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Abstract. We consider a self-interacting scalar boson field in two-dimensional space-
time with self-interaction given by an arbitrary Wick polynomial of even degree in the field.
It is shown that the field theory can be constructed in a Hubert space of physical States. The
hamiltonian is a positive self-adjoint operator possessing a physical vacuum. The method
of proof consists of imposing and then removing three cutoffs: a box cutoff, an ultraviolet
cutoff, and a space cutoff. As the first two are removed the resolvents of the cutoff hamil-
tonians converge uniformly and this leads to the self-adjointness of the spatially cutoff
hamiltonian.

§ 1. Introduction and Discussion of Results

In this paper we consider the self-interacting boson field in two-
dimensional space-time with hamiltonian given formally as

Hformal = H0 + λS:P(Φ(*)):dx (1.1)

where H0 is the free hamiltonian for the mass w > 0,

P is an arbitrary polynomial of even degree,

and
λ, the coupling constant, is taken equal to 1

in this paper unless otherwise indicated.

From perturbation theory considerations we expect this model,
when rigorously treated, to provide a Lorentz-covariant local quantum
field theory with nontrivial scattering. This is the motivation for this
study in which we take the first steps towards a field theory.

As has been emphasized by Wightman (see, for example, [21]), a
formal expression for the hamiltonian like (1.1) is highly singular and
must be "cutoff" or "butchered" if we wish to use the interaction picture
or to work in Fock space. For instance, a version of Haag's theorem
[21, § VI] states that either we must destroy the translation invariance
of the density :P(φ(x)): in (1.1) or else we must work with a strange
representation of the commutation relations (and cannot use Fock
space).
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We butcher. Two standard methods are to introduce into the inter-
action hamiltonian a spatial cutoff function g(x) whose physical meaning
is that particles interact only in a bounded region of space, or to place
the world in a large box. For convenience we do both, and, in addition,
impose an ultraviolet cutoff on the momentum the particles are allowed
to have. This last cutoff also makes the hamiltonian less singular; in
particular, it produces an interaction term that is bounded below.
Finally, of course, we must remove all the cutoffs and investigate the
sense in which the cutoff or approximate theories converge, thereby
deducing properties of the theory without cutoffs.

We now describe the spatial cutoff. The boson Fock space 3F is the
direct sum J^= £ 0 J^w where J^" is the space of symmetric square

n

integrable functions of n (momentum) variables. The field at t = 0 is

(1.2)

where μ(k) = (/c2 + w2)1/2, and the annihilation and creation operators
are normalized by

[a(k),a*(k')'] = δ(k-W).

The power of the field, :φp(x):, Wick ordered by placing creators on the
left and annihilators on the right, lacks meaning as an operator on Jζ
but is a densely defined bilinear form. However when smeared with g(x\

is a densely defined operator on J^(by (1.3) and Lemma 4.1) where we
take g(x) to be an infinitely differentiable function of compact support,
equal to 1 on a large set ( — X, X\ and satisfying 0 ̂  g(x) ^ 1. By taking
Fourier transforms we find that

p P
, ί **(-*ι) - **(-*/)
/

a(kj+1)...a(kp)g(k1 + .+kp) (1.3)

We replace the formal hamiltonian of (1.1) with the spatially cutoff

H(g) = H0 + λHM = H0 + λ$ g(x) :P(φ(x)): dx , (1.4)

which is a densely defined operator on Ĵ .
The completely cutoff interaction hamiltonian HI }K>v(g) and full

hamiltonian Hκ>v(g) are defined in the next section. The subscript V
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stands for the volume of the enclosing box, and K for the ultraviolet cutoff
on the modes that contribute to the hamiltonian.

By unravelling the Wick ordering it is seen [2, Lemma 5.2] that
HI>κ>v(g) is bounded below, HI>KtV(g) ^ — A(\nK)n, where A is a constant
independent of K and V. (The assumption that P(y) has even degree has
entered here.) We can by a unitary transformation bring Hκv(g) into the
form

d2 d2

on L2(RM), where A = ^—^- + ••• + -̂ —5-, M is the number of modes
dpi dp2M

that are not cutoff, and U is a polynomial that is bounded below. By a
theorem of Jaffe [12, p. 35], we then deduce that Hκ>v(g) is essentially self-
adjoint on the domain generated from the Fock vacuum Ω0 = (1, 0, 0, . . .)
by the cutoff field algebra.

The next step is to remove the momentum cutoffs by letting K and V
approach infinity. In [2] Glimm proved that H(g) is semibounded by
using a method of Nelson [16]. This method consists of studying the
approximate hamiltonians Hκv(g) in a representation which permits
the use of the Feynman-Kac formula. We employ the same technique
to demonstrate that as K, F->oo, the resolvents of Hκ>v(g), Rκ>v(z)
= (Hκ>v(g) — z)"1, converge uniformly (Theorem 5.3). This enables us to
prove that H(g\ with momentum cutoffs removed, is essentially self-
adjoint on its natural domain of definition, 3) = D(H0)πD(Hj(g))
(Theorem 6.3).

Glimm and Jaffe, in a series of papers [5-7], have carried out a
program for the φ4 model in two dimensions, with all cutoffs removed,
in which they verify most of the axioms of the Haag-Kastler scheme
[9, 10], and several of the Wightman axioms [19]. By their methods,
many of which are not restricted to φ4, we can, as a consequence of our
theorems, remove the spatial cut-off for the P(φ) model and verify a
number of the axioms.

