illustrate this behavior consider the expectation functional given
before, now with 5 = 1 and r = 0. Then it follows (up to a factor 2 l/π) that

A Cauchy sequence in this metric is given by

converging to some nonzero element / of the completion. It follows
(from Schwarz's inequality for example) that
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for all g e L2, and in fact inspection of the representation confirms that
U(f) is a unitary operator lying in the center of the algebra generated
by U(f) V{g).

Various topological aspects are discussed in Section 4. In particular,
it is shown that the metric d defines the weakest vector topology on Ψ~φ

and, respectively, yn, such that the maps /-» £/(/), g-> V(g) are strongly
continuous. This implies that there are no alternate vector topologies
for i^φ, Y*n allowing for a wider extension of the test functions spaces
than that already given by the metric.

In Section 5, some measure theoretic properties are discussed. It
is shown, for example, that different weight functions also lead to equiv-
alent metrics. Finally an alternate and somewhat stronger proof of the
basic theorem of Section 1 is rederived on the basis of a realization of
Hubert space as a direct integral over the space Ψ"φ algebraically dual
to rφ.

We emphasize that extension of CCR representation can always be
carried out with the metric d, and that this metric provides the maximal
extension by vector topologies. As an immediate application of this
fact we note that two representations are necessarily inequivalent if the
associated metrics are inequivalent for then the completed test function
spaces are unequal. Although, of course, the converse is not true this
does provide a canonical subclassification of representations.

1. Representation-Induced Metrics on Test Function Spaces

In a Schrodinger representation eiλQ has no eigenvectors. Using von
Neumann's theorem for CCR and the nondegeneracy of the bilinear
form (/, g) one obtains:

Lemma 1.1. Let U{f,g\fei^φ,gei^π be a representation of the
CCR in some Hilbert space §, and let φ e §, φ φ 0. Then

dί(f-ff)=\\U(f-f')φ-φ\\ =

d1(g-g')=\\V(g-g')φ-φ\\

define a metric on i^Φ and, respectively, yn.

We note the following simple consequences:

Lemma 1.2. Let 9)φ be the closed subspace generated by all vectors
of the form £/(/) φ, fe rΦ. Then \\U(fn) <p - φ\\ ->0 implies \\U(fn)ψ-ψ\\

-+0forallψeξ>φ.

Proof First consider U(f) φ. Then
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Hence ||U(fn) ψM — ψM\\ -»0 for all finite linear combinations

This set is dense in ξ>φ. But if \\U(fn)ψM — ψM\\-+0 for a dense set of
vectors, then U(fn)^l strongly on § 0 since \\U(fn)ψ-ψ\\ ^ \\U{fn) ψ
-U(fn)ψM\\ + \\U(fn)ψM-ψM\\ + \\ψM-ψ\\. q.e.d.

The previous lemma can be used to show that for a separable space
or under even more general conditions one can always find a vector φ
such that \\U(fn- f0)φ-φ\\-+0 implies strong convergence. Both the
previous and the next lemma are independent of whether V(g) exists or
not. Hence they are true for any Abelian group of unitary operators.

Lemma 1.3. Let 9) be separable [or, more generally, let ξ> decompose
into a countable direct sum of subspaces 9)t which are cyclic with respect
to U(f)J. Then there exists a vector φoeξ> such that \\ U{fr) φ0 — φo\\ ->0
implies £/(/„)->1 strongly.

Proof. First note that if § is separable then it decomposes into
where each § f is cyclic for U(f\ feΨ"Φ (cf., e.g., the con-

struction in [2] for a one-parameter group). Let the unit vectors φt be
cyclic in § ί ? i = 1,2,..., and define

Ψo = Σ®-γjϊΨi'

Then

and convergence to 0 implies convergence to 0 for each term in the sum.
But then, by Lemma 1.2, ||£/(/„) t/̂  — 1/̂ ||->O for each ψieξ>i,i= 1,2,...,
and therefore £/(/„)-» 1 on a dense set of vectors. Hence U(fn)->1
strongly, q.e.d.

The above lemmas exploit the commutativity of U(fn) and U(f).
If φ0 is cyclic for U(f g) = U(f) V(g\ then one has

\\(U(fn)- 1) U(f) V(g) φo\\ = \\U(f) V(g) { e " ^ £/(/„)-1} φo\\

\\ + \-iif~e)l\\\\\

Hence, if e

iifn'β)-+l for n->oo for all gei^π, then | |£/(/„)φ-φ| | ->0 for
a dense set of vectors.

