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Abstract. A certain class of positive functionals on a group algebra is examined that
is pertinent to the induced representations of Frobenius and Mackey. Though these
functionals are not bounded in the 1} norm, continuity still persists to an extent that secures
the existence of a continuous group representation obtained from Gelfand's construction.
The theory thus developed provides a new aspect of both the "improper states" in quantum
theory and the induced representations of groups. The method is applied to the Poincare
group and it is shown that the representations, in which particles can be accommodated,
are determined up to unitary equivalence by unbounded functionals of a simple structure.
It is stressed that representations describing an infinitely degenerate vacuum emerge from
mass nonzero representations as the mass tends to zero.

1. Introduction

Positive definite functionals are of prime interest for the harmonic
analysis on groups, and their mathematical treatment has arisen from
the conjunction of two different studies. On the one hand we have the
work on group representations and on the other hand there is the theory
of Banach algebras as advanced by Gelfand, which has now acquired the
necessary technical adaptability as a suitable instrument for dealing with
locally compact groups. Positive definite functions give rise to positive
functionals on the Lι algebra of the group. However, there are numerous
positive functionals, which are unbounded with respect to the L1 norm
and hence do not arise from positive definite functions, yet they give rise
to perfectly sound, i.e. continuous unitary, representations of the group.
Two examples shall illustrate this point. The first is due to Godement [1].

1. Let G be a locally compact group, L(G) the *-algebra of continuous
functions on G with compact support, and F the functional on L(G)
defined by F{f)=f{e) with e being the identity in G. Then F(f*f)
= ||/Hi ^ 0. Thus the functional F is positive, but is clearly not bounded
in the L1 norm unless G is discrete. Nevertheless, the operators U{x),
xeG, given by (U(x)f) (y)=f(x~ίy), are bounded on L2(G) and define
a continuous unitary representation of G, called the left regular represen-
tation.
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2. Let G be the two-sheeted covering group of the Poincare group.
Any g e G is uniquely defined by some couple (x, a) with x e R4 and
a e SL(2, C) and the group structure is determined by (x, a) (y, b)
= (x + Λay, ab) with Λa being the Lorentz transformation given by

Λ a x = axa* x = ( X ° + X3 * i x A (1.1)
~~ ~ ~ \Xi+ix2 ^0-^3/

Let dg be the Haar measure for G, let g*-+ U(g) be the representation of
G pertaining to a single particle of the mass m and the spin s, and let
fι-+π(f) = $dgf(g)U(g) be the corresponding ^-representation of
1} (G). Since there does not seem to be a distinguished vector state in the
representation π, we might as well try to introduce an "improper state"
corresponding to a fully polarized particle at rest. In view of the con-
vention (1.1) it is convenient to have the spin pointing into the positive
direction of the 3-axis. Apart from an undetermined multiplicative
constant we obtain in a purely formal fashion

0,53 = s>= \dx J
R4 SU2

Here, dx stands for the ordinary Lebesgue measure on JR4 and du stands
for the normalized Haar measure on SU2. The right hand side of (1.2)
defines a functional F, which is not everywhere defined on I}(G). But
F(f) will exist for all feL(G\ and moreover, the construction suggests
that F is positive on its domain. By virtue of quite general results, which
shall be demonstrated, we are assured that the Gelfand construction
associates a continuous unitary representation UF to F and that UF is
unitarily equivalent to the representation U we started from. Thus, it
suffices to know the explicit form of F9 then the state space and the
representation of G are recovered.

Observe that the preceding examples have a common feature: There
is a closed subgroup H of G and a bounded functional Fx on L1 (H) such
that F(f) = F1(f\ H\ where /1H denotes the restriction of / to H. If this
is the case, we may say that F is induced by Fv The first sections of the
present work give a detailed account on the properties of functionals
that are induced in this sense. It will become apparent that there is an
intimate connection between induced functionals and the induced
representations in the sense of Frobenius and Mackey [2, 3]. In the
remaining sections we shall discuss the representations of the Poincare
group from the Gelfand construction point of view.This will lead us to
a refined result on the behavior of massive representations as the mass
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m tends to zero. It will be shown that the dual G of the Poincare group
is not Hausdorff at m = 0, and what is worse, vacuum-type representa-
tions emerge among others if m->0.