First, we can obtain a dynamics, independent of the cutoff, for
bounded functions of the free fields localized in a bounded region of
space. More precisely, let B be a bounded open region of space, and define
&(B) as the von Neumann algebra of operators generated by the spectral
projections of all the fields φ(f) and π(/) where suppfcB and π is the
field canonically conjugate to φ,

*(*) = - 1 7 2 - ieikxla*(-k) - *(*)] μ(k^2dk . (1.5)

We time translate Aε$(B) in the Heisenberg picture

(1.6)
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Then by a theorem of Segal [18, Theorem 3] the essential self-adjoin tness
of H(g) on 9) implies (i) that σt(A) is independent of g(x) provided that
g(x) = 1 on Bt and (ii) that σt(A) e &(Bt), where Bt is the region B expanded
by t (the speed of light has been taken to be one). A proof of this theorem
is given in [5] except that it is shown only that σt(A)ε&t(By where
B't = R — Bt and 31' is the commutant of ̂  the proof is completed by the
duality theorem of Araki, &(B') = 3%(B)f. Thus the spatial cutoff has been
removed as far as the dynamics of local algebras is concerned, and the
resulting theory is local.

The fact that the resolvents of Hκv(g) converge uniformly to the
resolvent of H(g) as K, F->oo leads to the existence of a unique vacuum
vector Ωg for H(g) (Theorem 6.4). The proof of this statement, which is
given in [6, § 2], again illustrates how we take advantage of the more
manageable cutoff hamiltonians. The result is first proved for Hκ>v(g)
and then transferred to H(g) by means of the uniform convergence of
the resolvents.

After Glimm and Jaffe (see [6, § 5] and [7] for full details), we now
indicate how the space cutoff g(x) can be completely removed from the
theory with the aid of the vacuum vectors Ωg. By Haag's theorem, the
theory without any cutoffs cannot exist on Fock space and the pheno-
menon of changing Hubert spaces arises.

Let Eg be the ground state energy of H(g\ H(g)Ωg = EgΩg. Then as
g(x)-+ί on ( — 00,00), Eg-^> — oo [8], and (in first order perturbation
theory) Ωg converges weakly to zero, difficulties anticipated from Haag's
theorem. On the other hand we do get better behavior from the expecta-
tion values

(1.7)

where A is in the C*-algebra si of bounded functions of the local field φ.
(The self-adjoint elements of si are the observables of the theory.) Now
ωg is a positive linear functional of norm one in si*, the dual of si\ that
is, ωg is a state in the sense of C*-algebras. From compactness arguments
we deduce that as #(*;)-» 1, a subsequence of the ωg converges:

ω^n->ωej/*. (1.8)

According to the Gelfand-Segal-Naimark construction [15], ω defines
an inner product on a new Hubert space J^en where the operators A of si
are represented by operators Aτen. ^en is the physical Hubert space for
the renormalized or cutoff-free theory.

The Heisenberg dynamics (1.6) obtained above gives rise to a dynamics
in jFren:
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where U(t) is a one-parameter strongly continuous group of unitary
operators in J^en. The physical hamiltonian H is defined as the generator
of this group, U(t) = e~ίtH; H is positive and has Ω as a vacuum vector,
HΩ = 0. Ω is the physical vacuum. In addition, it is possible to obtain
space translations and a physical momentum operator with the expected
properties. It should be mentioned that in order to accomplish the above
construction, Glimm and Jaffe found it necessary to modify slightly the
definition (1.7) of ωg by averaging over space.

In a sense this summary of the physical theory is deceiving because
it ignores how remote the theory is on J^en. We can ask: Is the vacuum
Ω unique? Does Ω belong to an invariant domain for the fields in '̂en?
Does the energy-momentum spectrum permit the application of the
Haag-Ruelle scattering theory? Such questions will ultimately be
answered by means of the tenuous link between the physical theory and
the cutoff theory expressed by the limit (1.8). As a first step towards
controlling this limit, Glimm and Jaffe [6, Theorem 5.2.1] have bounded
the rate at which the vacuum energy Eg diverges:

\Eβ\^ const. |supp^|,

where supp^ is the set of points whose distance from suppg is less
than 1. As a consequence of this estimate, the physical representation
A^Aren is locally Fock [7]; that is, for A localized in a bounded region
B of space-time, Aren = UBAU£ where UB is some unitary transformation
from Fock space to J^en. In fact, the locally Fock property has already
been invoked in the above construction to produce the convergent sub-
sequence of (1.8) from a convergent subnet and to extend the physical
representation to all of j/; its practical significance is that it enables us to
define physical fields and to establish local properties of the physical
theory by working in Fock space.

§ 2..The Approximate Hamiltonians Hκv(g) and β-space

In the remainder of the paper the hamiltonian always includes the
spatial cutoff; however we shall frequently suppress the cutoff function
g in the notation.

If we place the system in a large box of volume V (in one space
dimension the "box" is the line segment [—F/2, F/2]), and impose
periodic boundary conditions on the wave functions, then the momentum
space variables k e R are replaced by discrete variables keΓv where the
lattice
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The appropriate Fock space is JV = Σ ®^v where 3Fγ is the space
n

of symmetric square summable functions on (Γv)
n = Γv xΓF x ••• xΓF.

For our purposes it is more convenient to regard Jv as a subspace of 3P
consisting of functions which are constant around lattice points; that is,

if Ψ,(k1,...kJ

where [fe]F is the lattice point closest to k:

Let ̂ κv be the subspace of ̂ v consisting of functions with support
cutoff at K > 0; that is, Ψn(kl9 . . . few) = 0 if [feJF φ Γκ>v for some 1 ̂  i ̂  n,
where

The annihilation and creation operators in the box we define as

l/2 π/F

ί β ίΛ + OΛ (2.1)
-π/F

where fe e ΓF and αs stands for a or α*.
We can now define the fully butchered hamiltonian. The cutoff free

hamiltonian is
Ho.κ, v= Σ

keΓκ>v

We approximate the field (1.2) and its powers by

Φκ,v(β) = (WΓ112 Σ [&(-
keΓκ,v

and
l2Σ(r] Σ ^(-fe1)...α^(-/c j)α

\JJ kteΓκv

F/2

where gv(k) = J eikxg(x)dx.
-V/2

(For all boxes [ — F/2, F/2] containing the support of g, gv(k) no
longer depends on F; in the following we assume that we are dealing
with large enough V and we drop the subscript on gv.)