On the other hand, one sees from

- l ) U(f,g) φ\\ ̂  \ \\U(fn) φ0 - φj - \ β - '(/-. ) _ l | | | φ o | | |



334 G. C. Hegerfeldt and J. R. Klauder:

that eiifn'g)-+1 is also necessary for strong convergence. Note that from

eiλ(fn,9)_+1 for aji r e a j χ ^ s o m e interval one obtains as in [1] by inte-
gration

lim(fn,g) = 0. (1.2)

Similar considerations apply to V(g^. Thus one has the following:

Lemma 1.4. Let φ0 be cyclic for U(f)V{g)9fei^9 gei^π. Then
a) U(fn)-+1 strongly if and only if \\U(fn)φo-φo\\-+0 and (fn,g)^0
for each ge^.b) V(gn)-+1 strongly if and only if \\ V(gn) φ0 - φo\\ -^0
and (fgn)^0 for each ferΦ.

Comparing Lemmas 1.2 and 1.4 one sees that if φ0 is not only cyclic
for U{fg) but also cyclic for U(f) alone, then || £/(/„) φ o - φ o | | - > 0
already implies (/„, g)-+0 for each gef^. One therefore wonders if the
condition (fn,g)-*0 is already a consequence of \\U{f^φo-φo||->0.
The following theorem shows that this is even true for any vector φ
for any representation, quite a remarkable property.

Theorem 1.5. Let U(f)9 V(g) be a representation of the CCR in some
Hilbert space §, with fei^φ, ge^. Let φeξ), φ + 0, and let

then

(fn,9)->0 for all

If \\V(gn) φ - φ\\ ->0, then (f gn)^0 for all fe rφ.

Proof1. By Lemma 1.2, U{fn)-> 1 strongly on ξ>φ = {U(f)φ}. Consider
a g e i^% and a real number λ. Decompose V(λg) φ into its orthogonal
components χλ e ξ)φ and χ'λ e 9)'φ, the subspace orthogonal to § φ ,

Note that ξ>φ is also invariant under l / ( / ) , / G ^ . Since V(λg) is con-
tinuous in λ, there is a δ > 0 such that χλ φ 0 for \λ\ ^ δ. Now,

\\(U(fn)-

l)χlll2 (1.3)

Since χλ G§φ, the last term tends to zero for n->oo. Hence

^ ( / « ^ l for \λ\£δ.

Then Eq. (1.2) implies (/π,flf)->0.
1 We owe this very elegant and simple version to L. Streit. The connection of this

theorem with measure-theoretic properties of the CCR will be discussed in Section 5.
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Replacing U(fn) by F(#π) and V(λg) by U(—λf) in the above argu-
ment one obtains (/, gn)-*0. q.e.d.

For finitely many degrees of freedom Ψ"φ and Y*π are JV-dimensional
vector spaces, and (/„, #)->0 for all gei^π means that all components
of/„ in any basis tend to 0. Thus the above theorem shows as a corollary
that in this case the metric || U(f) <p — φ\\ is just equivalent to a Euclidean
metric on f^,, a result already obtained by Woods [1] by a more compli-
cated technique.

Combining the above theorem with Lemma 1.4, one finds the fol-
lowing:

Corollary 1.6. Let φ0 be a cyclic vector for a representation U(f),
V(g) of the CCR, with ferφ,ge rπ. Then \\U(fn) <p0 - φo\\ ̂ 0 implies
U(fn)-+1 strongly; and \\V(gn) φ0-φo\\^0 implies F(#π)-»1 strongly.

Each representation of the CCR always decomposes into a (possibly
uncountable) direct sum of cyclic representations. If the sum is countable
one can proceed as in the proof of Lemma 1.3 to obtain the following
generalization:

Corollary 1.7. Let U(f), V(g) with fe Ψ"Φ, ge^be a representation
in a separable § (or, more generally, let it decompose into a countable
direct sum of cyclic representations). Then there is a vector φoeξ> such that
\\U(pφo-φo\\-+0 implies U{fn)^l strongly, and \\V(gn) φ0- φo\\-+0
implies V(gn)^l strongly.