For the convenience of the reader, we add a few remarks on the
terminology, notation, and basic results. For a general account of the
functional approach to group representations the reader is referred to
the article by Godement [1] and to the standard text books.

If 91 is a complex algebra, any linear map F: 91->C is called a func-
tional on 91. Moreover, if 91 is known to be a left ideal of some *-algebra
95 and F(a*a) ^ 0 for all a e 9ί, then we shall say that F is positive. In this
case polarisation yields F(y*x) = F(x*y) and \F(y*x)\2 ^F(x*x)F(y*y)
for all x, y e 9Ϊ, implying that 91 = {x e 91: F(x*x) = 0} is a left ideal of
23 contained in 9Ϊ. The significance of a positive functional F on 91 is that
it provides a pre-Hilbert space 9IF = 91/91 and a *-homomorphism πF of
25 into the algebra of linear operators on 9IF, i.e. ifa^aF is the canonical
map of 91 onto the quotient space 9lF, we have *

πF{b)aF = (ba)F.

In order that πF(b) may be extended to a bounded operator on the Hubert
space JfF = (9IF)", it is necessary and sufficient that F satisfies F(α*fe*feα)
^ MbF(a*a) for all a e 9ϊ and some constant Mb. If such a constant exists
for all b e 95, F is said to be unitary2. In this case we obtain a ^represen-
tation π F of 23 on JfF.

Let F be positive on 9ί and Fα(fe) = F(α*feα) for αe91, fee95, then
Fa is a positive functional on 95, which can be extended to 23 (i.e. when
a unit is added to 23) as to remain positive. Hence, if 95, and so 23, is a
Banach *-algebra, Fa will be continuous, although F may be not. This
clearly says that \Fa(b)\^F(a*a)\\b\\ holds for all fee95, implying
||πF(fe)|| ^ ||fe||, where ||πF(fe)|| is the norm of πF(fe) as an operator on J fF.
It is for this reason that Fa with a e 91 shall be called a regularisation of
JP, and it can be seen that F satisfies the unitarity condition with
Mh— ||fe*fe||. Thus, any positive functional F on a left ideal of a Banach
*-algebra is unitary and any regularisation of F is continuous.

If Fa is a regularisation of F, then feFα-*(feα)F sets up a linear isometry
V: JTFα-> JfF, such that FπFα(b) = πF(fe)Vfor all b e 93. Let R be the range
of V and let ΊΓ denote the closure of R in JfF. It is immediate that iΓ is
an invariant subspace for the representation πF and it follows from an
extension of a classical lemma of Schur that the representation πFa on
J fFα is unitarily equivalent to the subrepresentation of π F defined by JR".

1 We adopt the convention that a scalar product is antilinear in the first variable.
2 In his book C. E. Rickart uses the term "admissible" instead of "unitary", whereas

the latter terminology has been suggested by R. Godement.
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Thus, if πF is irreducible, πFa is either trivial, in which case F(a*a) = 0,
or unitarily equivalent to πF.

A ^representation π of a *-algebra 33 on some Hubert space Jf is
said to be essential, if no nonzero vector is annihilated by all π(b\ b e © 3 .
Suppose that 93 is Banach and the ^representation πF of 93, as con-
structed above, admits some vector ξ e fflF with πF(b)ξ = 0 for all b e 93.
Then we may find some αe9ί with \\aF — ξ\\ <ε as to obtain Fa(b*bγ
= IKMFII = l|πF(6)αF|| = ||πF(6)(αF-ξ)ll < ll&llε for all fceS, and ||αF||
= F(α*α)* = limFα(b*ί>)* <ε if b runs through an approximate unit in 93.
The last estimate may be used to obtain ||£|| < ||αF|| + \\aF — ξ\\ <2ε, and
so ξ = 0, for ε was arbitrary. Thus, if 33 is a Banach *-algebra admitting
an approximate unit and if 31 is a left ideal in 93, then any positive functional
F on 91 gfit;̂ 5 rise ίo an essential *-representation πF of33 on 34?F = (9ΪF)".

