An Algebraic Spectrum Condition

K. KRAUS

Institut für Theoretische Physik der Universität Marburg Marburg, Germany

Received September 24, 1969

Abstract. A condition, necessary and sufficient for the existence of a vacuum representation with positive energy of the quasilocal algebra, is formulated.

Most postulates of axiomatic quantum field theory can be translated easily into the language of C*-algebras [1]. A remarkable exception is the usual spectrum condition. The required algebraic formulation has to assure the existence of a vacuum representation of the quasilocal algebra, for which the energy-momentum spectrum is contained in the future cone \overline{V}_+ . Such a representation will be called a "positive vacuum representation" [4]. Algebraic spectrum conditions have been formulated by Doplicher [2], Montvay [3], and Borchers [4]. In this note, we will propose another condition of this type.

Consider a C*-algebra \mathfrak{A} , called quasilocal algebra¹, and a representation $x \to \alpha_x$ of four-dimensional translations x by automorphisms α_x of \mathfrak{A} . This representation shall be strongly continuous, i.e.,

$$\lim_{x\to 0} \|\alpha_x A - A\| = 0$$

for any $A \in \mathfrak{A}$. Then \mathfrak{A} contains, as a norm-dense invariant sub-*-algebra $\mathfrak{A}^{(1)}$, the set of all $A \in \mathfrak{A}$ for which

$$\operatorname{norm}_{\tau \to 0} \lim \frac{1}{\tau} \left(\alpha_{\tau a} A - A \right) \underset{\mathrm{df.}}{=} D_a A$$

exists for all four-vectors a [5].

A positive linear functional φ on \mathfrak{A} , normalized to $\|\varphi\| = 1$, is called a state. Then, for arbitrary state φ and $A \in \mathfrak{A}^{(1)}$, the functions

$$\hat{\varphi}(\tau | A, a) \stackrel{=}{=} \varphi(A^* \alpha_{\tau a} A)$$

are differentiable with respect to τ . Denote by E_+ the set of all states φ for which

$$\frac{1}{i} \frac{d}{d\tau} \hat{\varphi}(\tau | A, a) \Big|_{\tau=0} = \frac{1}{i} \varphi(A^* D_a A) \ge 0$$

for all $a \in \overline{V}_+$ and all $A \in \mathfrak{A}^{(1)}$.

¹ The local structure of \mathfrak{A} , however, will not be used here.

Since $\mathfrak{A}^{(1)}$ is invariant with respect to the mappings α_x , E_+ is invariant with respect to the adjoint mappings α_x^* of the dual space \mathfrak{A}^* of \mathfrak{A} , defined by

$$(\alpha_x^* \varphi) (A) = \varphi(\alpha_x A) \,.$$

The representation α_x^* is continuous in the \mathfrak{A} topology of \mathfrak{A}^* , i.e.,

$$\lim_{x \to 0} |(\alpha_x^* \varphi) (A) - \varphi(A)| = 0$$

for all $\varphi \in \mathfrak{A}^*, A \in \mathfrak{A}$.

Obviously E_+ is convex. Moreover, it is compact with respect to the \mathfrak{A} topology of \mathfrak{A}^* . By Ref. [6], Part I, V.4.3. it is sufficient to show that E_+ is closed in this topology, since E_+ is bounded in norm.

For fixed $A \in \mathfrak{A}^{(1)}$ and fixed a, the set $E_+(A, a)$ of all states φ with

$$\frac{1}{i}\varphi(A^*D_aA) \ge 0$$

is closed, since $\frac{1}{i} \varphi(A^*D_a A)$ is a continuous function of φ . By definition, E_+ is the intersection of all sets $E_+(A, a)$ with $A \in \mathfrak{A}^{(1)}$ and $a \in \overline{V}_+$, and is therefore closed too.

In terms of E_+ an algebraic spectrum condition may then be formulated with the help of the following theorem.

Theorem. A possesses a positive vacuum representation if and only if E_+ is not empty.

Proof. If π is a positive vacuum representation of \mathfrak{A} with a vacuum vector Ω and a unitary representation $U(x) = e^{iPx}$ of translations, then the state ω defined by

$$\omega(A) = (\Omega, \pi(A)\Omega)$$

belongs to E_+ . Indeed, for $A \in \mathfrak{A}^{(1)}$ and $a \in \overline{V}_+$ it follows

$$\frac{1}{i} \frac{d}{d\tau} \hat{\omega}(\tau | A, a) \bigg|_{\tau=0} = (\pi(A)\Omega, aP\pi(A)\Omega) \ge 0.$$

This proves the necessity of $E_+ \neq \emptyset$.