Thus we see that the metrics dΐ(f)= \\U(f) φ0 — φo\\ on Ψ*Φ and
dι(g) = II V(g) ψ0 — φo\\ on Yu with φ0 cyclic (or φ0 as in Corollary 1.7)
make the maps /-> U{f), g-* V(g) strongly continuous.

2. Metrics Compatible with the Vector Space Structure

As already pointed out in the introduction fn-+f(d^) does not neces-
sarily imply λfn-^λf(d1). But this is a property one would demand from
a metric on a vector space. In addition to di(/π) one should therefore also
take into account the metrics

dλ(fn) = dί(λfn)=\\U(λfn)φ-φ\\. (2.1)

Note that dλ satisfies dλ(f) = dλ(-f). The metrics dλ are uncountably
many. In order to construct a new metric with them one might consider

d{fn? = ΐ dλe~* Ul/ίλ/J φ - φ\\2 , (2.2)
— oo

or a similar expression with some other weight function. One might
also replace the integration limits by a, b with a < b. As in the theory
of Lp-spaces one finds:
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Lemma 2.1. {Jdσ(λ) dλ(f)2}* defines a metric.

In order that the metric d in (2.2) serves its purpose one needs that
d(fn)^0 implies dλ(fn)-+0 for every λ. This seems to be quite a strong
requirement, for from (2.2) one cannot even conclude that dλ(fn)-+0 for
almost all λ. It only follows that dλ(fn), n = l , 2,..., considered as a
sequence of functions of λ, converges to 0 in measure. Therefore the
following result may be somewhat surprising.

Lemma 2.2. d(fn)->0 if and only if dλ(fn)-+0 for each real λ.

Proof. Let d(fn) -> 0. For each n9 one can write, by Stone's theorem,

(2.3)
— 00

Thus

||U(λfn) φ-φ\\2 = 2(φ, φ) - (φ, {U(λfn) +U{- !/„)} φ)

= S\eiλx-ί\2d(φ,E^φ).

Hence, putting d(φ, Efφ) = dμn{x),

d(fn)
2 = J dλe~λ2S dμn(x) \eiλx - 1|2 , (2.5)

and for any 1 > η > 0 one obtains similarly as in [1] by an allowed change
of the order of integration

: ^ ! } ί U I \eiλx- ί\2dμn(x)

\ ° | x | > " (2.6)
dμn(x).

e \x\>η

Hence for each 0 < η < 1

lim f dμn(x) = 0. (2.7)
W-+00 \x\>η

Now let λ0 be any real number. For any ε > 0 there is 0 < η < 1 such that

Thus

for n greater than some ΛΓ(ε). Hence dλo(fn)^0.
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The converse part of the lemma follows immediately from Lebesgue's
bounded convergence theorem, q.e.d.

Corollary 2.3. // d(fn)-+0, then dλ(fn)^0 uniformly in λ on every
bounded interval

Proof. This follows immediately from Eq. (2.8). q.e.d.
Note that the preceding lemma holds for arbitrary Hubert spaces,

not only for separable ones, and that one can take any vectors φ e §).
As an immediate corollary one also obtains convergence of λfn in the
metric d.

Corollary 2.4. If fn-+f in the metric d, then also λfn->λf in d.

Proof. Put λ(fn-f)=f'n. Then dΓ(/w')->0 for each real X. Hence
O ^ O . q.e.d.

Thus one sees that the metric d has just the property looked for. Con-
vergence of /„ implies convergence of λfn, and if one chooses for φ a
cyclic vector or the φ0 of Corollary 1.7, then fn->f(d) implies strong
convergence U(λfn)-+U(λf) for each λ.

But there is one further property one would like a metric on a vector
space to fulfill, i.e., if λn -> λ0 and /„ -• f0 one would like to have λnfn-+ λofo.
The following lemma shows that d also fulfills this.

Lemma 2.5. Let λn->λ0 and fn->f0(d). Then λjn^λofo(d).

Proof. One has

d(λjn - λofo) ^ d(λnfn - λjo) + d((λn - λo)fo).

