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Abstract. Recent work of Davies and Lewis has suggested a mathematical framework
in which the notion of repeated measurements on statistical physical systems can be
examined. This paper is concerned with an examination of their formulation in the abstract
and its application to the C*-algebra model for quantum mechanics. In particular, a study
is made of the notion of the restriction of a physical system and a definition, which coincides
with the usual definition in the C*-algebra model, is formulated.

§ 1. Introduction

In the conventional approach to quantum mechanics, the observables
are represented by measures defined on the Borel sets of the real line 1R
and taking values in the set of projection operators on some separable
Hubert space X, and hence correspond in general to self-adjoint operators
on X. The set of states is represented by the set of infinite convex com-
binations of vector states of the Von Neumann algebra 2(X) of bounded
linear operators on X and hence corresponds to the set of positive trace
class operators on X of trace unity. In this approach, the bounded
observables may be identified with those projection-valued measures
concentrated on compact subsets of 1R, or equivalently, as self-adjoint
elements of Q(X). There are strong physical reasons for considering only
the bounded observables of a physical system. In general, the very nature
of the experiments used to determine the properties of many physical
observables automatically imposes boundedness conditions on the
observables. In addition, the observables usually measured are those which
can take only two possible values, the so-called questions. In the con-
ventional approach, the questions correspond to projection operators
and are, of course, always bounded. For this reason it has been suggested
that a possible model for the set Θ of bounded observables of a quantum
mechanical system should be some subset 3f of the set of self-adjoint
elements of ΰ,(X). In this sense, 3) is supposed to represent a subset of the
set of all observables and for this reason it was supposed that the states
would continue to be represented by infinite convex combinations of
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vector states of &(X), though some would be expected to coalesce on 2.
Regarded as positive normalised linear functionals on £(X), this set
of states is precisely the set of ultraweakly continuous positive linear
functionals on ΰ,(X) of norm unity, when regarded as elements of the
dual space &(X)* of Q(X). Moreover, the set of ultraweakly continuous
positive linear functionals on any Von Neumann algebra 95 coincides
with the set of positive normal linear functionals on 93.

Various candidates for the set 2 have been proposed. One of the
principle properties which the set 2 must possess, if an approach along
the lines described above is to be attempted, is that the spectral projections
corresponding to an element of 2 must also lie in 2. That is to say, the
question "does a measurement of the observable si lead to a value in the
Borel subset M of R" must be observable if si is observable. The strongest
contender for the role of 3) is the set of self-adjoint elements of a Von
Neumann algebra 33. This not only possesses the spectral property
described above, but also the set of positive normal linear functionals
of norm unity on 93 is the set of infinite convex combinations of vector
states. These remarks are valid whether or not X is separable and so
a modification of the conventional model for quantum theory leads to
the following model.

(a) Observables — Self-adjoint elements in a Von Neumann algebra
93 acting on a Hubert space X.

States — Positive normal linear functionals of norm unity
on 93-the normal states of 93.

Another possible contender for S> was considered by Davies [2]
and Flymen [24]. By considering the spectral properties of operators
Davies arrived at a definition for a I"*-algebra 93, which may be represented
concretely as a C* -sub-algebra of £(X) closed in the weak sequential
topology. The σ-states of 93 are defined to be these elements / of 93*
of norm unity such that if {Tn} is a sequence of elements of 93 converging
weakly to T in 93, then f(Tn) converges to f(T). When X is separable,
every Σ*-algebra 93 is a Von Neumann algebra and the set of σ-states
of 33 coincides with its set of normal states. Flymen [24] showed that the
following model satisfies the essential properties of a physical system
as described by Mackey [23].

(b) Observables — Self-adjoint elements in a Σ*-algebra 93 acting
on a Hubert space X.

States —σ-states of 93.

In a sense, models (a) and (b) coincide when X is separable.
A further approach, at first sight completely divorced from either

models (a) or (b), was suggested by Segal [26].
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(c) Observables — Self-adjoint elements of an abstract C*-algebra 91.

States — A full family of positive elements of 91* of norm
unity-a full family of states of 91.

Here a full family B0 of states of 91 is defined to be a convex subset
of the set S(9I) of states of 91 such that, if f(d) ^ 0 for all / in B0 and some
a in 9Ϊ, then a ̂  0. Kadison [20] showed that B0 is a full family if and only
if it is weak* dense in 5(91). S(9Ϊ) is itself an example of a full family. When
examined from the conventional viewpoint there appears little physical
motivation for this model. The spectral projections of an arbitrary
observable are no longer well defined and even if a faithful representation
φ of 9ί is taken on some Hubert space X, there is no guarantee that the
spectral projections of a self-adjoint element of 0(91) lie in φ(9l). These
spectral projections do however lie in the Von Neumann algebra φ(9I)"
generated by φ(9I) and indeed also in the smallest Z*-algebra 0(9I)σ

containing 0(91). In order to connect the model (c) with models (a) and (b),
it seems to be necessary to take some representation φ of 9ί on Hubert
space. Different representations will of course produce different models
(a), (b) for the same model (c). In addition, in order that the states of
the model (c) shall have any meaning at all, it is clearly necessary that for
each normal state ω of </>(9l)" or σ-state ω of (/>(9I)σ, φ must be chosen in
such a way that ωo φ lies in B0. Such representations were said to be
complete by Kadison [20]. Haag and Kastler [16] studied the problems
involved in taking the C*-algebra model and its complete representations
and suggested reasons for the existence of an underlying model (c).
Using a notion of physical equivalence for models (a) obtained from a
particular model (c) by taking complete representations, they showed
that the physical information obtained by taking faithful representations
was essentially the same in each case.

Recently, Davies and Lewis [4] have considered an axiomatic
approach to statistical physical theories which differs from the con-
ventional approach of Von Neumann [29] and Mackey [23]. This
theory depends upon the set of states being regarded as the basic physical
object, whilst the observables are defined by means of operations on the
states. Haag and Kastler [16] first suggested this approach in the
context of model (c).

In this and later papers the assumptions and results of Lewis and
Davies will be considered in some detail in the abstract and applied to the
special case in which the set of states is represented by some subset either
of the set of positive linear functionals on a C*-algebra 91 or of the set
of positive normal linear functionals on a Von Neumann algebra 33.
Without loss of generality but with considerable saving in technical
detail, 91 will be supposed to have an identity. The principle results which



210 C.M.Edwards:

emerge are the following. The sets of states described above are sufficient
to describe all the models so far proposed, not only for quantum but
also for classical probability theories. An abstract definition of the
restriction of a physical system may be formulated which when applied
to the C*-algebra model explains the necessity of taking representations
of 81. In fact, it is shown that restrictions, in the sense adopted here, are
in one-one correspondence with quasi-equivalent classes of representa-
tions. These results rest heavily on the order structure properties of
C*-algebras and Von Neumann algebras (see [1,11,25,27]).