The cutoff interaction hamiltonian is

HIΛy(g) = ΦI:V(9} . + b2n^ -.φlly^g): + +b0. (2.3)
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Finally the fully cutoff hamiltonian is

Hκ,v(g) = H0>κ,v + HI>K)V(g). (2.4)

We note that av,HOKV,HIK>v(g), and HK}V(g) are operators on the
whole spaced but that they leave ^κ>v invariant.

We shall determine the sense in which Hκ>v(g) approximates H(g):
as a first step it is easy to verify that Hκ>v(g) converges in the sense of
bilinear forms to H(g) as K, F-»oo, on the set of states with a finite
number of particles and bounded momentum.

We now introduce "Q-space" [1,2] which is a new representation
of the Hubert space & in which the interaction hamiltonian Hj(g)
becomes a multiplication operator while the free hamiltonian becomes
a differential operator. In this sense the hamiltonian in Q-space is
mathematically more accessible and, in particular, we obtain an explicit
expression for the semigroup e~

tHκ>v(9} (see the next section).
Physically, Q-space is also a familiar object, for it is obtained by

regarding the fields φ(x) and π(x), defined in (1.2) and (1.5), as a collection
of coupled harmonic oscillators each expressed in the Schroedinger
representation. More precisely, we expand the cutoff fields in terms of
sines and cosines.

keΓK)V

fcΦO

fcΦO

where for k Φ 0,

L/2 [a$( -k) + av(k) + a$(k) + av( - kj] ,
z,

l-m = 4rμ(kΓll2[.<

p- ι*ι = y

ίo = (2m)-1/2 [β?(0) + αr(0)], Po = i-y [α?(0) - αF(0)] .

It is easily checked that HIιKtV(g) is a polynomial in the qk's, while

HO,K,V = ±- Σ [
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The set of pk and qk defined in this way are canonical variables for the
feth harmonic oscillator :

[«fc, Λ'] = iδkv > f°r k, kr eΓκ>v.

The Schroedinger representation for these oscillators is realized on
1 P

L2(RM) where qk is multiplication by qk and pk is the operator -- - — .
i dqk

Here M is the number of oscillators, or number of points in Γκv. Since
we are interested in the limit M-»oo we normalize the total measure on
R to be 1 so that infinite products are well-defined. We introduce
<2(fc) = (R, ρk(qk) dqk), the real line with gaussian measure

Qκv= (X) Q(k\ RM with product measure
keΓκ,v

Qκ,v(<l)dq= Π
keΓκ,v

Qv = (X) Q(k) with product measure
keΓv

Qv(q)dq = Π Qk(qk)dqk.
keΓv

By von Neumann's uniqueness theorem for irreducible representations
of a finite number of canonical variables we know that there is a unitary
equivalence WKfV between 3FK^V and L2(QKV) which sends qk into multi-

plication by qk in the factor Q(k) and pk into the operator ρk

 1/2 -- - — ρ£/2

i 3^fk

acting in Q(k). We shall be concerned with the limit K, F->oo. For con-
venience we shall remove the box cutoff with a sequence of boxes whose
volumes are {F0, 2 F0, . . . 2

 /F0, . . .} for some fixed F0. This is not essential
but it allows us, for V< V, to regard JV as a subspace of 3FV, and Qv as a
subspace of Qv>. (The final results are independent of the particular
sequence used.) Thus we are dealing with a sequence of spaces and
unitary maps Wκv: L2(QK)V)-^>^K,V, where for V^ V, K ^ Kf we have
the inclusions &rκ,v£&:κ',vι> L2(Qκ,v)tL2(Qκ, v), WKtVCWK,tV.\ more-
over the sequence 3FKtV is dense in ^. This suggests that the Qκv converge
to some measure space Q and L2(Q) is unitarily equivalent to Ĵ . Such a
unitary equivalence is explicitly constructed in [1]. In fact, its existence
is guaranteed by a theorem of Gelfand and Naimark [15] : the operators
{eiaqk \aGR,keΓκ>v for some K, V] form a maximal abelian C*-algebra
si on J^and thus there exist a positive measure dv on the set Jί of maximal
ideals of the algebra si and a unitary map W from L2(Jί, dv) onto 3F
which diagonalizes si. Actually we never need the whole space Q = (Jt,dv).
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We transform the above discussion into the sketch of a proof of a
theorem by stating:

Theorem 2.1. There is a unitary equivalence W between 3Fand L2(Q)
for some (positive) measure space Q,

W: L2(Q)^^ with the following properties:
(i) the space Q contains Qv and Qκ,v as factors;

(ii) Wv= W\L2(Qv) is a unitary equivalence between 2FV and L2(QV);
(iii) Wκv=Wy\L2(Qκv) is a unitary equivalence between 3PKV and

L2(Qκ,v);'
(iv) Wyl = Ω0 where 1 eL2(δκ) ιs the constant function and Ω0 the

Fock vacuum;
(v) WylqkWv is multiplication by qk in the factor L2(Q(k)\ keΓv;

(iv) Wy l pk Wv is the operator ρΓ1/2 — oV2 in the factor L2(Q(k)\
i dqk

&i)W^H0tKfVWv= Σ Hμ(k} where
keΓκ,v

1 / d \2 d
fj I I I ιι i h-\ rί

u(k) — ^ I 7 I '^ r^\ /^Lk i2 \dqk] dqk

acting on L2(Q(k));
(viii) Wy1 ''φκ,v(9): Wv is a polynomial in Qκ,v

By virtue of this theorem we identify 3FV with L2(QV\ ^κv with
^2(Qκ,v\ HI,K,V with a polynomial HI)KtV(q) in Qκ>v, and H0 κv with
the differential operator in L2(QKV) defined in (vii).