For n-+oo, \\U(λ(λn —λo)fo)φ —φ\\-+0 by the ray continuity of the
representation. Hence d((λn — λo)fo)^0, by Lemma 2.2. So it suffices
to show that d(λn(fn - /0))->0, and one can assume/0 = 0. By Lemma 2.2,
d(/»)->0 if and only if dλ(fn)-*0. Putting \\φ\\ = 1, Eq. (2.4) shows that
this is the case if and only if

Rε(φ9U(λfn)φ)->l. (2.10)

Since |(φ, U(λfn)φ)\ ^ \\φ\\2 = 1, dλ(fn)^0 if and only if

= l. (2.11)

By Stone's theorem, Eq. (2.3),

Kn{λ) = f eiλxd(φ, E^φ) = J eiλxdμn{x). (2.12)

Since $dμn(x) = | |φ | | 2 = 1, Kn(λ) is the characteristic function of a
probability measure, and Kn(λ)^K0(λ) = ί for each λ. Now, if λn^>λ0,
then, by [3], Kn(λn)-+Ko(λo) = 1. Replacing λn by λ'λn and λ0 by λ'λ0,
one has Kn{λfλn)->Ko{λfλo) = 1 for each X. Hence (φ, U{λfλnfn)φ)^ί
for each λ\ i.e., dλ,(λnfn)^>0. q.e.d.
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It should be remarked that the form of the weight function in
forming d(f) is inessential. It is clear, for instance, that instead of d(f)
one could also take

= ί]jdλ\\U(λf)φ-φ\ή\ (2.13)

Then Lemma 2.2 holds and hence also Corollary 2.4 and Lemma 2.5
which are based on Lemma 2.2. In Section 5 the most general weight
function and metric will be determined.

The results of Sections 1 and 2 can be combined to yield the following
theorem.

Theorem 2.6. Let φ0 be a cyclic vector for £/(/), V{g\ fe^ge *Vπ.
Then

d(f)2=Sdλe-λ2\\U(λf)φ0-φ0\\2

defines a metric on Y*Φ with the following properties, a) fn->f(d) if and
only if U(λfn)-+U(λf) strongly for all λ. b) Iffn->f0(d) and λn^λ0 then
λnfn-^λofo(d) and U(λnfn)^U(λofo) strongly. Analogous results hold
for [/(/) replaced by V(g).

To express d(f) in terms of the expectation functional E(f g\ one
can write

and for the metric on rΓn one replaces E(f, 0) by E(0, g). Thus Theorem 2.6
can be rephrased in terms of the expectation functional which determines
the representation uniquely up to unitary equivalence.

It is clear that, instead of considering metrics on Ψ*φ and τ^π separately,
one can also combine them to a common metric on Y'φ x i^π by defining
the distance of a couple {/, g} from {0,0} by the expression d(f g) of
the introduction.

3. Extension of Representations

A straightforward application of the above results yields an extension
of the representation to larger test function spaces, the completions
i^φ and yπ. Since for metrics this can be done without invoking deeper
topological theorems we outline the simple procedure.

The completions i^φ and i^π are constructed in a well-known manner
by considering equivalence classes of Cauchy sequences. One defines
d(f) where / = lim/Π by limd(/M). This limit exists since, by the triangle
inequality, d(fn — / J ^ \d(fn) — d(fj\. The same construction applies
of course also to f l .
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In order to extend the bilinear form (/, g) from f^x^to^FφX^, put

gn). (3.1)

The limit exists since (/„, gn) is a Cauchy sequence. This follows, as in
Eq.(1.3), by considering \\U(λfn)V(gn)φ-U(λfm)V(gJφ\\. Uniqueness
of definition and linearity follow in a straightforward way from Theo-
rems 1.5 and 2.6.

In order to extend the representation, one can invoke a general
theorem on mappings of topological groups [4]. In the present simple
situation one can also proceed directly as follows.

Let/„-•/. Then U(λ(fn-fJ)->ί strongly so that U(λfn) is a Cauchy
sequence in the strong operator topology for each λ. Since the space
Bi(£) of operators i o n § with ||-4|| ^ 1 is complete [5] in the strong
operator topology, U(λf^) converges strongly to some operator Aλ.
From

UWi + W J " ΛλιAλ2 = U(λJn) (U(λ2fn) - Aλ2)

+ (U(λίfn)-Aλl)Aλ2

 ( > )

it follows that Ufa + λ2)fn) = U{λJn) U(λ2fn)-+Aλi + λ2 = AλlAλ2. From
U{λfn)* = U(-λfn) one sees that A% = A_λ and Ao = 1. Furthermore,
for any φ e § , (φ, [_U(λfn)- U(λfJ]\p)^>ΰ uniformly in λ on every
bounded interval, by Corollary 2.3. Hence (ψ,Aλψ) = lim(ψ,U(λfn)ψ)
is continuous in λ, and Aλ is a continuous one-parameter unitary group.
Define

U(λf) = Aλ. (3.3)

By Theorem2.6, U(λf)_cannot equal 1 for all λ if/φO. Since any other
Cauchy sequence /„'-»/ differs from /„ by a null sequence, it is immediate
that U(λfή) converges also to Aλ so that the definition of U(λf) depends
only on /.

