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Abstract. It is shown that local C*-algebras W (0,) and A (0,) associated with space-
like separated regions O; and O, in the Minkowski space are independent. The proof
is accomplished by a theorem concerning the structure of the C*-algebra generated by
A(0,) and A(0,).

I. Introduction

Let A, A,, A, be C*-algebras with A, and A, contained in A.
Picking a state ¢, of U, and a state ¢, of A, one may ask whether there
exists a state ¢ of A whose restriction to 2, equals ¢,(i=1,2). If this
is the case for any choice of the pair ¢, ¢, then we shall say that the
algebras A, and A, are “statistically independent”.

In a Quantum Field Theory let 2(0) denote the algebra of observ-
ables which are associated with the region O of the Minkowski space.
We use the symbol O, x 0, to denote that two regions O,, 0, lie totally
spacelike to each other. In [1] Haag and Kastler raised the question of
whether two algebras W(0,) and A(0,) are statistically independent
when O, x 0,.

If O, + x x 0, for x e A, & being a suitably chosen neighbourhood
of the origin, we write O, x O,. Starting from standard assumptions
of Quantum Field Theory, Schlieder [2] derived the following

Proposition (Schlieder). Suppose O, x O,. If x € W(0,) and y e A(0,)
are non-vanishing elements, then xy = 0.

Schlieder also pointed out that the property xy =+ 0 for non-vanishing
pairs of elements of two commuting algebras 2, 2, is a necessary
condition for statistical independence. We shall show here that this
property is also a sufficient condition. One has

Theorem 1. Let U, A, A, be C*-algebras with unit elements and let
A CAU
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Suppose

(C): U, and A, commute elementwise.

Then A, and W, are statistically independent if and only if they have
the property (S): If x and y are non-vanishing elements of A, and N,
respectively, then xy 0.

In addition, we shall show

Proposition 1. Let A, and W, be statistically independent, W, and A,
commuting, W, CW. If @, is a pure state over A, and ¢, is a pure state
over ,, then there exists an extension ¢ of ¢, and @, which is a pure state
over A.

II.

In this section and in the following one, we shall prove some lemmas
and another theorem which will finally yield the proofs of Theorem 1
and Proposition 1. The first essential step is the demonstration of the
following

Lemmal Let U, U, U, be as in Theorem 1, satisfying (C) and (S).
Suppose Z x;¥;=0 with x;€ W, y;€ W,. Then, unless all x;=0 or all

=0, nezther the {x;,i=1,... n} nor the {y;, i=1,...n} can be linearly
mdependent

We need another lemma to prove this. Let B; be an abelian C*-
subalgebra of U, i=1,2; let B} be its spectrum, that is, the set of all
characters of B; with the weak topology [3]. The elements of BF and
B% may be denoted by y' and y” respectively. Since B, and B, commute,
they generate an abelian C*-subalgebra B,, of U, B¥, denoting its
spectrum. A character y € B¥,, restricted to B, clearly defines an element
of BF: x|B, e B¥. Now define the subset .# of the topological product
BF x BE by

M= {(x]B1, x| B)|x e Bt,} .

Lemma 2. If (S) is satisfied, then M is dense in BY x B.

Proof. Assume the contrary. Then we can find an element (y,, xo
and a neighbourhood U((x,, x¢)) such that #/nU=@. U contains a
neighbourhood Uj (yp) x U,(x4). Define continuous functions f(x') and
g(x") over B, and B, respectively, with supp f C U,, suppg C U,. As is
well known, B, is isomorphic to the C*-algebra of continuous complex
functions over B} vanishing at infinity; the isomorphism is furnished
by the Gelfand transformation ([4], Theorem 1.4.1). Therefore, if f
and g do not vanish identically, they are Gelfand transforms of elements

16*
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xe B, and ye B,. Consider y(xy) for arbitrary y € B¥,. Clearly,
2(xy)=2(x) x») = f (x|B1) g(x| B,) =0

because of our assumption .# U =0 and the support properties of f
and g. Hence xy=0, x=+0, y=0, which contradicts the property (S).