§ 3. The Feynman-Kac Formula [2, 16]

In the β-space representation there is an explicit expression for the
semigroup e~tHκ>v(9) as an integral over path space.

Let C be the space of continuous paths q(s) in QK)V, 0^s<oo.
We assign a measure dQK>v to C that is intrinsically associated with the
semigroup exp( — tH0 κ>v). As shown in [16], for φeL2(β(/c))

(e-ta»<»ψ) (q) = ί p[(q, q') ψ(tf) ρk(q')dq', (3.1)
where

+ μq'2. (3.2)
l-e~2μt

Thus for a path qk(s) in Q(k) we define the conditional probability

Prfak ^ «*(ί) < «ί + dqk I β*(0) = qk} = pk(qk, q'k) Qk(q'k)dqk .

On Qκ,v = <2) β(Ό we use the product measure and assign a gaussian
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distribution to the initial point g(0) to arrive at the following definition:
Let B be the set of paths q(s) in C satisfying q(st) eBhl^i^ N, where Bt

is a Borel set in Qκ>v, and 0 = s1 < s2 < - < SN. Then the measure of B is

)^^ps/~SN-i(q(sN-1l q(sN)) Qκ(q(sN)

where

P{κ(q,q') = Π Pί(ί*,«ϋ. (3-3)

These sets B generate the σ-field of measurable subsets of C.
It is easy to show that Hj κv e Lp(QKV) for all p < oo (see Lemma 4.3),

that [2, Lemma 6.1]

Iκ,v(t)=SHl9KtV(q(s))ds (3.4)
o

belongs to Lp(C, dQK,v) f°r a^ P < °°j an(3 trιat

where 7 is a positive integer and || ||j. is the Lj norm in Lj(C, dQK>v) or
L7 (βKjF) depending on the context.

The Feynman-Kac formula expresses the operator exp(— tHKV) in
terms of an integral over path space (see, for example, [12]):

(Φ, exp(- tHKtV) Ψ) = J ΦfeW) exp(-/KjF(ί)) Ψ(q(t))dQκ,v , (3.5)

where Φ, Ψ belong to L2(QKίV\ or equivalently to ̂ KiV.
We shall frequently omit the subscripts on dQKV in a path integral

like (3.5), and by dQ we mean that the integration takes place over the
paths C in some Qκ>,v> that contains all the Q spaces involved in the
integrand. Thus in (3.5), ΦJKίV, or Ψ may be functions only of the
variables in smaller Q spaces. When variables appear nowhere in the
integrand they are simply integrated out and make no contribution;
this last statement is a simple consequence of the relation

Formula (3.5) may also be written in vector form

(πp(-tHκ>v)Ψ)(q)= f dQqe-^^Ψ(q(t)) (3.6)

where dQq is the measure induced by dQ on paths starting at q, q(0) = q;
in terms of dQ, dQ = ρ(q)dq dQq.
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§ 4. Properties of the Approximate Hamiltonians

In this section we describe the convergence of Hj κv as K and
F-»oo, and we summarize the properties of Hκv and Hj κv which are
used in the sequel and which were proved in [2].

Lemmas 4.1 and 4.2 provide estimates for the kernels of HIKV.
Lemma 4.4 is essentially Lemma 5.3 of [2] except that an error in the
rate of convergence is corrected: the rate is given by the factor (lnK)2n~1/K
of Lemma 4.2, and not by l/K. This error produces no essential change
in the final conclusions of [2] and these are reproduced in Lemmas 4.6
to 4.8, and Theorem 4.9.

Lemma 4.1. Let

7 r d*ι...dfc,-ι
^ ( ) Λ "' _J

β AiίfcJ μ(fc2 - kj ... μ(k - kn^) '

Then

Proof. By a long and direct proof it can be shown that G(k) is actually
1/!^)* but it is simpler to sacrifice a power of ln|fe| and to use

the modified Bessel function

KQ(X) and K'Q(X) are well-behaved functions at infinity,

UN; L \ w

while

= - In |x| + 7 + o(x) as |x| -> 0 . (4.2)

Here γ is Euler's constant and the term o(x) represents an absolutely
convergent power series.

Since l/μ(fc) is in Lp for all p > 1, it follows from Young's inequality
[20, § 4.2, Lemma 7] that G(/c) is in L2. Thus by taking Fourier transforms
we find from (4.1) that

G(k) = a J e-ίkxlK0(mxJ]ndx, (4.3)
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where a is some constant. We split up the integral into two parts :

Ξ = α f e'ίkxKn

0(mx)dx + a J e~ikxKn

Q(mx)dx .

Since outside of any neighborhood of the origin K%~1(x)K'0(x) is abso-
lutely integrable, we can integrate by parts to obtain G2(fc) = 0(l/|fc|). For
G1 we substitute from (4,2), integrate by parts, and find that

1 m
G,(k) = a J e- **|ln—|χj

Now

k3.

ft

(fc>0)

Since (lnj;)r is integrable at zero,

J e-iy(lny)rdy = const. + J Q~iy(\ny)rdy
o i

by integrating by parts. Therefore

and the lemma follows. q.e.d.
Lemma 4.1 implies, in particular, that the kernels appearing in (2.2)

are in L2. It should be mentioned that a weaker form of the next lemma,
namely, F(fe, λ) = 0(λ~1+ε\ is sufficient for the rest of the paper and can
be proved with less trouble [17].