§ 2. Partially Ordered Vector Spaces

This section is devoted to a description of the results required to
discuss the abstract formulation of statistical physical systems. The reader
is referred to [1,10,12,13,27] for proofs.

A non-empty subset K of a real vector space V is said to be a cone for
V providing that K + KCK, ocKCK, α^O, and Kn(-K)= {0}. The
cone K defines a partial ordering on elements of V, if / ^ g is defined to
mean that f — geK. If K — K = V, V is said to be positively generated
or alternatively, generated by K. An order ideal L of V is a vector subspace
of V such that Q^f^geL implies that / e L. If L is an order ideal in F,
K/L is a cone in V/L and if K generates F, K/L generates V/L. L is said
to be positively generated iί L = LnK — Lr\K. A non-empty convex
subset B of K is said to be a base for K if for each / 6 K, f φ 0, there exist
uniquely geB,α>0 such that f = ag. A linear functional T on F is
said to be positive if T(K)^0 and strictly positive if T(K- {0})>0. K
has a base B if and only if there exists a strictly positive linear functional
e on F and in this case B may be written as {/ : /e K, e(f) =1}. If for

' "' = mί{λ>Q:feλconv(Bu(-B))} (2.1)

where conv(#u(— B)) is the convex hull of jBu( — B), then, providing
that K generates F, ||. ||B is a semi-norm on F and

\\f\\B = M{e(fί) + e(f2):fl,f2eKJ1-f2=f} (2.2)

where e is the strictly positive linear functional corresponding to B.
||. || £ is a norm on F if and only if conv (B u (- B)) is linearly bounded and
under these conditions (F, B) is said to be a base norm space, conv (B u (— B))
contains the open unit ball and is contained in the closed unit ball for the
base norm ||. ||B. When conv(Bu(— B)) is linearly compact it coincides
with the closed unit ball in (F, B).

Let (F, B) be a base norm space with generating coneK. A non-empty
convex subset F of B is said to be a face providing that for / e F such that
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/ = ί/Ί + (1 - ί) /2 with /19 /2 6 5, ί e (0, 1) implies that /1? /2 e F. A non-
empty subset H of K such that H + # C #, aH C H, α ̂  0 and such that
for feH9f = tfι + (l-t)f29fl9f2eK9te(09l) implies fl9f2eH9 is
said to be an extremal set. H is an extremal set of K if and only if H r\B
is a face of B and every extremal set arises in this way. An order ideal L
in V intersects B in a face and K in an extremal set providing Lr\K φ {0}.
Conversely, for each extremal set #, L = H - # is an order ideal.

Let U be a real vector space with generating cone C. The partial
ordering defined by C is said to be almost Archimedean ΰ -λb^a^λb
for some b e C and all λ > 0 implies a = 0 and is said to be Archimedean
ΰ a^λb for some b e C and all λ > 0 implies a :g 0. An element e of C
is said to be an order unit for C if for each a e C/, there exists Λ, > 0 such
that -λe^a^λe. Let

||α||β = inf{λ>0: -Ae^a^/U}. (2.3)

Then || . ||e is a norm on 17 if and only if U is almost Archimedean ordered
in which case (U, e) is said to be an order unit space. [— e, e\ is contained
in the closed unit ball and contains the open unit ball for the order unit
norm || . ||β. If U is Archimedean ordered [—£,£] is the closed unit ball
for the norm \\.\\ e.

Let U be a locally convex Hausdorff space with dual 17* and let
C, C be cones in C7, [7* respectively. Let

C* = {/ : /e 17*, f(a)^09 V α e C} ,

C; = {α : a E U, f (a) ̂  0, Vα e C'} .

Then C* is a cone in £7* if and only if C — C is dense in U and if C is
closed in C7, C* — C* is σ(£7*, C7) dense in 17*. C, C are said to be com-
patible cones if C' = C*, C = Q. This is the case if and only if, either
C = C* and C is closed or C = G; and C is σ(C7*, 17) closed.

Let (F, 5) be a base norm space with closed generating cone K. Then its
dual space F* possesses an order unit e such that B = [f : /e K, e ( f ) = ί }
and the norm on 7* as a dual space coincides with its order unit norm.
Moreover, X, X* are compatible cones and the ordering of F* is Archi-
medean. Hence (F*, e) is a complete order unit space with closed unit
ball \_—e,e~\. F* may be identified with the space of bounded affine
functionals on B in the supremum norm. Conversely, let U be a real
vector space with generating cone C and order unit e and possessing
a locally convex Hausdorff topology τ such that [0, e] is τ-compact.
Then, (17, e) is a complete order unit space and there exists a complete
base norm space (F, B) with generating cone K, norm closed in F, such
that (17, e) is the dual of (F, B) and K, C are compatible cones. F may be
identified with the space of linear functionals on 17, τ-continuous on
norm bounded subsets of U. The topologies τ and σ(U, F) coincide on
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norm bounded subsets of U and on C. Moreover, B = {/ : /e K, e(f)= 1}.
For the dual of this result the reader is referred to [10].

Let U be a complete normed real vector space and let U* be its dual.
Let C, C* be compatible cones in U, U* respectively. For each subset
J of 17, let J° = {/:/eE7*,/(α) = 0, VαeJ} and for each subset L
of I/*, let L0 = {a:aεU,f(a) = Q9 V/eL}. Then, J° is a σ(C7*, 17)
closed subspace of t/*,(J°)0 is the closed subspace of 17 generated by
J,L0 is a norm closed subspace of U and (L0)° is the σ(U*, U) closed
subspace of [7* generated by L. I f J c J n C —JnC, in which case J
is said to be positively generated, J° is an order ideal and if L is positively
generated L0 is an order ideal.

A positively generated, norm closed order ideal J in the complete,
Archimedean ordered order unit space (C7, e) is said to be Archimedean
if when φ:U-> U/J is the canonical mapping, (U/J, φ(e)) is an Archi-
medean ordered order unit space in the quotient ordering. A linear
mapping ψ from the order unit space (U, e) with cone C onto the order
unit space (U', e') with cone C is said to be an order homomorphism if
ψ(C) = C", ψ(e) = e' and the kernel J of ψ is positively generated. An
order ideal J in (17, e) is Archimedean if and only if it is the kernel of some
order homomorphism. The following conditions on a Archimedean
ideal J in (U9 e) are equivalent.

(i) It is the kernel of an order homomorphism which is an open
mapping for the order unit norm topologies,

(ii) (U/J, φ(e)) is complete,

(iii) The quotient norm on U/J is equivalent to the order unit norm
m(U/J9φ(e))9

(iv) J° is positively generated.

In this case J is said to be strongly Archimedean. In particular when
the quotient and order unit norms in U/J coincide, J is said to be strongly
Archimedean and of characteristic unity. There exists a one-one corre-
spondence between Archimedean ideals in (U,e) and σ(U*9 U) closed
faces F of the set B = {f : /e C*, e(f) = 1} which satisfy the condition
that for each a e 17, non-negative on F, there exists ft e C, b ̂  a and
b(f) = a(f) V/e F. A weaker dual of this result is proved in § 4.