Proof of Lemma 1. (i) The main task is to prove the lemma for com-
muting x; and commuting y;. Let B, and B, be abelian C*-subalgebras

n

of A, and A, containing {x;} and {y;} respectively. Y x;y;=0 implies
i=1

1 % 5= 3 a0z = 509,60 01800 =0

for all x € B¥, and, with the help of Lemma 2,

2 X()'(p)=0 forall y eBY, x"eB}. 1)
i=1
Unless all y;=0, we can find a yg such that not all yg(y;) vanish. With
7i=Xo(y;) we have

X Qyix) =27 (x) o) =0 forall » B,

and therefore, >_7,x; =0. Due to the symmetry of Eq. (1) with respect to
{x;} and {y;},the {y;} are linearly dependent, too.
(ii) Now let us consider x;, y; which do not all commute with each

n
other, with ) x;y;=0. Without loss of generality, we may assume that
i=1
there exists a y,, such that not all y;={[y;, y;,] vanish, and we have

n

>, %:yi=0. 2

i=1
i+ko
Trivially, the lemma is true for n= 1. Suppose it is proven for v=n—1.
Because the sum in (2) contains less than n terms, the {x;, i+ k,} and,
of course, the {x;,i=1, ... n} are linearly dependent. Let y; # 0, ¢; = 7,/y;,,
X;,=— ».¢;x;. Itfollowsthat Y, x;(y; — ¢;y;;) = 0. Then either all y;=c¢;y;,,
i*i i¥i
which givi‘:s us already the desired linear dependence of the {y;} or not
all (y; —c;y;,) =0; and therefore, since we have less than n terms, we can
find non-trivial §; with
Y. Biyi +( > ﬁiﬁ) Yie= 2, Bilyi—ciyi)=0.
i*ig i*ip i*ip
This proves Lemma 1 [5].
Now it is easy to demonstrate
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Proposition 2. Let W, A, A, be as in Lemma 1, satisfying (C) and (S).
Suppose Y. x;y;=0, x;€ Uy, y;€ Wy, not all x;=0, not all y;=0. Then
i=1
there exist non-trivial complex numbers o, such that

zaikxi-:o, k=1,...n, (3)
i=1
Y=y, i=1..n. (4)
k=1

o;, are called non-trivial if
1) not all «;;, vanish,
0, ik
2) notall o =8, =14, .
) not all o = ;4 {1, ik
Proposition 2 is so to speak symmetric in {x;} and {y;} because with
oy = — O; + O; We have

Zagkyi=03 k=19n, Za;kxk=xi, i=1,...n,
i k

with non-trivial o.

Proof by induction. n=1 is evident due to assumption (S). Let the
assertion be proven for v<n— 1. v=n: According to Lemma 1, {x,} are
linearly dependent; without loss of generality, let us assume that

n n
x;=— ), yix;. This implies Y x;(y;—y;y;)=0. If not all y,=y,y,,
N i=2 i=2
there exist non-trivial numbers f;;, with

n n
Z Buxi=0, k=2, ..n; z Bk —my)=yi— vy, i=2,...n,
i k=2

since we assume that the proposition is true for v=<n—1. If one puts

(111=1,

a1k=0, k=2,...n,

°‘i1=}’i"z.3ik3’k, i=2,..n,
k=2

U =P, LkZ2,

one can directly verify that Egs. (3) and (4) hold. Clearly, o;; are non-
trivial because f8;, are non-trivial. If y;=y,y, for all i=2, ... n, then

(x1 + ._22 yixi) y1 =0 and, due to (S), y; =0. Thus the problem is reduced
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to the case v=n—1; and if > o;;x; =0, X oy, =; for i, k=2, (3) and
(4) hold for i, k=1, ... n with oy, = a;;; =0.
Proposition 2 implies the following

Corollary. Let W, A, A, be C*-algebras with unit elements, W, C A.
If (C) and (S) are fulfilled, W, V W, is isomorphic to W, OA,.

Here A, VA, denotes the normed involutive subalgebra of A
generated by U, and A,; A, © A, denotes the direct algebraic product
of Ay and A,, that is, the set of all formal finite sums Y x;®y; with

(zxi®yi)(zx;®y;)=zxix;®yiy;; (Ex®y)* =L xF @yt
i J L,J

(3 x;y; and 3 x;®y; are always finite sums).

The isomorphism is given by ®(Q x;y) =Y x;®y;.

We have to show that 9, and U, are algebraically independent [6],
that is, if {x;, i=1,...n} and {y;, j=1,... m} are sets of linearly inde-
pendent elements of A; and A, respectively, then {x;y;, i=1,...n,
j=1,...m} is a linearly independent set in UA. Assume the existence of
numbersx w1ch%Ux ;¥;=0. Thean :y; =0, with x; —Z% :x;. Unless

all x};=0, there are non-trivial o such that Z%k)’k— yj» which con-

tradicts the linear independence of {y;}. Hence x; =3 x;;x;=0,j=1,.

and because of the linear independence of {x,.} we get %i j=0.