The same construction can be carried through for V(g). As in Eq. (3.2)
one has

U(f) V(g) = str. lim U(fn) V(gn) = str. lim*-'<*"*•> V(gn) U(fn)

so that also the extended representation satisfies the CCR.
However, there is one important point. If/^-»/φ 0, then one knows

that / defines a linear functional on °Γn or i^% since (/„, g) converges.
But this limit could be zero for all #, and / would define the null func-
tional. Hence the bilinear form on i^Φ x i^π may have become degenerate
(cf. the introduction and [1]). The next theorem summarizes the results.
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Theorem 3.2. (Extension Theorem). Let [/(/), V(g) be a cyclic
representation of the CCR, fei^φ.gei^^ with cyclic vector φ0. Then
'Vφ, i^π can be uniquely extended to complete metric linear spaces i^φ, fπ in
the metric d of Theorem 2.6, and the bilinear form (/, g) can be uniquely
extended to a (possibly degenerate) bilinear form on Ίr

φ>cVn. The re-
presentation [/(/), V(g) with fe/fφ9geir

n can be uniquely extended to
a unitary representation of the Weyl relations for f e Ψ*φ9

Corollary 3.3. The function

= Sdλe-λ2\\U(λf)φ0-φ0\
2

on i^Φ defines a metric on Yφ which coincides with d(f) on yφ and is the
continuous extension of d from i^φto i^φ.

Proof. Let / „ - • / in τΓφ. Then U(λfJ-+U(λj) strongly for_all λ.
Hence, by Lebesgue's bounded convergence theorem, d(/M)-»d(/). The
rest of the statement is then obvious, q.e.d.

Note that a similar argument holds for all vectors φ e ξ>. But it may
not be true that

dΛf)=\\U(f)φ-φ\\

defines a metric. This is due J o the possible degeneracy of the bilinear
form. If (/, g) = 0 for all ge°F%, then U(f) may not be a canonical Weyl
operator for one degree of freedom, and its spectrum may have discrete
points1 _

If / defines the zero functional on "Γn9 then U(λf) commutes with
all IPs and F's and hence lies in the center of the von Neumann algebra
{U(f)9V{g);ferφ9gerκ}".

Corollary 3.3 means that if one tries to extend the extended represen-
tation once more by means of the metric d induced by the extended
representation, one does not obtain anything new, since d coincides
with the extension by continuity of d to ψφ, "Fπ. Thus rΓφ9 "Fπ are already
complete for d.

4. Topological Aspects

The preceding results, especially Sections 1 and 2, have some
immediate topological implications. The metric d of Theorem 2.6 defines
a topology τφ on Yφ and τπ on f̂ . If the space does not matter we shall
simply write τ. Recall that a topology on a linear space X is a vector
topology if 1) X is a Hausdorff space, 2) the mapping (x, y)->x + y of
X x X into X is continuous, and if 3) the mapping (α, x)^ocx of Rx x X
into X is continuous. Lemmas 2.1 and 2.5 imply:

Corollary 4.1. τ is a vector topology.
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Denote by τλfφ the topology belonging to the metric dλ(f)
= \\U(λf)φ0 — φo\\ on i^Φ, and similarly τλ > π, where φ 0 is the same
vector as used in the construction of the metric d. Again we mostly
suppress the index Φ or π. We further consider the topologies for weak
convergence on i^φ, i^π, the so-called weak dual topologies w(Ψ"φ, f Q
and w(^π, Ψ"φ) on Ψ~φ and f"π, respectively.

A topology τ' is called stronger than a topology τ", τ' ^ τ", if every
open set of τ" is also open for τ' (i.e., τ' has more (or equal) open sets
than τ"). Now the results of Section 2 imply the following.