Let (V, B) be a complete base norm space with norm closed generating
cone K and let &(V) denote the set of bounded linear mappings from V
to itself. A mapping j from V to itself such that j(K) C K is said to be
positive and the set of all such mappings forms a cone Λ in fi(F), closed
in the strong topology.

A Borel space (&*9 3$) is a space Of together with a set $ of subsets
of Sf which is closed under the formation of countable unions, countable
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intersections and complements and contains £f as an element. Let V
be a real topological vector space with a generating cone K. A mapping
μ: &^>K such that for any set {Mn} of mutually disjoint elements of B,

A » ( U M»)=
\ n = l /

where the sum converges in the topology of V is said to be a positive
V- valued measure on

§ 3. Physical Formulation

This section is devoted to a discussion of the mathematical formula-
tion of the operational approach to statistical physical systems suggested
by Davies and Lewis [4]. The states of the physical system consist of
ensembles of identical copies of the system and it is supposed that it is
possible to perform filtering operations on the states. For each state
/, e(f) denotes a positive real number proportional to the number of
copies in the ensemble. Two states /, 0 may be combined to form a
further state / + # and then clearly e(f + g) = e(f) + e(g). When the
number of copies in the state / is increased in some proportion α > 0,
a new state α/ is formed and clearly e(af) = ae(f). The empty state 0
of the system clearly satisfies e(0) = 0 and in addition, if / Φ 0, e(f) φ 0.
Hence, the set of states forms an abstract cone K and e is a strictly
positive affine functional on K. e is said to be the strength functional.
K can be identified with a generating cone for a real vector space V
and e can be extended to a strictly positive linear functional on V in the
obvious manner. Hence B = {/ : /e K, e(f) = 1} is a base for K. Elements
of B are said to be normalised states and these clearly determine all the
states of the system. Hence, V possesses a semi-norm ||.||β defined by
(2.2) though, in general this need not be a norm on V.

In most statistical approaches to physical theories (see, for example
[23]) it is supposed that the set of states is closed not only under the
formation of finite mixtures, but also under the formation of countable
mixtures. This assumption is equivalent to the postulate that for each
monotone increasing sequence {/„} in K (i.e. m^n implies /m^/J
such that (e(fn)} is bounded above, there exists a unique element / in K
such that fn^f and e(fn)-*e(f). Under these conditions it may be
shown (see [9]) that (V, B) is a complete base norm space. It is not in
general true that K is closed for the base norm though a result of Ellis [13]
shows that the closure B of B is a base for the cone K, the closure of K,
and that (V, B) is a complete base norm space with norm identical to
that in (V, B). Hence, there is little loss of generality in supposing that K
is closed in the base norm. Closing the cone is equivalent to adding



214 C.M.Edwards:

certain possibly "non-physical" states. It was assumed without any
discussion by Davies and Lewis [4] that (V, B) is a complete base norm
space with norm closed cone K. The formation of countable mixtures
of normalised states has been studied by Gerzon [15].

Postulate 1. The set of states of a physical system is represented by
the set of elements of a closed generating cone K for a complete base norm
space (V, B).

An operation j on a state / is a filtering process which changes /
into a new state j(f). Then clearly, e(j(f))^e(f) and the number
e(j(f))/e(f) may be interpreted as the transmission probability of the
state / under the operation j. It follows from the definitions of addi-
tion and scalar multiplication of states that for /, g e K, α^O, j(f + g)
= ./(/)+ 7 (0)> 7(α/) = α7(/) Hence j can be extended to a positive
linear mapping from V to itself in the obvious manner. Moreover,
a simple calculation using (2.2) shows that for /e V, \\j(f)\\B^ 11/11* and
hence that j is an element of the unit ball Q(V)ί of the Banach space
fi(F) of bounded linear operators from V to itself.

Postulate 2. The set & of operations on the physical system is
represented by the set of positive elements in the unit ball of Ά(V).

Since (V, B) is a base norm space, its dual (F*, e) is an order unit space
with σ(V*9 V) closed generating cone K*. Moreover, K, K* are compatible
cones. For each element j of ,̂ the mapping f\-*e (/(/)) is a positive
bounded affine functional on B such that e ( j ( f ) ) ^ e ( f ) = l for / in B
and hence, there exists T(j) in F* such that

(3.1)

(3.2)

for all / in F. It follows that j H T(j) is a mapping from 9 to [0, e]. In
addition, for Te [0, e], let; : F-> F be defined for /e F by

(3.3)

for some g e B. Then, clearly 7 e ̂  and T(j) = T. It follows that the
mapping j H> T(/) sends ^ onto [0, e]. The set Ά — \Q,e~] is said to be
the set of simple observables of the system. Two elements j9 k e & are
said to be ΐsotonic when T(j) = T(k). There is clearly a one-one corre-
spondence between simple observables and isotony classes of operations.

Postulate 3. The set Ά of simple observables of the physical system
is represented by the set [0, e~] in the dual space (F*, e) o/(F, B).

A discussion of the many physically interesting subsets of ̂  and J
will appear elsewhere.



Algebraic Quantum Theory I 215

According to [4], an instrument $ may be regarded as a movable slit
parametrised by the set $ of Borel subsets of some Borel space (̂  ̂ ).
Hence, for M e J*, <?(M) e ̂  and for each set {Mn} of mutually disjoint
elements of #, and each state/,

MΛ)(/)= f <?(MW)(/) (3.4)
1 / n - 1

where the sum is supposed to converge in the base norm topology of
(F, B). In addition, for each state /,

e(*W(Γ>) = e(f) (3-5)

Postulate 4. The set of instruments on the physical system is
represented by the set of ^-valued measures 8 on Borel spaces &&) such

In the Mackey approach [23], £f is always supposed to be some
subset of R In general, for / e K, M e &,

e(g(M) f)/e(f)

is the probability that a measurement with the instrument 8 on the state
/ yields a value in M.

Two instruments <?, δ' both based on (^ &) are said to be isotonic
if for all Me B,

T(*(M))=T(f'(M)) (3.6)

Let δ be an instrument based on (if, 3$) and for M ε jr, define s/(M)eΆ by

(3.7)

Then, clearly M H> s/(M) is a SL- valued measure based on (ί?9 3%) satisfying
^(^} = e. Such a mapping is said to be an observable. It follows from
(3.6) that there is a one-one correspondence between isotony classes of
instruments and observables.

Postulate 5. The set of observables of the physical system is represented
by the set of ^-valued measures si on Borel spaces (^ £8) such that sΛ(Sf) = e.