As one can check easily, algebraic independence of 2; and 2, implies
that A, VA, and A, © A, are isomorphic (cf. [6]).

III.

The second essential step in proving Theorem 1 is to establish the
continuity of the isomorphism & of A, V A, and A, O U,.

We shall use the following notations:

Ay, =A, VA, denotes the norm-closure of A, V A,, that is, the
C*-subalgebra of 2 generated by 2, and 2A,.

If we define a norm f on A, O A,, the completion of A, O A, with
respect to this norm is denoted by UA; ®, A,.

Definition 1. a-norm [7, 8]:

n

Z X ®y;

i=1

=sup
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with x; € U, y; € A,; the supremum is taken over all states ¢, over A,
all states ¢, over U, and all g;€ N, b, e A,. Furthermore,

?1®0, [ a;®b)] =2 ¢1(a) @,(by).

If A, and A, are algebras of operators in a Hilbert space #, A, O U,
is an operator algebra in s ® . In this case, the a-norm is identical
with the natural norm in # ® # (theorem of Wulfsohn [9]).

We want to show that @ is continuous with respect to the a-norm
topology in A, OU,. We need some definitions and theorems which
can be found in mathematical literature, and which are cited below.

Definition 2 [8]. A norm f of W, OA, is called compatible (with
the algebraic structure of A; O A,) if the completion of A, O A, with
respect to f becomes a C*-algebra, and if [[x®yll; < [[x] [yl

Definition 3 [10]. A B*-norm means any norm |...|[, satisfying
lu*ull ;= ul} for all ue W, O A,.

Proposition (Okayasu) [10]. Every B*-norm on W, © W, is compatible.

Theorem (Takesaki and Okayasu) [8, 10]. Let U, and A, be C*-
algebras. Then the set of all B*-norms on A, O W, is a complete lattice

under the ordering “<” with the least element |...|,.
Here B, < B, means |lull;, < |lull,, for all ue A, O A,.
We define
“in®yi”[} = 2%yl (5
and assert

Lemma 3. The norm f defined in (5) is a B*-norm on A, O A,.
Proof. Because of the isomorphism of 2,V U, and A, O A,, (5) defines
anorm on A, OA,; and

”(in®yi)*(zxi®yi)”ﬂ= Zx?xj®ﬁy]' ;
=1 xp)* Cxy)ll = I x.y:0% = “ZM@J’;‘“/%,

since A, V A, is contained in a C*-algebra U, ,.
Hence f is compatible, and, according to the theorem of Takesaki
and Okayasu, we have

12x:®yill. < ”in®yi”ﬁ= 12 x::ll - (6)
The isomorphism @ can then be extended to a morphism
5: QI12=QI1VQI2 g 911 ®a912 .

Actually, & is a homomorphism because it is surjective: for &(2,,) is
closed ([4], Corollary 1.3.3) and contains %; ©® A, which is dense in
A, R,U,.

%y pk
in XiYi'Y;
i,j
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We collect our results formulating

Theorem 2. Let A, A, A, be C*-algebras with unit elements, W, CA.

Assume

(C) N, and W, commute elementwise.

(S) If x and y are non-vanishing elements of W, and W, respectively,
then xy 0.

Then we have

1) There exists an isomorphism @: AN A, > W, ON,.

2) & is continuous with respect to the a-norm on U, O W, and can
therefore be extended to a homomorphism @ : A, —» A, ®,A,.

3) Let M be any abelian C*-subalgebra of N,. The restriction of
@ to M VA, is an isomorphism, B(MV U,) =M ®,2,.

Parts 1) and 2) are proven. The third part follows from another
theorem of Takesaki:

Theorem (Takesaki) [8]. Let W, be an abelian C*-algebra. Then, for
any C*-algebra WN,, the a-norm is the only compatible norm on W, O A,.

Therefore, since we know that the norm f defined in (5) is compatible,
we have for x;e M

1Xx:®@yill,= ||in®yl'”p= 12 x:yill 5

and this implies that the restriction of & to M V QA is an isomorphism
of MV A, and M®,A,.
This completes the proof of Theorem 2.

Iv.

Finally, we shall prove Theorem 1 and Proposition 1. As already
mentioned, Schlieder [2] showed that (S) is a necessary condition. (The
proof given in [2] is not a quite general one, for one needs the existence
of sufficiently many hermitian elements xe 2, and ye A, with x*=x,
y?=y; its generalization is given in the appendix.)