Now, let G be a locally compact Hausdorff group and L(G) the set
of complex-valued continuous functions on G with compact support.
Then L(G) becomes a normed *-algebra under the definitions

ff'M = ldgf{g) fXg-'x) = f dgf{xg)f\g~γ),
f*(x)=f(χ-1)A(x~1),

\\f\\=idg\f{g)\ (fJΈL(G))
where dg is the left invariant Haar measure on G, which is unique up to
a constant factor, and A is the modular function for G. The completion of
L(G) with respect to the norm ||.| | yields the Banach *-algebra I}(G).
The group acts naturally on U(G) as a continuous group of isometries
via left translations4: fg{x) = f{gx).

By a representation of G we shall always mean a continuous and
unitary representation in some Hubert space. It is well known that the
representations of G are in one-to-one correspondence with the essential
^representations of L1 (G), the connection is given by π(f)=J dgfig) U(g)

Let 91 be some left ideal in U(G). As demonstrated above, any positive
functional F on 91 is unitary and gives rise to a ^representation πF of
I}(G). Moreover, since I}{G) admits an approximate unit, πF will be
essential and, therefore, gives rise to a representation UF of G on
j ^ F = (9IF)

Λ. If 91 is closed in U(G), then 91 is known to be invariant under
left translations and the equality

^ ( x ) / , = (/,-.), (1-3)
holds almost everywhere. However, we shall be mainly concerned here
with certain ideals that are not closed in I}(G). For (1.3) to hold in all
cases it is safe to restrict / to the subset I}{G) 91C 91, which is always
invariant under left translations.

3 This is equivalent to saying that πi^B)J^ should be dense in Jtf.
4 In order that the group product will not be reversed, g sends / to fg-ι.
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No matter how badly behaved F may be, any regularisation Ff9

fe 91, is continuous on I}(G) and thus arises from a continuous positive
definite function φ on G:

F,(f) = J dg φ(g)f'(g) (/' e L1 (G)). (1.4)

An explicit form for φ(g) can be inferred from

= ί dg<fβF,fF>f'(g) = J dgF(f*f)f'(g)
yielding

φig) = F(f*f) (1.5)
almost everywhere.

If the representation L/F is irreducible, then every positive definite
function φ, arising in the above way, is elementary, i.e. cannot be written
as a convex combination of others. As a consequence, F cannot be
written as a convex combination of positive functionals on 91 different
from F. If this is the case, we shall say that F is elementary. Clearly, UF

cannot be irreducible, if F is not elementary. But we may still ask,
whether UF is cyclic in this case. For any L1-continuous functional F the
cyclicity is obvious, for in this case the unit in I}(G)9 to which F may be
extended, furnishes a canonical cyclic vector. However, for an arbitrary
F the answer is unknown.

We finally remark that we are not concerned here with unbounded
functionals that arise from traces on π(/); these are in general much
more singular. Their theory has been advanced by Harish-Chandra
([4] and papers quoted there) in a series of articles for the case of a con-
nected semi-simple Lie group and recently, by Joos and Schrader [5],
for the Poincare group.