Let (£el9 a±)9 (^2, #2) be standard Borel spaces (see [22]) and let
δl9 $2 be instruments based on (Sfl9 J^), (y29 J^2) respectively. Theorem 1
of [4] shows that there exists a unique instrument δ on the product Borel
space (̂  x Ϊf2, @] such that for Mt e #l9

x M 2) = ̂ (MJ ^2(M2) . (3.8)

δ is said to be the composition of ̂  and S2 and corresponds to a physical
process in which δ± follows δ2. An instrument δ on («5^ ̂ ) is said to be
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repeatable if for M1? M2 e$9 feK,

e(S(Ml) g ( M 2 ) f ) = e(g(M1 xM2)/). (3.9)

When y is a discrete space, <? is said to be a discrete instrument. Such an
instrument <f on Sf is said to be strongly repeatable if,

(a)

*(r)*(s)f~δr,Λ(r)f9 (3.10)

(b) ^(s)/) = e(/) implies f ( s ) f = f. (3.11)

(c) If Te Ά satisfies T(<ί(s)/) = 0 VsePJeK, then Γ = 0. (3.12)

The full significance of this definition is explained in [4], but repeatable
instruments are those which satisfy Von Neumann's repeatability
hypothesis.

§ 4. Restrictions

The main concern of this section is the study of the restrictions of the
physical system described in § 3. Physically, a restriction is supposed to
be some device which decreases the number of allowed states in a
particular way. Hence a restriction defines a subset H oΐK. The restricted
system must still be a physical system in the sense of § 3, which implies
that H must also be a cone. Moreover, if /e H is a mixture of two other
states /1?/2eK, then clearly it is required that /1?/2eH. Hence, H is
an extremal set in K. Let L = H — H and let F = HnB. Then, in order
to maintain the requirement that H is the set of states of a physical
system, it is clearly required that (L, F) be a complete base norm space
with norm closed cone H. Further, it is clear that for /e L,

I | / U B ^ | | / | | F (4.1)

and that the strictly positive linear functional eF on (L,F) such that
F = {/ : /e H, eF(f) = 1} is the restriction of e to L. Hence, for /e H,

eF(f) = e(f). (4.2)

Let (L*, ep) be the dual space of (L, F). Then, (L*, eF) is a complete order
unit space with σ(L*,L) closed generating cone H*9[—eF,ep] is the
unit ball in (L*, eF) and H, H* are compatible cones. The set of simple
observables of the restricted system is represented by the set [0, eF~] in
H*. However, simple observables of a restriction have an alternative
characterization as simple observables of the unrestricted system where
two are identified when they give identical probabilities on the set H
of states. The annihilator H°( = L° = F°) of H is a σ(F*, F) closed order
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ideal in V*. Let φ : F*-> V*/H° be the canonical mapping. Then φ(K*)
= K*/H° is a generating cone for V*/H° and φ(e) is clearly an order unit
for this quotient ordering. The alternative characterization of the simple
observables of the restricted system is the set (/>([0, ej) in K*/H°. However,
it follows from (4.1) that V*/H° C L* and clearly, K*/H° C H*, [0, φ(e)"\
C[0, eF],0(e) = eF. Hence, identifying the alternative characterizations
of the restricted simple observables gives </>([0, e]) = [0, eF~\. Clearly,
Φ([0, e])C [0, φ(ej] and hence,

W,*]) = [0,φ(*)] = [0,*F]. (4.3)

This condition is clearly equivalent to the following: For each affine
functional Ton H such that ί (0) = 0 and 0 ̂  f (/) ̂  e(f) V /e H9 there
exists an affine functional Γ on 5 such that T(/)= T(/)V/eff and

Since 0(e), eF are order units, it follows from (4.3) that .K*/#0 = #*,
F*/#° = L* and hence that (V?/H°, φ(e)) is a complete order unit space
which may be identified with the dual of (L, F). A result of Ellis [12]
may be utilised to show thaίjF*///0, φ(e)) is also the dual of a further
complete base_norm space (L, LnJ5) with norm closed generating cone
LnK, where L denotes the closure of L in (F, B). Notice that L = (ff °)0.
In addition the order unit norm and quotient norm of V*/H° are identical
and the base norm o£L coincides with its norm as a closed subspace of
(F, B). It follows that Lr^K is the set of states of a further restriction which
has the same simple observables as that described by H. Essentially,
there should be a duality between sets of simple observables of restrictions
and sets of states of restrictions. This difficulty is resolved by choosing
H to be closed in (F, B) for in this case it may be shown that Lr^K
= (H\nK = H and L = L.

Hence the two conditions so far placed on H are that it is a norm
closed extremal set in K and that it possesses the extension property for
bounded positive affine functional described above. The further con-
dition, that H° is positively generated, will be imposed. Physically, it
might be hoped that the set jF/°n[0, e] of simple observables vanishing
in the restricted system forms a set of simple observables of a comple-
mentary restriction. In this case H° would be required to be a complete
order unit space in some way. No such restrictive condition will be
imposed. However, the far weaker requirement, that H° is positively
generated, is adopted.

Postulate 6. The set of states of a restriction of the physical system is
represented by a norm closed extremal set H in K such that, if L = H — H,

(i
cone

HnB,

(i) (L, F) is a complete base norm space with norm closed generating
H
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(ii) For each affine functional f on H such that f (0) = 0 and 0 ̂  f(/)
^ e(f) V /e H, ί/zere exisίs an α#we functional T on K such that 0 ̂  T(f)
Ze(ftVfeKand T ( f ) = f ( f ) V f e H ,

(iii) f/° is positively generated.

An alternative characterization of restrictions in terms of simple
observables follows from the following result.

Theorem 4.1. Let (F, B) be a complete base norm space with norm
closed generating cone K and let (F*, e) be its dual space with σ(V*9 V)
closed generating cone K*. Then, there exists a one-one correspondence
between norm closed extremal sets H in K satisfying the conditions of
Postulate 6 and σ(F*, V) closed strongly Archimedean ideals J in F* of
characteristic unity satisfying the condition that if φ: V*^>V*/J is the
canonical mapping, φ([09e])=[09φ(e)']. This correspondence is defined
by J = H°,H = J0nK. Further, if L = H-H,F = HnB,L is a norm
closed sub space of (F, B) and the norm on (L, F) as a complete base norm
space coincides with its norm as a closed subspace of (F, B).

Proof. Let H be a norm closed extremal set in K satisfying the
conditions of Postulate 6. Then H° is a σ(V*9 F) closed positively
generated order ideal in (V*9e). Let φ: F*->F*/#° be the canonical
mapping and let K*/H° be the generating cone for V*/H° in the quotient
ordering. Since φ is positive, φ(e) is an order unit for V*/H° and </>([0, e~])
C [0, φ(e)]. It follows from 16.11 of [15] that K*/#° with the quotient
norm and the quotient σ(V*9 F) topology may be identified with the dual
of (H\ = (L% = Z the closure of L in (F, B).