Now let us assume that (S) is satisfied; so we can use theorem 2.
Let ¢ be any continuous linear functional over ¥, ®,,. Then we define
a linear functional ¢ over A,, by

o) =p@w), ueW,,; inshort: @=¢od. )

& is continuous; therefore, ¢ is continuous. Clearly, if @ is positive,
so is ¢, since u =0, ue WA,,, implies (1) =0. Put p = 9, ® ¢,, ¢, and ¢,
arbitrary states over 2, and 2, respectively, then

P=0;Q¢,° P ®)
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is the functional over 2, required by statistical independence:

xeWy: p(x)=p(P(x)=px®1) = 0;(x);
ye Wy 0(1) =(@() =P @y)=0,(y).

It remains to be checked whether ¢, ® @, is continuous and positive if
¢, and ¢, are continuous and positive. The continuity is a direct con-
sequence of the Definition 1 of the a-norm; the positivity follows from
an easily provable lemma:

Lemma 4 [6]. If ¢, and ¢, are positive functionals over A, and N,
respectively, then ¢, ® @, is a positive functional over W, O W,.

Because of the continuity, ¢, ® ¢, is also positive over U, ®,AU,.
This proves the statistical independence of U, and 2A,, since the state ¢
over 2, , defined in (8) can be extended to a state over 2. We note that

oxy)=01(x) p,(0)=0(x) p(y), xeWU;, ye,. ©)

Proof of Proposition 1. Let &(A) denote the set of states over A
and 2 () the subset of pure states. If ¢, and @, are pure states, they
define irreducible representations =, and ,,, of U, and A, respectively.
The representation 7 of U, ®,,, defined by ¢, ® ¢, is isomorphic
to m,,, ()@=, (A,), therefore, 7 is irreducible and ¢, ®,e 2 (A, ®,A,).

According to Theorem 2, %, ,/Ker® and U, ®,2A, are isomorphic;
$0 ¢ — @ o @ defines an isomorphism &' of (U, ®,A,) and &(A,,/Ker P),
which transforms pure states into pure states. Therefore, ¢ = ¢, ® @, &
is an element of 2(A,,/Ker®). (Here we identify &(2,,/Kerd) with
the set &= {x|xe &, ,), y(Kerd)=0}.) Now consider ¢ as a state
over U, , and suppose that ¢ majorizes a state ¢’ € (2, ,). Since p(x) =0
for all x € Ker®, the same holds for ¢, which implies ¢’ € 2 (U, ,/Ker ®).
But this is a contradiction unless ¢'= ¢; and therefore, ¢ € Z(%,,).
Any pure state over 2, can be extended to a pure state over 2; which
completes the proof.

Acknowledgement. This work was suggested by Prof. Borchers whom I wish to express
my thanks for continuing encouragement and many helpful discussions.

Appendix

Let A,, A, be commuting C*-algebras with unit elements, A, C U,
and let A, and A, be statistically independent. We want to show that
xy =+ 0 whenever xe U,,yeW,, x and y+0.

Assume that we can find non-vanishing elements x' € 2, and y' € U,
with x'y’=0. Then of course x'*x'y'*y =0. Let ae Sp(x'*x’), a0
(Sp u denotes the spectrum of u in ;). Then for x=a"* x'* x € A,,
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y=y*y eU,, we have

xy=0, x+0, y=*0, @)
x*=x, 1leSpx, (ii)

and therefore,
z=(1-x)?=0, 0eSpz, aeSpz+a). (iii)

Consider the selfadjoint vector space 9 spanned by {1, z} and define
@,(1)=1, ¢,(2)=0. ¢, is a positive functional on & because, according
to (iii), y;-1+7y,z=0 implies y,/y, =0 if y,+0, hence, ¢,(y;1+7y,2)
=7, 20. As is well known (cf. [4], Lemma 2.10.1), ¢, can be extended
to a state over U, and we have

¢1(1—x)%)=0 (iv)
and because of @, (W)]> £ [|@,]l @ W*u):
¢ (1-—x)=0. v)

It is clear that we can find a state @, over U, with ¢,(y)*0.
Since A, and A, are statistically independent, there exists a common
extension ¢ of ¢, and ¢,. The Schwartz inequality implies

lp(1 =) A+ Y =01 - %) o((1 + 1)) =1 (1 — X)) @2 (1 +)?).
Hence, according to (iv), ¢((1 — x) (1 + y)) =0. However,
P(l=x)1+y) =0l —x+y)=0,(1 —x)+ ¢,(3)=02(») 0

according to (i) and (v), which is a contradiction.
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