Corollary 4.2. τ φ ^ τ λ > φ ^ w ( ^ , TTJ, am/ τπ ^ τA>π ^ w(iΓπ, τTφ).

Proof. fn-*f0(d) implies fn->f0(dλ\ by Lemma2.2, and fn^f0{d^
implies /Π-»/0(wC^Φ>^t)) Hence the identity map ρ o

; / ~ * / *s c o n ~
tinuous for the respective topologies [6]. Hence, if A is τ^-open, then
ρo1(^4) = 4̂ is Tφ-open, and similarly for w(^φ, i^). For i^n the same
applies, q.e.d.

We note in passing that Lemmas 4.1 and 4.2 remain true for any
nonzero φ0 e § . For the following, however, it is important that φ0 be
cyclic.

The next theorem, the main result of this section, shows that the
topology τ induced by the metric d is just the topology looked for by
Woods [1].

Theorem 4.3. Let U(f), V(g) be a cyclic representation of the CCR
in some Hubert space ξ>. Let τΦ be the topology on i^φ belonging to the
metric

d(f) = Udλe-λ2\\U(λf)φo-φo\\ψ,

and let τπ on Vπ belong to the metric

d(g)=Udλe-'-2\\V(λg)φ0-φ0\\ψ

where φ0 is some arbitrary cyclic vector. Then τΦ is the weakest vector
topology on i^φ for which f-*U(f) is strongly continuous, and τπ is the
weakest vector topology on Yπ for which g-+V(g) is strongly continuous2.

Proof. By Theorem 2.6, /-» U(f) is strongly continuous for τφ since
again sequential continuity suffices. Now let τ' be any vector topology
on yφ for which f-*U(f) is strongly continuous. It will be shown
that τ' ^ τ φ .

This is the case if every net [7] {/α} in Ψ"φ which converges to 0 in τ'
converges to 0 in τφ also. For this it suffices that \\U(λfa)φ0 — ̂ >0|| —>0
uniformly in λ for every bounded interval since then obviously d(f^-*0.

2 After the completion of this work, we learned that, for the special case of a separable
Hubert space, Araki and Woods have proved the related result that the weakest vector
topology is metrizable (H. Araki and E. J. Woods, to be published).
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Assume the convergence to be nonuniform in some interval /. Then there
exists an e > 0 such that for each α there exists an α' ^ α and some λΛ* e I
satisfying lU(K'fJ)Ψo ~~ ΨoW = e- The set of λa. forms a net and the /α>
form a subnet of {/α}. There exists a subnet {λa>>} which converges to
some λoel. The corresponding subnet {/«-} converges to 0. Hence
Aα"/α"-»0(τ') since τ' is a vector topology. Because of strong continuity
one then must have \\U(λa,.fa,)φo-φo\\-*Q.1&ut \\U{λa,tfaf)φQ-φ0\\^e.
Hence the assumption is false3. The treatment for τπ is identical, q.e.d.

As an immediate consequence of Corollary 2.3 one has the following.

Corollary 4.4. τΦ coincides with the topology of uniform convergence on
every bounded interval of λ's of \\U(λf)φ0 — φo\\.

We note that by the above theorem a different choice of the cyclic
vector φ0 leads to the same topology and hence to an equivalent metric.
Since the metric is translation invariant the completion i^Φ depends
only on the topology so that the extension of the representation does
not depend on the particular φ0. In the next section it will also be shown
that it does not depend on the particular weight function e~λ2 in the
integral for d.

Corollary 1.7 shows that for representations of the CCR which are
a countable direct sum of cyclic representations there exists a vector φ0

such that all results derived for cyclic representations remain valid.

5. Measure Theoretic Aspects

In this section we first investigate the role of the weight function in
the integral (2.2) of the metric d and then discuss some of the results
of Section 1 in the framework of the measure theoretic realizations of
the CCR by means of a direct integral.

The next result shows that one can take any non-negative function
which does not vanish almost everywhere as a weight function and still
have the results of Section 2. Also the power 2 in the construction of d is
not essential.