Let (L*, ep) be the dual of (L, F) and let H * be the dual cone. Then
(see § 2), (L*9 eF) is a complete order unit space with unit ball [— eF, eF~\.
From (4.1), (4.2) it follows that V*IH»CL*,K*llf>CH*JQ, φ(ej]
C [0, ep] and φ(e) = ep. It follows from Postulate 6 (ii) that for f e [0, eF~]
there exists Te [0, e] such that φ(T) = f. Therefore,

0([0,β]) = [0,0(e)] = [0,βF]. (4.3)

Hence, as was remarked above, since φ(e\ eF are order units it follows
that K*/H° = H* and hence that F*/#° = Z*. In addition, since the
ordering in L* is Archimedean, it follows that the ordering in F*/#°
defined by K*/H° is Archimedean. Hence, H° is an Archimedean ideal
in F* and (V*/H°, φ(e)) is a complete Archimedean ordered order unit
space with unit ball [— φ(e\ φ(e)~\. It follows from the second equality
in (4.3) that \_-φ(e\φ(e}~\ = \_-eF,eF] and hence that (V*/H°,φ(e))
and (L*, eF) are not only isomorphic as partially ordered vector spaces
but are also isometrically isomorphic as Banach spaces. In the following
V*/H° and L* will be identified. It follows from the first equality in (4.3)
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that </>([ — e, ej) = [— φ(e\ φ(ej] and hence φ maps the closed unit ball
in (F*, e) onto the closed unit ball in V*/H° for the order unit norm.
However, a standard property of quotient mappings (see II, 4.14 of [8])
shows that φ maps the closed unit ball in (F*, e) onto a subset of the closed
unit ball, containing the open unit ball, for the quotient norm of V*/H°.
It follows that the order unit and quotient norms of V*/H° coincide and
hence that H° is strongly Archimedean and of characteristic unity.

Further, φ is continuous and open for the σ(V*9 V) topology of F*
and the σ(F*/#°,L) topology of V*/H° and since [Q,e] is σ(V*,V)
compact, being the intersect! on of the unit ball [—e,e] in the dual space
(F*, e) and the σ(F*, F) closed cone K*9 (4.3) shows that [0, φ(ej] is
σ(F*/#°, L) compact. It follows from Theorem 6 of [12] that (V*/H°,φ(e))
is the dual of a complete base norm space (17, A) having a norm closed
generating cone C such that C, K*/H° are compatible cones. Moreover
17 is the space of linear functionals on (V*/H°, φ(e)) which are σ(V*/H°,L)
continuous on order unit norm bounded sets, C is the set of positive
elements of 17 and A is the set of elements / of C such that e(f)= 1.
Since the order unit and quotient norms on F*/#° coincide, it follows
that_U = L,C = LnK,A = LnB. Clearly, Hc(H\πK = LπK. Let
feL9fφH. Then, since H is a closed cone in F, there exists TeF*,
such that T(/)<0, T(g)^Q\/geH (see Theorem 6, 1.6 of [5]). Hence
φ(T)eK*/H° and since K*/H° and (H°)0nK are compatible cones
and 0(T)(/)=Γ(/)<0, /ί(H°)0n_JC. Hence, H = (H\nK and
L = H-H = (#%nK - (H°)0nJC = L. It follows that L is a base norm
closed subspace of (F, 5) and, since the quotient and order unit norms
of V*/H° coincide, that the base norm of (L, F) and the norm of L, as
a closed subspace of (F, B\ coincide.

Conversely, let J be a σ(F*, F) closed strongly Archimedean ideal in
(V*9e) of characteristic unity such that if φ: V*^>V*/J is the canonical
mapping, (/>([0, e]) = [0, </>(e)]. Then, in the quotient ordering (V*/J9 φ(e))
is an Archimedean ordered complete order unit space whose order unit
norm and quotient norm coincide. Further, φ is continuous and open
for the σ(V*, F) topology of F* and the σ(V*/J9 J0) topology of V*/J.
Hence, as above, [09φ(e)'] is σ(V*/J9J0) compact and (J0, J0nB) is a
complete base norm space with norm closed generating cone J0nK and
dual (F*/J, φ(e)). Hence, Postulate 6, (i) and (ii) hold for J0nK and since,
(J0^^)° = G/o)0 = J> Postulate 6 (iii) also holds. This completes the proof
of the theorem.

It follows that the set of restrictions of the physical system has an
alternative characterization in terms of the simple observables of the
system.

Corollary 4.2. There exists a one-one correspondence between restric-
tions of the physical system and σ(V*9 F) closed strongly Archimedean
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ideals J in (V*9 e) of characteristic unity which satisfy the condition
Φ([®9 eΊ)= [Oj Φ(eJ] where φ:V*-^>V*/J is the canonical mapping. The
set of simple observables of the restriction corresponding to J is [0, φ(e)\.

§ 5. Preliminary Results on C*-Algebras

In this section the basic results required for the discussion of the
C*-algebra model for statistical physical theories are given. For the
details in the case of C*-algebras and Von Neumann algebras the reader
is referred to [6, 7] and in the case of £* -algebras to [2, 3].

Let 93 be a Von Neumann algebra acting on the Hubert space X
and let % be its identity, supposed also to be the identity in the Von Neu-
mann algebra &(X) of all bounded linear operators on X. Let 33.,, be the
pre-dual of 93, the space of ultraweakly continuous linear functionals on
93. For ω e 33^, there exist sequences {%„}, {yn} in X such that

Σ | |xπ | | 2<oo, Σ l l )>JI 2 <oo,
»=1 n=ί

and,
OO

ω== Σ ωχnyn ί5'1)
11=1

where, for x, y e X, ωxy(T) = <Tx, y>, V T e 93 and convergence is in the
norm topology of 93 ̂  Let F(93) be the subspace of 93^ consisting of
hermitean linear functionals and let K(93), J5(93) be the subsets of F(93)
consisting of positive elements and positive elements ω such that ω(%) = 1
respectively. JfC(93) is said to be the set of positive normal linear func-
tionals on 93 and £(33) is said to be the set of normal states of 93. For
ω e K(93), there exists a sequence {xn} in X such that

Σ ll*J2<°o
π = l

and

ω= Σ <*>*, (5-2)
n = l

where for x e X, ωx(T) = <Tx, χ>, V T e 93. Moreover,

IH=ω(ββ)= f ||xπ | |2. (5.3)
ιι=l

The following result is a restatement of a well-known theorem for Von
Neumann algebras (see [6]).
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Proposition 5.1. (F(33), 5(93)) is a complete base norm space with norm
closed generating cone K(93) and the base norm coincides with its norm as a
subspace of 33.,.. The dual of (F(93), 5(93)) is the complete order unit space
(F*(93), e%) having the dual cone K*(23) where F*(93) is the space of self-
adjoint elements of 93, K*(93) is the set of positive elements of 33, the order
unit and operator norms coincide and the σ(F*(23), F(93)) topology is the
ultraweak topology.