Lemma 4.2.

)= ί Λt J dk2... ] dkn_,

= O - - - , uniformly in k.
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Proof. Again a direct proof is possible, but by taking Fourier trans-
forms we reduce the lemma to an exercise in advanced calculus.

The proof proceeds as in the previous lemma, except that instead
of (4.3) we obtain

F(fc, λ) = const. J e-ik*ίK0(mxϊ]H-1 f ( x , λ)dx, (4.4)
— oo

where

Integrating by parts,

eixkι

J IX

For |x| ̂  1 we can estimate

(4'5)

uniformly in x. To estimate /(x, λ) for 0 < x < 1, we expand:

1 f dy iy= f
J i i Λ i Λ Λ J\y\>Xλ μ(y/χ) \y\>Xλ Λ , ™

i Π

-y 2

where the series converges uniformly in y when λ>m. Since for r ̂  1,

we find that

f(x,λ)= J — dy + θ(-U, (4.6)

uniformly for x in (0,1).
The same estimate holds for -1 < x < 0 since /(x, λ) = /(|x|, λ).

Finally, the function

eίy

y ξ y
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behaves as 21ny+ O(l) for small ξ, and

ξ. From (4.4), (4.5), and (4.6),

+ 0(^)| for large

\F(k, λ)\ ̂  const.
\x\>ί

ί
W < ι

'-. const.
\x\<l

+ 0

We treat the integral in two parts:

J

= iwί<λ<

T f

From (4.2) and the behavior of g(y) at zero, the first term is dominated by

- 2 1 n ( - - | + const.
n-l

(-21n|y| +const.) dj> =
n-l

The second term equals

κ ι ι < A

Therefore

n-l

/(In λ)n

\ λ
-i const. \n ^ sin y ky

We substitute for K0 its series and, for simplicity, treat only the worst term,
1 " sin v k v

—— cos -f- dy. The other terms are obviously
v λ

dominated by similar arguments. Since

y'-In n-l-r
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it remains to prove that

y *
= O((lnλ)r), uniformly in k.

Since hr(λ, k) = hr(λ, — k), we restrict ourselves to k^O. We consider
separately the two cases |k — λ\*zl and |k — A|<1. For |k — A| ̂  1, we
write

L /"] IΛ * ΓL+ (

where

/z;τ(A, k) = f (InyY — dy and a+ =l±-r.
I y ~ λ

We integrate by parts in the expression for h* (λ, k), using

T sinαw , ^ sinw , cos(αy) I 1
— dη = — αw = h O -—r̂

y 1Ί ay n W \ (̂ )

for αy>l. Thus

+y \(a+yrι

Since a+ > 1, we obtain

where we have estimated the integral by const. J (lnλ)r 1 —^. For h ,

this method works for k>2A, that is, when |α_| >1; for k in [0, λ — 1]

u \_λ +1, 2Λ,], where — ̂  |α_| ̂  1, we argue as follows;
A

\a-\λ /

h~ (λ, k) = (sgnα_) J I In -
| «_ | \ !"•-! / y

= (sgnα_) | β jμ ^ Λ -- Λ Γ ~ S / ^' ^^smy

Since

iβ-i s=o

<00,

o y

|Λ~Ί < const.
s=o
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Finally, for \k — λ\ < ί, we write

\hr(λ, k)\ =
sin λy I

cos kydy\

J
y

(where ξ lies between ky and λy)
i

- J \laλy\rdylί
l / λ

-f O((ln λ)r) (by the usual argument)

^ const. + 0((ln λ)r).

Thus hr(λ, k) =0((lnλ)r), uniformly in k. q.e.d.

Lemma 4.3. If W=2VV, v a positive integer,

where j is a positive integer and K2 a constant independent of V, W, K.

Proof. The method of proof is exactly that of Lemma 5.3 in [2], to
which the reader is referred for full details. We observe that

~

and thus calculate in Fock space. From (2.3) (b2n = 1),

HI,K,V ~ HI,K,W = Σ brt'Φκ,v(θ)' ~ Φκ,w(gty ,
r

and from (2.1) and (2.2),

r /^.\

'•Φκ,v(g)'-'-Φκ,w(g): = Σ (.] Σ ^(-fcι) ^(-Λ )

where

tfdCW

Taking into account the numerical factors associated with cfw we
estimate

\\(Hι,κ,v-HI)K,wyΩ0\\2 ^ KQ(2nj)\ max \\fr\\\* (4.7)
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where K0 is a constant independent of K9 V, WJ,r,a,nd \\fr\\2 is the
/2-norm of fr;

\\fr\\2 =
2-11/2

w

< 2

ki(=Γκ,

2π

-«.L

Σ v

2U/2

\~y~ sup
211/2

Since g e Cjf, \- l/2

that
a

dl,
^ μ(Ί) 3/2? an(3 by Lemma 4.1, we conclude

e L9. Therefore the Riemann sums

Σ (—
^ T7

sup

are bounded functions of V, and it follows that \\fr\\\ ^ K X F 2 where
K1 is a constant independent of K, V, W. Eq. (4.7) then yields the lemma.

n~1[
where j is a positive integer, and K^ a constant independent of K, L and V.

Proof. This lemma is proved in the same manner as the previous
lemma. From (2.2),

• Φrκ,v(g)' -'.Φίv(g) = Σ .j=o\j/R
where the integration extends over the region

K - {(/q ... fcr) I |fe£| ^ K V f , at least one \kt\ > L}.

The proof continues as before and relies on the estimate of Lemma 4.2.