Lemma 5.1. Let U(f), V(g) be a representation of the CCR in ξ>
with fei^Φ,ge rn9 and let φeξ>, φή= 0. Define

φW'}1!', (5.1)

3 One can avoid the use of nets by noting that {(A,/): \\U(λf)φo — φo\\ <ε} is a
τ'-open set in R{x i^Φ and that for each λ it contains an open set of the form Uλ x Uτ> with
(Λ, 0) e Uλ and where Uλ and Uτ> are open. By choosing a finite subcovering of \λ\ ^ 1 it is
then easy to find a τ'-open set contained in {/: sup \\U(λf) φ0 — φo\\ <ε}. The latter

sets just form a base of the topology of uniform convergence of dλ(f) in (— 1,1).
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where p^l and where σ is a finite positive measure on the Borel sets of the
real line with nonzero absolutely continuous part (in particular dσ{λ)
= ρ(λ)dλ with ρ(λ)^:O). Then dσp(f) defines a metric on i^φ, and one
has dσp(fn)->0 if and only if dλ(fJ^>Q for each real λ.

Proof A similar argument as in the proof of Lemma 2.1 shows that
dσp(f) is a metric for an arbitrary measure. Now, if dλ(fn)->0 for every
A, then also dσ p(/n)->0, by Lebesgue's bounded convergence theorem.
To show the converse, choose a fixed λ0 and assume dσp(fn)^0. Since
\\U(λofn)φ — φ\\ is bounded, it suffices to show that every convergent
subsequence \\U(λofnv)φ — φ\\ converges to zero. Since the integrand
in (5.1) is non-negative, there exists a subsubsequence || U(λfHv )φ — φ\\ -*0
σ-almost everywhere, hence for all λ in some set Δ of positive Lebesgue
measure. \ί λ1,λ2eΔ it then follows by the triangle inequality that also
\\U((λί±λ2)f)φ — φ||->0. But the difference set of a set of positive
Lebesgue measure contains a finite interval around zero [8], and by
finite sums one covers the whole line. Hence \\U(λofnv)φ — φ\\-*0.
q.e.d.

Lemma 2.2 and the discussion of Section 4 show that the metrics
in Eq. (5.1) are all topologically equivalent for all allowed choices of σ
and p. It should be remarked that a purely discrete measure will in general
not do. For then there are at most countably many points contributing
to the integral, and Woods has shown that strong limU(λifn) = 1 for

n

countably many λt does in general not imply that U(λfn)-+1 for all λ
(cf. [1]). Together with Corollaries 1.6 and 1.7 this shows the inadequacy
of discrete measures.

Theorem 1.5 can be sharpened somewhat for representations of the
CCR which allow a realization by means of quasi-invariant measures.
Generalizing results of Araki [9] it has been shown in [10] that if the
Hubert space § decomposes into a countable direct sum of subspaces
which are cyclic for U(f), fei^φ, (as in Lemma 1.3), the representation
can be realized as follows. There exists a normed measure μ on the Borel
sets of the space ^ of (algebraically) all linear functionals on f̂ . Ϋ^.
can be regarded as a subspace of f̂ , and μ is f^-quasi-invariant in the
sense that if 91 is a null set then so is the translated set 914- g for each

l. 9) can then be written as a direct integral,

ξ>=] §>(F)dμ(F), (5.2)

^φ. The action of U(f) is given by multiplication by exp{/(/, F)}.
The precise form of V(g) is not of interest here; it has a resemblance to
that in the Schrodinger representation.
23 Commun. math. Phys., Vol. 16
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Before proving the sharpened version of Theorem 1.5 we need the
following.

Lemma 5.2. Let {sn} be a sequence of real numbers, and letXC^ be
a set of positive Lebesgue measure. If eiSn does not converge to 1, then
there is an uncountable set ΛcX of real numbers such that a) eίλSn does
not converge to 1 for λeΛ, and b) ei{λl~λ2)Sn does not converge to 1 for
/ij, λ2 G Jί9 Aγ =F λ2.

Proof. The set of λ's for which \eiλSn —1| —>0 is a measurable set [11],
N say. This must be a Lebesgue null set because otherwise, by the same
argument as in the proof of Lemma 5.1, eiλSn->l for all λ. Note that N
contains with two elements also their sum and difference. The com-
plement C of N has positive measure. Consider the set C/N of all classes
λ of elements of C which differ by some element of N, i.e., l=λ + N,
λeC. Note that λ + N is indeed in C. If the number of classes λ in which
elements of X lie were countable, one could choose representatives
λuλ2,..., such that Xc [J(λn + N\ and thus X would be a null set.