Let 91 be a C*-algebra with identity % and let C7(2I), C(2I) be the
sets of self-adjoint and positive elements of 91 respectively. Let 91* be the
Banach space dual of 2Ϊ. The following results from 1.1.6 and 12.3.4 of [7].

Proposition 5.2. (t7(2l), e^ is a complete Archimedean ordered order
unit space with norm closed generating cone C(2l) and with the order unit
and C*-algebra norms coinciding. The dual of ((7(21), %) is the complete
base norm space (17* (21), S(2Ϊ)) having dual cone C*(2l) where (7*(21) is the
space of hermitean bounded linear functional on 2Ϊ, C*(2I) is the set of
positive linear functionals on 21 and 5(21) is the set of states of 2ί. The
base norm in (17* (21), S(2l)) coincides with its norm as a subspace of 21*.

To each element / of C*(2I) there corresponds a cyclic representation
πf of 21 on a Hubert space Xf with cyclic vector xf such that for a e 21,

f ( a ) = (πf(a)xf,xfy (5.4)

and 11/11 =/(%) = <*/, x/>. Any two such representations are unitarily
equivalent. Moreover, if g = α/, α > 0, it is possible to choose xg = ofixf

and πf = πg. The representation

π= 0 πf (5.5)
/eS(«I)

acting on the Hubert space

x= 0 xf
/eS(9ϊ)

is said to be the universal representation of 21. Since every essential
representation of 21 is unitarily equivalent to a direct sum of cyclic
representations, up to unitary equivalence, every essential representation
is a sub-representation of some multiple of π. π is a faithful representation
of 2Ϊ and hence is an isometric *-isomorphism between the C*-algebras
21 and π(2I) and in addition π(%) is the identity in Q(X). Let 93 = π(2ϊ)~,
the weak closure of π(2l). Then, denoting the commutant of a subset
93 of &(X) by 93', π(2I)~ = π(2I)", a Von Neumann algebra. 93 is said to be
the Von Neumann envelope of 21. For /e C*(2Ϊ), ωXf is an element of
X(93) and, indeed, the mapping f\->ωxf extends to a mapping f\->ωf

from 2ί* onto 93* mapping (7*(21) onto 7(93), C*(2I) onto K(93) and

15 Commun. math. Phys., Vol. 16
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onto £(33). In particular, this implies that, for ω e K(93), there exists
/ e C*(9I) such that ω = cox/. Hence, Corollary 12.1.3 of [7] may otherwise
be stated as follows.

Proposition 5.3. There exists an isometric isomorphism /H ωf between
the complete base norm spaces (17* (91), S(9I)) and (F(93), 5(93)) which maps
C*(9I) onto JSC(JB) and 5(91) onto J3(93) and satisfies

ωf(π(a)) = f ( a ) (5.6)

V a e 91. Hence, there exists an isometric isomorphism T H T between
(7*(95),eβ) and ίfce second dwα/ (£7**(9I), %) o/ ((7(91), %), w/zic/z maps
K*(93) onto C**(9l) and eβ onto %. This mapping is a homeomorphism for
the ultraweak operator topology and the σ(l/**(9I), (7*(9I)) topology.

Notice that it is the properties of the mapping f^ωf which determines
the representation theory of 91 (see [19]). In the following, 91 and π(9I)
will be identified, as will 9Ϊ* and 93^ by means of Proposition 5.3.

Let 9F denote the smallest Σ*-algebra containing 91. Then, 9F is
said to be the σ-envelope of 91. Let Fσ(9Γ) be the space of Hermitean
linear functional on 9Γ, continuous for the weak sequential topology
and let Kσ(9Iσ), 5σ(9Γ) be the subsets of Fσ(9Γ) consisting of linear func-
tionals v which are, respectively positive, and positive such that v(%) = 1.
Then, as above, (Fσ(9F), £σ(9Iσ)) is a complete base norm space with
norm closed generating cone Kσ(ςΆσ). Moreover, as in Proposition 5.3,
there exists an isometric isomorphism f*->vf from (t/*(9I), 5(91)) onto
(Fσ(9ϊσ),£σ(9F)) mapping C*(9Ϊ) onto Kσ(9tσ), 5(9ί) onto J5σ(9ϊσ) and
satisfying

vff(a) = f ( a ) (5.7)

V a e 9Ϊ.
To each cyclic representation πf of 9ί, there corresponds a unique

projection Ef in 9Γ such that πf is unitarily(

vequivalent to the representa-
tion a h> aEf = Efa on EfX. Hence πf extends to a normal representation
T\^>TEf = EfT of S and similarly to a σ-representation of 9Iσ. Hence,
every essential representation ψ of 91 has a unique extension t//1 to a normal
representation of 93 and a unique extension ψσ to a σ-representation of
9Γ7. Two representations ψι,ψ2 of 9Ϊ are said to be quasi-equivalent if
φ", φ5 have the same kernel 3 in S (see [14]). 3 is an ultraweakly closed
two-sided ideal in 93. Such ideals are weakly closed and there exists a
projection E in the centre of 93 such that 3 = E93E = £93 = 93 E. 1ϊψl9 ψ2

are subrepresentations of π, there exist unique projections Eί9 E2 in
9Γ = 93r, such that, ψl9ψ2 are unitarily equivalent to the representations
a H aEi9 a \-> aE2 respectively and ψί9 ψ2 are quasi-equivalent if and only
if El9 E2 have the same central support E in 93'. Hence, there exists a
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one-one correspondence between quasi-equivalence classes of representa-
tions of 9Ϊ and projections in the centre of 93. Let ψ be an essential re-
presentation of A and let

Then, Hψ is a subset of K(93). Let conv(Hφ) be the convex hull of Hψ

and let conv(/fφ) be its norm closure. Then conv(Hψ) is a norm closed
extremal set in K(93) which can clearly be identified with ~
= K(φn(SB)). φ ι,ψ2 are quasi-equivalent if and only if conv(#φι) = conv(#ψ2)
(see [28]).

A subset fi of 93 ̂  is said to be 9l-invariant if and only if for ω e fi,
a e 91, the linear functional 0*ωα defined for b e 91 by (α*ωα) (b) = ω(α*ftα)
is an element of £, and is said to be 93 -invariant if the same result holds
for α, b E 93. Notice that for ω e K(93) there exists xεX such that ω = ωx.
Hence, £nK(93) is 9I-invariantif and only if for xeXsuch that ωxeΆrΛK(^S)
and αe4,ωβJce£nJC(B). If £nK(93) is norm-closed, it follows that
£nK(93) is 91-in variant if and only if it is S-in variant since 91 is weakly
dense in 93. Hence if fl C $5* is norm closed and positively generated it is
9ί-invariant if and only if it is 93-invariant.