Corollary. For p<oo, \\HItK,v-HIίL>w\\p->0 as K,L, V, W-^oo.

The previous two lemmas lead at once to a better convergence result
for Hκv.

Lemma 4.5. For ΨeD(HQ\ we have ΨeD(H0)K>v) for all K, V and
Ho,κ,vΨ-ϊ>HoΨ as K> ^->oo. For Ψ in D(Nn), where N is the number
operator, we have Ψ in D(H^) and D(Hj κv] for all K, F, and

12 Commun. math. Phys., Vol. 16
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Proof. The verification of the first statement is trivial and uses the
familiar relation \μ([k]v) — μ(k)\ :g const./K

To check the second statement, consider a typical term in :φ2n(g)\,

..dk2na*(-ki)...a*(-k)a(kj+1)..^

and its correspondent in :0i[V(#):,

Wκ>v = $dkί ...dk2na*(-kί)...a(k2JwKtV(kl9...9k2J9

where χκ is the characteristic function for the interval [ — K, K]. We use
the inequality || py(N + l)~n | | ^ const. ||w||2, to estimate

^ const. \\w-wKίV\\2 \\(N + l)"Ψ\\ ,

and this goes to zero by the proofs of Lemmas 4.3 and 4.4. The other
terms in Hj are similarly handled, q.e.d.

Corollary. HKiVΊ?H on Dn = D(Nn)nD(H0).

The following results, which we list here for convenience, are due to
Nelson [16] and Glimm [2].

Lemma 4.6. [2, Lemma 5.1]. exp ( — tH0 κ v) is a contraction operator
on Lr(QKV\ 1 ̂  r ̂  oo. For 1 < p and r < oo, it is a contraction from Lp to
Lr for large t,t^T where T depends on p and r, but not on K and V. If p is
bounded away from one and r is bounded, then Tdoes not depend on p and r.

Corollary [2, Lemma 6.2]. Let re [1,2), Φ and ΨeL2(Qκ>v). Then
there is a T independent of K and V such that ift^T, then Φ(q(0)) Ψ(q(t))
belongs to Lr(C, dQK>v) and \\Φ(q(0)) Ψ(q(t))\\r ^ \\Φ\\2 \\Ψ\\2.

Let Pr denote the probability measure on C defined by dQ: Pr {€} = 1.
Then the lower bound on Hj κv leads to the following estimates for
Iκv (Eq. (3.4)), which are proved in [2, pp. 23-24] except for the correc-
tion implied by Lemma 4.4.

Lemma 4.7. Pr{/κ v ̂  -X - 1} ^ exp l-K^ — — — where K{

\ χ(~^) j

and K2 are positive constants that depend on t but are independent of V
and K.

Lemma 4.8. For each p<oo, ||exp( — Iκ v)\\p is bounded uniformly
in V, K.



A λφ2n Field Theory without Cutoffs 175

From Lemma 4.8 and the Feynman-Kac formula follows the main
result of [2] :

Theorem 4.9. The hamiltonian H(g) and its approximations Hκ>v(g)
are bounded below by a constant depending on g but independent of Vand K.

For convenience we redefine HI and HI>K>V by adding in this constant
(HI->HI + c,HItK>v-+HI}K)V + c) so that H and Hκ>v are positive.

§ 5. Resolvent Convergence of Hκ>v(g)

As positive self-adjoint operators, the Hκv generate strongly con-
tinuous contraction semigroups,

We show that the UKiV(t) converge uniformly for each t as K, F->oo.
For convenience we are taking the sequence of {V} to be

for a fixed F0.

Theorem 5.1. For each t ̂  0, Uκ>v(t) converges uniformly as K, F->oo
to a strongly continuous contraction semigroup U(t).

Proof. We first prove the theorem for large ί. For vectors Φ, Ψ in
U L2(Qκ,v\ we have by the Feynman-Kac formula (3.5),
κ,v

(Φ, (UKtV - ULίW)Ψ) = J Φ(q(Q)) ψ(q(t)) (e~^ - e'^dQ , (5.1)

where W^V and L^K. We apply Holder's inequality with indices
4/3 and 4,

I(Φ, LUKtV(t)- UL>w(t)-]Ψ)\ ^ \\Φ(q(0)) Ψ(q(t))\\4l3 \\e-^^-e-^^\U

for t ̂  T by the corollary to Lemma 4.6.
Since Φ and Ψ of the form L2(QKfV) are dense in & and || £/κ>κ(ί)|| ̂  1,

we conclude that

\\UK)V(t)-UL>w(t)\\ ^ ||β-^--β-^-||4.

To show the semigroups converge it is sufficient to prove the con-
vergence to zero of the differences

\\e~Iκ'v - e~lL>v\\4 and \\e~Iκ>v - e~Iκ>w\\4
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where one of the two parameters (the volume V or the momentum
cutoff K) is held fixed.

We start with \\e~Iκ>v -e~lL>v\\4. Let ε>0 be a given arbitrarily
small number. We wish to truncate e~Iκ'v and e~lL'v when they become
large, so we write, for I = Iκv and IL F,

where θ(x), the heaviside function, equals 1 for x > 0, and vanishes for
x ̂  0, and M is a large integer to be determined. By the triangle inequality,

By Lemma 4.7, each of the last two terms can be dominated by

f °° M __ JΛΪ 1/4

\ Σ ^+2>4exp(-K1^
1/Mx/2''2 J .