In order to prove sufficiency, we note that α_x^* and E_+ fulfill the assumptions of the Markov-Kakutani fixed-point theorem (Ref. [6], Part I, V.10.6.). Therefore, if $E_+ \neq \emptyset$, there exists an invariant (vacuum) state

$$\omega \in E_+, \quad \alpha_x^* \omega = \omega \quad \text{for all } x.$$

The Gelfand-Segal construction then leads to a representation π of \mathfrak{A} in a Hilbert space \mathscr{H} , a strongly continuous unitary representation

 $U(x) = e^{iPx}$ of translations with

$$\pi(\alpha_{\mathbf{x}}A) = U(\mathbf{x})\,\pi(A)\,U^*(\mathbf{x})\,,$$

and a cyclic invariant vacuum vector $\Omega \in \mathscr{H}$ with

$$\omega(A) = (\Omega, \pi(A)\Omega).$$

We will show that the self-adjoint energy-momentum operators P_{ν} fulfill the spectrum condition or, equivalently, that the self-adjoint operators aP with arbitrary $a \in \overline{V}_+$ are positive semidefinite. The vectors $\pi(A)\Omega$ with $A \in \mathfrak{A}^{(1)}$ form a domain D which is dense in

The vectors $\pi(A)\Omega$ with $A \in \mathfrak{A}^{(1)}$ form a domain D which is dense in \mathscr{H} , and is contained in the domain of definition of all operators aP. For arbitrary $a \in \overline{V}_+$ and arbitrary $\Phi = \pi(A)\Omega \in D$,

$$\frac{1}{i} \frac{d}{d\tau} \hat{\omega}(\tau | A, a) \Big|_{\tau=0} = \frac{1}{i} \frac{d}{d\tau} \left(\Omega, \pi(A^*) e^{i\tau a P} \pi(A) \Omega \right) \Big|_{\tau=0}$$
$$= (\Phi, a P \Phi) \ge 0$$

since $\omega \in E_+$. The restriction $aP|_D$ of aP to the domain D is therefore a positive semidefinite symmetric operator. Accordingly (Ref. [6], Part II, XII.5.2), it has a positive semidefinite self-adjoint extension Q_a . Of course, aP itself is also a self-adjoint extension of $aP|_D$. The proof will be finished by showing that $aP|_D$ is essentially self-adjoint, which implies $aP = Q_a$.

According to Ref. [5], $\mathfrak{A}^{(1)}$ contains a sub-*-algebra $\tilde{\mathfrak{A}}$ of "analytic elements", which is also norm-dense in \mathfrak{A} . Using the methods of Ref. [5] one may show that vectors of the form $\pi(A)\Omega$ with $A \in \tilde{\mathfrak{A}}$ are analytic vectors for the operators aP with arbitrary a. They form a dense subset of D. Essential self-adjointness of $aP|_D$ then follows from a theorem of Nelson [7].

The algebraic spectrum condition proposed here is relatively simple. It has, however, some serious shortcomings. A state $\varphi \in E_+$ which is not translation invariant has no immediate physical interpretation. In particular, it does not lead to a "positive representation" [4] of \mathfrak{A} . Therefore, the set E_+ seems to be of little use if one wants to formulate conditions for the existence of positive representations which do not necessarily have a vacuum.

On the other hand, one may demand the required positive vacuum representation of \mathfrak{A} to be faithful. For this purpose one might try to use, instead of E_+ , the set E_+^f of states $\varphi \in E_+$ which lead to faithful representations. However, we can not simply generalize our theorem to this case since we have not been able to show that E_+^f is compact in some useful topology.

Acknowledgment. A useful comment of Prof. R. Haag is gratefully acknowledged.

140

References

- 1. Haag, R., Kastler, D.: J. Math. Phys. 5, 848 (1964).
- 2. Doplicher, S.: Commun. Math. Phys. 1, 1 (1965).
- 3. Montvay, I.: Nuovo Cimento 40 A, 121 (1965).
- 4. Borchers, H. J.: On groups of automorphisms with semi-bounded spectrum (Preprint, Göttingen 1969).
- 5. Kastler, D., Pool, J. C. T., Thue Poulsen, E.: Commun. Math. Phys. 12, 175 (1969).
- 6. Dunford, N., Schwartz, J. T.: Linear operators. New York: Interscience (Part I: 1958, Part II: 1963).
- 7. Nelson, E.: Ann. Math. 70, 572 (1959).

K. Kraus Institut für Theoretische Physik der Universität 3550 Marburg, Mainzer Gasse 33