Let 3 be an ultraweakly closed two-sided ideal in 93 and let E be the
projection in the centre of 93 such that 3 = £93 E. Then clearly 93 - £93 E
0 (eβ - E) 93 (eβ - E) and 93/3 maY be identified with (% - E) 93 (eβ - E).
Let J be the self-adjoint part of 3. Then, J + U = 3 and F*(93)/J may be
identified with (es — E) F*(93) (e® — E). The canonical mapping

</> : F*(93H rW = (% - E) 7*(») (ββ - E) (5.8)

is clearly an order homomorphism and hence J is an Archimedean ideal
in 7* (93). Moreover, the order unit norm in (fe-E) F*(93)(%-£),
% — E) clearly coincides with its quotient norm and 0([0, es]) = [0, % — E].
Hence J satisfies the conditions of Theorem 4.1. Conversely, let J be an
ultraweakly closed Archimedean ideal in F*(93) and let (/>:F*(93)
->F*(93)/J be the canonical order homomorphism. Let 3 = J + iJr,
Φ = φ + iφ. Then Φ satisfies the conditions of Lemma 5.1 of [27] and
hence 3 is an ultraweakly closed two-sided ideal in 93. Hence, the following
results has been proved.

Theorem 5.4. Let J be an ultraweakly closed subspace of the complete
order unit space (F*(93), %) of self -adjoint elements of the Von Neumann
algebra 93 and let φ: F*(93)->F*(93)/J be the canonical mapping. Then
J is a strongly Archimedean ideal of characteristic unity satisfying
</>([0, es]) = [0, φ(e^~\ if and only if J is the self -adjoint part of an ultra-
weakly closed two-sided ideal in 93.
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Let H be a norm closed invariant extremal subset of K(%5). Then,
Theorem 4.10 of [11] shows that L = H-H is a norm closed invariant
subspace of 7(93), and it follows from Theorems 4.6, 5.2 of [11] that
#0nK*(93) = L0nK*(93) is an ultraweakly closed invariant extremal
set in K*(93) and that (H\ = L. Proposition 1.1.6 of [6] shows that H°
is the self-adjoint part of an ultraweakly closed two-sided ideal in 95,
Hence, from Theorem 5.4, H° is strongly Archimedean and of characteristic
unity satisfying φ([09 %]) = [0, φ(e^~\ where φ : F*(93)-»F*(93)/#° is
the canonical order homomorphism. Since (H°)0 = L, it follows from
Theorem 4.1 that H is a norm closed extremal subset of K(93) satisfying
the conditions of Postulate 6. Conversely, let H be a norm closed extremal
subset of K(93), let L = H — H and suppose H satisfies the conditions of
Postulate 6. Then, from Theorems 4.1 and 5.4 H° is the self-adjoint part
of an ultraweakly closed two-sided ideal in 93 and (H°)0 = L. Hence,
Theorems 4.6, 5.2 of [11] show that H is an invariant extremal subset of
K(93). Therefore, the following result has been proved.

Theorem 5.5. Let H be a norm closed extremal subset of the cone
.K(23) of positive elements of the pre-dual 93^ of the Von Neumann algebra
93. Then H satisfies the conditions of Postulate 6 if and only if H is
^-invariant.

Notice that Theorems 5.4, 5.5 hold for any Von Neumann algebra
93 and not just the envelope of 21. It is for this reason that, in the proof,
H has been merely said to be invariant rather than 2Ϊ or 93-invariant.
When 93 is an arbitrary Von Neumann algebra no confusion arises and
when 93 is the Von Neumann envelope of 21, the two notions are identical
for H.

§ 6. Algebraic Models

The results of § 5 suggest two possible models for the set K of states
of a physical system. Maintaining the nomenclature of § 1,

(a) The set K(93) of positive normal linear functionals on the
Von Neumann algebra 23 with identity %.

(c) The set C*(2I) of positive linear functionals on a C*-algebra 21
having identity %.

(a) is said to be the Von Neumann algebra model and (c) is said to be
the C*-algebra model. Using Postulate 3, the sets Ά of simple observables
for the models (a), (c) are

(a) The set of positive operators T in 93 such that 0 ̂  T ̂  %.

(c) The set of positive operators T in the Von Neumann envelope 93
of 21 such that O^Γ^
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It follows from Proposition 5.3 that model (c) is merely a particular
case of model (a) since C*(2l) can be identified with K(35) where 33 is the
Von Neumann envelope of 91. This is the key to the whole situation
regarding algebraic theories since it explains why the observables of an
unrestricted system described by a C*-algebra 31 are chosen to be self-
adjoint operators in its Von Neumann envelope. In the following, models
(a) and (c) will be studied together except on those occasions when special
results hold in the more restrictive situation of model (c).

It is not immediately obvious in either case what the operations are
in general, though it is clear from Postulate 5 that the observables are
merely measures j/ on some Borel space (^ $} taking values in SL and
satisfying &/(£?) = e%.

It is instructive to consider at this stage how conventional algebraic
quantum theory fits into this description. The set of states chosen here
is precisely the same as that in the conventional description. However, the
sets of simple observables and observables described by Postulates 3
and 5 are much larger than the usual sets. Conventionally, the simple
observables are merely projection operators in 33 whilst the observables
are self-adjoint operators in 33 and hence may be identified with projec-
tion-valued measures on R In fact, the set of projection operators in 33
may be identified with the set of extreme points of the compact convex
set Ά=[0,e] (see Theorem 4, [18]). It follows that the conventional
simple observables are the extreme points of $L whilst the conventional
observables are Borel measures concentrated on compact subsets of IR
and taking values in the set of extreme points of Ά. It follows that the
conventional simple observables, at least, have an abstract characteri-
zation.

The restrictions of the physical system described by models (a) and (c)
are now examined. It follows from Theorems 5.4, 5.5 that it suffices to
study the ultraweakly closed two-sided ideals in 33. For each such ideal
3, let E be the projection in the centre of 33 such that 3 = £33£. Then, it
is clear from Postulate 6 that the set of states of the corresponding
restricted system is H = J0πK(B) and that the set of simple observables
of the restricted system is [0, % — E] in (% — E) 33 (% — E). Hence,

#={ω:ωe£(33),ω(£TE) = 0,VΓe93}. (6.1)

Using the expansion (5.2) for ωe#, it follows that H may be identified
with K((e^ — E)^B(% — £)) the set of positive normal linear functional
on the Von Neumann algebra (% - E) 93 (eβ - E).

Theorem 6.1. In the Von Neumann algebra and the C*-algebra models,
there exists a one-one correspondence between restrictions of the system
and projections in the centre of 93. For each such projection E, the set of
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states of the corresponding restricted system is K((e^ — E)B(e,B — E))
and the set of simple observables of the restricted system is the set [0, e<% — E}

i n ( -

In the C* -algebra model it is possible to say a little more. It was
remarked in §5 that there exists a one-one correspondence between
projections in the centre of 95 and quasi-equivalence classes of representa-
tions of 91. It was pointed out that for each essential representation ψ
in a particular quasi-equivalence class K(ψ(<ίl)~) = K(ψn(<&)) was the
same and could be identified with a norm closed extremal set in
namely the set

where E' is the central projection corresponding to the equivalence class.
Hence K(tp(2I)~) may be identified with K(E'&Ef). Moreover, the kernel
of ψn is uniquely determined by the quasi-equivalence class to which φ
belongs which implies that tp(9ί)~ is defined uniquely by the quasi-
equivalence class containing ψ up to isomorphism. Hence, using Theorem
6.1, the following result holds.