U=M J

Since this sum is convergent we can fix M so large that A, Pr {IK}V < — M},
and Pr{/L F< — M} are all less than ε. Then

The integration in this last expression is split into the two regions

MS) I \Iκ,v- IL,V\ > ε) and MS) I I4,F ~ 4,Fl ^ ε}
The first region has measure dominated by

-ί|l*W-ffM,κlli [2, Lemma 6.1]
ε

Thus

(Lemma 4.4).

t(2n)\

' ε2 * K

We choose K so large that this is less than ε. Then by Schwartz

J |e-
/L,^IS«

J
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According to Lemma 4.8, He~ / κ > τΊ|8 ^ K4, a constant independent of K,
V. We again split the remaining integration into the complementary
regions (q(s) \IKfV> —M and ILV > —M} and {q(s) \ at least one of Iκv

and IL>V< —M}. The second region has measure less than 2ε by the
choice of M , and in this region the maximum value of the integrand is
e8ε. In the first region the integrand is dominated by (1 — eε)8. Therefore

and

The proof that \\e~Iκ'v - e~Iκ>w\\4-^Q as F->oo is exactly analogous.
The only difference, in fact, comes when we estimate \\Hj- κ v — Hr κ w\\
^ (2n}\ (K2/V)2 by Lemma 4.3. Then for V large enough '

J \e-Iκ>vθ(Iκ>

\Iκ,v-Iκ,w\>ε '

This completes the proof that UKtV(t) converges uniformly as K, F-»oo
for t Ξ> T. For 0 ̂  t < T we obtain convergence by observing that
UKtV(t/2) = [_UK>v(t)']112, and that if a sequence of uniformly bounded
self-adjoint operators converges uniformly then so do their square roots.
This last statement follows from the fact that polynomials in the operators
converge uniformly, and that on the spectra the square root function can
be uniformly approximated by polynomials.

The remaining assertions of the theorem are trivial to verify. Let
U (t) be the limiting operator, U(t)= lim Uκ>v(t). Then the uniform
convergence implies that κ,v^™

(i) | |C7(ί)| |£l since 1117^)11^1;
(ii) U(t)U(s)=U(t + s) since UKfV(t) UKtV(s) = UKtV(t + s); and

(iii) U(f)Ψ is strongly continuous in t since Uκv(t)Ψ is, and, as a
check of the above estimates shows, Uκ >v(t)-f U(t) uniformly in t in any
finite time interval. For intervals about t = 0 we can directly show strong
convergence uniformly in ί, by choosing Ψ in the dense set (J L4(QKV)
and noting that from (5.1) κ>v

= \\Φ\\2 \\e~tH°'κ'vΨ\\4 \\e-Iκ'v-e~lL"w\\4

^ \\Φ\\2 \\ψh \\e~Iκ'v-e~lL'w\\4, by Lemma 4.6.

q.e.d.
We make use of the notions of graph and resolvent convergence [4].

Definition. Graph or G-convergence.
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The operators Cn converge strongly to C^ in the sense of graphs
(Cw-C)if

Goo = {(0, ψ) I θ = s-]imθH9 θn e D(Cn) and φ = s-limCnθn}

is the graph of a densely defined operator C^.

Definition. Resolvent or ^-convergence.

CnγC if the resolvents Rn(z) = (Cn-z)~l

converge strongly to an operator R(z) which has a densely defined inverse.
The properties of R- and G-convergence that we require are sum-

marized in the following lemma.

Lemma 5.2. Let Cn be a sequence of self -adjoint operators.
(i) If Cn-gCm then C^ is maximal symmetric.

(in) If Cn-j>C on a dense set D, then the sequence has a graph limit,
^n~Q ^oo? and ^oo Z5 a symmetric extension of C.

(iv) If Cn-^C on a dense set D, and if Cn-£ C^, then C^ is a maximal

symmetric extension of C. _
(v) Let C be self -adjoint with core D, that is, (C\D) = C. // CnT>C

on D9 then Cn-+C.

Proof. Statements (i), (ii), and (iii) are proved in [4, § 3]. (iv) follows
from (ii) and (iii). (v) is stated as Corollary 1.6 in [14, p. 429]; (v) implies
via (ii) that if 0π->0eD(C), and Cnθn converges, then Cnθn-+CΘ.

Let The the generator of the semigroup U(t) of Theorem 5.1 (see [11]
for the proofs of the properties of T). Then T is obtained from U(t) by
the Laplace formula

oo

(T-z)"1 = J eztU(t)dt, Rez<0.
o

T is a densely defined closed operator with the negative real axis in its
resolvent set.

Theorem 5.3. T= uniform R-limHKV and T is a positive self -adjoint

extension of H\Dn where Dn = b(Nn)nD(H0).

Proof. The first statement follows at once from Theorem 5.1 and the
Lebesgue dominated convergence theorem applied to the equation,

(T-zΓί-(Hκ>v-zΓ1 = J ezt[_U(t)-UK>v(t)']dt9 Rez<0.
o
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That T is symmetric is readily seen from the defining equation

(Γ-x)"1 = J extU(t)dt
o

and the self-adjointness of U (t). As a closed symmetric operator with the
negative real axis in its resolvent set, Tmust be self-adjoint [14, p. 271].

Since HKV-^H on Dn (Lemma 4.5, Corollary), we conclude that
H\DncT(Lemma5.2, (iv)). q.e.d.

§ 6. Essential Self-adjointness of H(g)

In this section we prove that, in fact,

where 2 = D(#0)n !>(#/), so that H is essentially self-adjoint on its
natural domain of definition Q). The idea of the proof is to establish the
existence of a core for T that is contained in 2.

Lemma 6.1. Let ¥ = \]L^(QLtW\ For all ί^O and for Rez suf-
L,W

ficiently negative, HIKVUK>v(t\ HIKVRKV(z), and H^K)VRKtV(z) all
converge strongly on Sf as K, F->oo.

Remark. It is not much more difficult to prove the lemma on the set
Sep= \J Lp(βL>ίr)wherep>2.