Hence there are uncountably many classes λa of this kind, with represen-
tatives λa e X. These fulfill a) and b). q.e.d.

Now we can prove the following theorem which establishes a con-
nection between weak convergence and quasi-invariance.

Theorem 5.3. Let U(f), V(g) be a representation of the CCR in a
Hίlbert space ξ> with fei^φ, gei^π. Let ξ> decompose into a countable
direct sum of subspaces cyclic for U(f\ fei^0. Denote by Ϋ^φ the algebraic
dual of Ψ°φ. Let μ be the (up to equivalence unique) measure for the direct
integral realization. Let {/„} be some sequence in i^φ, and let φ eξ> be a
nonzero vector such that \\U(fn)φ — φ||->0. Let F' be some element of
yΦ such that μ is quasi-invariant under ocF for all a in some set A of posi-
tive Lebesgue measure on the real line. Then (/„, F')->0.

Proof. We first show that ei{fn>F>)^\. For this it suffices that every
convergent subsequence goes to 1. So one can assume eιifn>FΊ-+a. Let
φ correspond to φ(F) in the direct integral realization of ί>. Then

\\U(fn)φ-φ\\2= f I β ^ - l f \\φ(F)\\2dμ(F). (5.3)

Hence there exists a subsequence nv for which the integrand converges
to zero μ-almost everywhere. Let

This set is measurable [11]. Since the set { F e f ^ : \\φ(F)\\ >0} has
positive measure, 95 must have positive measure. Again one has that
if Fl9 F2 e 95 then also -F1 and (Ft ± F2) e 95. Hence, if 95C denotes the
complement of 95 in i^Φ and if F e 95C, then 95 ± F C 95C.
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Now assume α φ l , and let A be the set of Lemma 5.2, where
sn = (fn9 F') and X = A. Since Ff e 95C, by assumption, one. has, for all
Aeyl,S-AFc93 c and(93-A 1 F)n(95-A 2 F)=0 forλ u λ 2 eΛ,λ i =M2;
for otherwise (λx - λ2) F' e95 and eiiλί'λ2)(fn^n^l. By the quasi-
invariance of μ under ocF\ oceA, μ(95) > 0 implies μ(95 - λF') > 0 for all
λeΛ. Hence 33C contains uncountably many disjoint sets of positive
measure and hence must have infinite measure. But μ(î φ) = 1. This
contradiction shows that F' e 95 and a = 1. Hence ei(fn'FΊ-+l. Repeating
the same argument for βFf yields eίβ{fn'Ff)->l for each β. But then
(/n,FH0,byEq.(1.2). q.e.d.

Since each geir

n satisfies the conditions imposed on F' in the
preceding theorem, one obtains Theorem 1.5 as a corollary for all
representations whose Hubert space is a countable direct sum of sub-
spaces cyclic for U{f\ in particular for all representations in a separable
Hubert space. Note, however, that Theorem 1.5 makes no assumptions
on the Hubert space.

An immediate consequence of the above proof is the following.

Corollary 5.4. Let the representation be as in Theorem 53. Let
U(λfn)^l strongly for each λ, and let μ be quasi-invariant under some
Fr^Th(fFf)O

Proof. Let <p e ξ> be such that \\<p(F)\\ = 1 for each F. Then

n > F ) - l | 2 = \\U(λfn)φ-φ\\2->0. (5.4)

Let λ be fixed. Again considering convergent subsequences one can
assume eiλ(fn'FΊ-+a. By Eq. (5.4) there exists a subsequence fnv such
that eiλifnvF)-*l for almost all F, i.e., the set 95 of the previous proof
satisfies μ(») = 1. If F' φ 95, then 95 - F' C 95C, and hence μ(95 - F') = 0.
But then, by the quasi-invariance of μ under F', μ((95 - F') + F') = μ(95) = 0.
Hence eiλ(fn>n->l. This holds for each λ9 and hence (/π,F')->0. q.e.d.

In connection with Eq. (5.4) we note that Lemma 1.3 is immediately
proved if one chooses ||φo(^)ll - l F° r Eq. (5.4) implies that

for each φ e ξ>.
It is clear that results analogous to Theorem 5.3 and Corollary 5.4

also hold for i^K and f~π' if the realization of the representation is based
on rn and fς'. One only has to interchange [/(/), V{g) by V(-g), U(f).
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