Theorem 6.2. In the C* -algebra model, there exists a one-one corre-
spondence between restrictions of the physical system and quasi-equivalence
classes of representations 0/91. The set of states of a restricted system may
be identified with K(ιp(9ϊ)~), where ψ is any representation in the corre-
sponding equivalence class, and the set of simple observables of the restricted
system may be identified with the set [0, ψ(emj] in φ(9l)~.

This is the principle result which associates the abstract formulation
with the usual approach to algebraic quantum theory.

§ 7. Examples

The results so far obtained have been for C*-algebras with identity.
However, the existence of the identity plays no fundamental role in the
theory since it is always possible to adjoin an identity with little significant
change in the results obtained. In the two examples considered the
C*-algebra has no identity.

(i) Let 5I = fi(£(Y), the C*-algebra of compact operators on some
Hubert space Y. Then 91* may be identified with the space Z&(Y) of
trace class operators on Y (see 4.1, 12.1 of [7]), where for /e9ϊ*, the
corresponding element ρ^ of Zd(Y) satisfies

f ( a ) = Tr(ρfa) Vαe9I .

The mapping / H ρf is isometric for the trace norm in 3X£( Y) and maps
C*(9I) onto the set X£(Y)+ of positive elements ofZH(Y) and S(9l) onto
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those elements of 2(£(Y)+ of trace unity. In addition, the dual ZH(Y)*
of 3X£( Y) may be identified with £( Y) since every bounded linear func-
tional on XH(Y) is of the form ρ\^Tr(Tρ) for some unique Tefi(Y).
Hence the Von Neumann envelope 93 of 21 may be identified with £( Y).
Hence, in the C*-algebra model corresponding to 21, the set of states
is represented by the set of positive trace class operators on Y whilst the set
of observables is represented by the set of measures on Borel spaces
(y, 0ί) taking values in the set of self-adjoint operators T in £( Y) such
that OίgTlΞ/, the identity in £(Y). This model is obviously closely
connected to the conventional model for quantum mechanics. The only
difference occurs in the set of observables which in the C*-algebra model
is larger than in the conventional model.

Further, since £(Y) is a factor, there are no non-trivial projections
in its centre and hence no restrictions of the associated quantum
mechanical system.

(ii) Let Ω be a separable locally compact Hausdorff space and let
21 be the C*-algebra #0(P) of continuous functions on Ω taking arbitrarily
small values outside compact subsets of Ω. Then 21* may be identified
with JK(Ω)9 the Banach space of complex Borel measures of finite total
variation on Ω (see [17]). Then L/*(2t) is the subset of J^(Ω) consisting of
real measures, C*(2Ϊ) is the subset of (7* (21) consisting of positive
measures and S(2I) is the set of probability measures. The dual (̂ί2)*
of J((Ω\ which may be identified with the Von Neumann envelope 93
of 2Ϊ is a large, unwieldy space. Hence, the set of all possible observables
is difficult to describe. However, Jt(G£f contains as a closed subspace
the set &(Ω) of bounded Borel functions on Ω. Hence, whilst K(23)
describes the set of states of the conventional model for classical probability
theory, the observables of the C*-algebra model form a much larger set
than the set of random variables in the conventional model.

Since 95 is commutative, it possesses many central projections. It
follows that plenty of restrictions exist in general, though it is by no
means clear what they all are. However, it is clear that the characteristic
function χM of each Borel subset M of Ω is such a projection. The corre-
sponding set of states of the restricted system consists of those measures
on Ω, with support contained in M.

§ 8. Concluding Remarks

The principle feature of the theory described above is that, as was
shown in § 8, the sets of states of the conventional models for quantum
and classical probability theories occur as the sets of states in two C*-
algebra models. Therefore, although the C*-algebra approach is merely
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an example of the general formulation, it is sufficiently general as to
contain the most important physical examples.

In examining the examples in § 8, certain interesting questions arise.
The observables as described by the C*-algebra approach are far more
numerous than those described by the conventional models. One
might reasonably ask why this feature of the theory occurs. Firstly,
conventional observables are described by projection-valued measures
and not by positive operator-valued measures which occur in the
C*-algebra approach. It is an essential part of the operational approach
that instruments should be regarded as ^-valued measures, since it
is only in this case that compositions of instruments can be formed.
However, it has been remarked that the conventional observables are
described as extreme J-valued measures. Secondly, the conventional
observables in quantum mechanics have as their measurement space
some subset of IR, whilst the operational approach allows arbitrary Borel
spaces. In fact this is an unimportant difference since the indications are
that the Borel spaces must be standard and every standard Borel space
is Borel isomorphic either to a countable set or the unit interval. The
third and most important difference between the conventional models
and the associated C* -algebra models lies in the choice of C* -algebra
in which the operator-valued measures take values. In the quantum case
the algebra in which the measures take values is £(7) in both the con-
ventional and the C*-algebra approach. However, in the classical case
the algebra in which the conventional observables are defined is &(Ω)
whilst in the C*-algebra approach the observables are defined in a much
larger space. However, it is interesting to note that the σ-envelope of
£(£(Y) coincides with its Von Neumann envelope £(7) whilst the
σ-envelope of ^0(Ω) is &(Ω). It follows that the conventional observables
are measures taking values in the σ-envelopes of the related C*-algebras
in both cases.

In the abstract, it is possible to place further conditions on (V, B)
making more restrictive classes of operation, instrument and observable
available. Some of these conditions have some physical motivation. In
fact, one can imitate Haag and Kastler's notion of physical equivalence
of states to define a topology on (V, B) and if, in addition, the existence of
basic, or pure, states is assumed, it is a short step to make (V9 B) into the
dual of an order unit space (U, e). This is, of course, the case in the
C*-algebra model. By doing this, a large number of different classes of
operations and simple observables are automatically defined depending
upon their σ(V, U) continuity properties. In particular, since the simple
observables may be regarded as positive affine functionals on B of norm
not greater than unity, the two relevant classes of simple observables
are those σ(F, U) continuous on B and those which are the pointwise
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limits of σ(F, 17) continuous functions on B. In the C*-algebra model
corresponding to 9Ϊ, these lead to positive operators of norm not greater
than unity in 91 and its σ-envelope 9Iσ, respectively.

Associated with each class of simple observables, there is a different
class of restrictions. Since the whole problem summarised above is
intimately connected with subsets of the set of operations, the details
will not be given here but will be the subject of a further paper.
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