L,W

Proof. We show that Hl κv Uκv converges much as in Theorem 5.1
by using path space integrals, and the convergence of Hj KVRKiV and
H0 KVRKV follows readily. By the Feynman-Kac formula (3.6),

(Uκ.v(t)Ψ) (q) = ί dβ,e-fc "w Ψ(q(t))

where we take Ψ GL00(QU Wf) for some I/', W. Let

where X ^ L, V^ W. We show that ||Φ|| ->0 as K, F->oo. Now,

*(«) = ίH^v(q) - HItLtW(q) ] J dQ^1^ ψ(q(t))

+ HIιLtW(q) ί dQq(e-'*-r- e~^) Ψ(q(t)) .

By the triangle and Schwartz inequalities,

\\Φ(q)\\ iΞ \\HI<κ>v-HI>L,w\\
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Since $ dQq = 1 we have by Holder's inequality that

n1/p (6.2)

for p > 1. Therefore,

A similar estimate for the second term in (6.1) yields

F-^L^IUIk-^ΊU }

- -

By Lemmas4.3 and 4.7, \\HItLtW\\4 = \\H^L)WΩ0\\112 and \\e~Iκ>v\\4 are
bounded independently of K and F; by Lemma 4.4 (Corollary), and the
proof of Theorem 5.1, \\HItKtV-HItLtW\\4 and \\e~Iκ>v -e~lL>w\\4 go to
zero as K, F-+OO. We conclude from (6.3) that ||Φ||->0; that is,
Hj KVUKV(t) converges strongly on ίf as K, F-»oo.

By the Laplace formula,

yR^M-H^R^zKΨll = ||J <f*Φdt\\ ^$ext\\Φ\\dt, (6.4)

where x = Rez.
For each ί, the integrand in (6.4) approaches zero as K, F-»oo by the

previous argument. It remains to bound the integrand by an integrable
function of ί. Now,

where H(£JV = H0 κv + 4Hj κv.
Theorem 4.9 applies to H(^v as well as to Hκ F; for some constant

d independent of K and F, H$v ^-d. Thus,

^ edt/4 .
Likewise,

Thus by (6.3) the integrand in (6.4) is bounded by const. xe

(x+d/4)t; we
choose x sufficiently negative and conclude by the Lebesgue dominated
convergence theorem that Hr KVRKV(z) converges strongly on £f.

Finally, since Rκv(z) converges (Theorem 5.3),

Ho.κtv
Rκ,v(z) = 1 + zRκ,v(z) - HI>K,vRK,v(z) .

also converges strongly on ^. q.e.d.
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The resolvent convergence of Hκv required a substantial proof (§ 5)
and leads to the self-adjointness of H (Theorem 6.3); on the other hand,
the resolvent convergence of H0 κv and HI>KiV and the value of the
limiting operator follow readily from the known self-adjointness of H0

and Hj.

Lemma 6.2. As K, F-»oo,

HQ = R-limHQ κv = G-limf/0 κ F

Hj = R-\imHI)K)V = G-limHj κv .

Proof. In [5, § III] it was proved that for a φ4 theory, Hj is essentially
self-adjoint on D0 = Q D(Hn

Q). There is nothing in the proof peculiar to
n

φ4l all that is used is that HI is a Wick polynomial in φ. Thus for P(φ\
Hj is essentially self-adjoint on D0. The same conclusion holds for the
approximate interactions Hj κv.

According to Lemma 4.5, Hj κv-^Hj on Dn and hence on DQcDn

as K, F->oo. Therefore by (v) of Lemma 5.2, HI = R-limHI>K}V, and by
(ii) of the same lemma, Hr = G-1imHϊfKtV.

Similarly, H0 is essentially self-adjoint on D0 (its set of analytic
vectors is contained in its set of C°° vectors) and by Lemma 4.5,
HO,K,VΊ?HO on D0. Thus,

H0 = R-limH0 κv = G-limH0 κv q.e.d.

We can now prove that H is essentially self-adjoint on 2. For φ4

this result can be strengthened to essential self-adjointness on D0 [5, § IV],
but this has not been proved for φ2n.

Theorem 6.3. T=H\3; that is, H is essentially self-adjoint on

Proof. £f (technically, its identification in ^) is dense in 3F since
L^(QL,W) is dense in L2(QLfW) and the subspaces ^L>w are dense in 3F.
Therefore <e = R(z)&> is a core for T [14, p. 166].

We choose z to give convergence in Lemma 6.1. Let Ψ be an arbitrary
vector in <β\ Ψ = R(z)Φ where Φ e Sf. By Theorem 5.3

and by Lemma 6.1, Ht κv Ψκv and H0 KVΨKV both converge. Therefore
by Lemma 6.2, yeD(H0)nb(Jϊj) = ®,'and we obtain by adding that

(HO.K.V

On the other hand, HKVR-con verges to T and so by Lemma 5. 2, (ii),
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Therefore T= H0 + Hj on #C^. Taking closures, we find that

and obtain a symmetric extension of a self-adjoint operator. Thus
T=H\;. q.e.d.

As a consequence of Theorems 5.3 and 6.3 we can draw a number of
conclusions regarding the spectrum ofH(g). Let Eg be the infimum of the
spectrum oΐH(g) = H0 + Ht(g\ where now by Hj(g) we mean the original
interaction hamiltonian which has not been redefined by the addition
of a constant (see Theorem 4.9). It is known that Eg-+— oo as g-^l [8].
Since the arguments of Glimm and Jaffe [6, § 2] extend to the P(φ)
model, we conclude that H(g) has a unique (up to phase) vacuum with
a gap above the ground state energy. We state this more completely:

Theorem 6.4. H(g) has compact spectrum on [Eg, m) and Eg is a simple
eigenvalue.
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