2. Dense Ideals in Lι(G)

Let H be a closed subgroup of G and dh the left invariant Haar
measure. If feL(G\ the restriction f\H has compact support in H and
| | / | if || = J dh\f(h)\ provides a seminorm for L(G), with respect to which
the map f-+f\H, L(G)-*I}(H) becomes continuous. In most cases the
completion of L(G) in this topology does not lead to an ideal in U(G).
The problem is resolved by introducing the still greater seminorm
|| / 1 | H = sup \\f[f\ H\\ on L{G\ which may be ίnore elementary defined

ιr/iiι^i
by | | / | | * = supH/JHII.

Proposition 2 .1 . If H is a closed subgroup of G, then \\f\\H = s u p | | / J C | i f | |
xeG

exists for allfsL{G) and defines a norm satisfying \\fJ\\H ύ II/ill | | / I I H
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The completion of L(G) with respect to this norm intersects I}(G) in a left
ideal

Proof Obviously, \\fxh\H\\ = \\(fx\H)h\\ =\\fx\Ή\\ for any heK Thus,
for feL(G) the norm | |/Λ | iί | | is a continuous function on G/H with
compact support. Hence, it is bounded and | | / | | H exists. By construction,
| | / | | H is a seminorm. We show that it is even a norm..For, if 0 φ fe L(G\
then there is some xeG such that /does not vanish in some neighbour-
hood of x proving \\fx\ H\\ > 0, and so \\f\\H cannot vanish. From Fubini's
theorem we have

p
xeG= sup\\flxf\H\\ZsupSdg\flx(g)\Sdh\fβ-ι(h)l
xeG xeG

p l / J p l
xeG xeG

Finally, let L(Gy be the completion of L(G) with respect to the norm
| | . | | H and A = L(GYnU(G). By continuity the map {hJ^fJ of
L{G) xL{G) into L(G) can be extended to a map U(G) x2I->2I, since
L(G) is dense in I}{G). This shows that 21 is a left ideal in I}{G).

Particular examples of the norms ||. | |H are obtained for H = G and
H = {e}. It is evident that | | / | | G coincides with I) norm and | | / | | e co-
incides with the uniform norm of /.

Let [G] be the set of all closed subgroups of G, let J*[G] denote the
directed set of all finite nonempty subsets of [G], and let ίFQ [G] be the
subset of #"[G] such that Geα for any α e J ^ [ G ] .

The algebra L(G) may be equipped with the locally convex topology
given by the (generally uncountable) system of norms ||.||//e[G] The
completion of the linear space L(G) with respect to this topology shall
be denoted by Jέf (G). Thus, if (G) is the projective limit of certain Banach
spaces ifα(G) associated with the norms | |/ | | α = max | | / | | H for α e^[G~\.

Hex

Proposition 2.2. i?(G) is a left ideal in U{G).

Proof. It is evident that ^\G~\ is a directed set cofϊnal in #"[G].
Therefore, the norms ||. | |α, αeJ^C^] generate the same topology and
5£ = n{ifα:oce#o[G]}. Now, any ifα, αe^o[G], may be written as a
finite intersection <£GCΛ$£n^c\-* CΛgHn = (j£?GnSeHx)n n(JS?GnJS?Hn)
and according to Proposition 2.1 any 2ί = JδfGnifH is a left ideal. Thus,
if (G), as an intersection of left ideals, is a left ideal as well.

A functional F on L(G) is said to be if- continuous, if there is some
αe#TG] and some constant C such that |F(/) |^ C| |/ | |α. If a functional
is //-continuous, it is certainly if-continuous, whereas the reverse does
not hold. So the if-continuity is a rather mild assumption. However,
its implications are rather strong, for, if a positive functional F on L(G)
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is if-continuous, by continuity its extension to J^(G) will stay positive,
and as J^(G) is a left ideal in I}{G\ one may construct a canonical
Hubert space J^F = (£?{G)F)

Λ and a continuous unitary representation
UF of G on Jfp. Apparently, the image L(G)F of L(G) under the map
/ « - * / F already provides a dense set in J^F, so that J^F may as well be
regarded as the completion of the pre-Hilbert space L(G)F.

Another relevant property of the ^f-continuity shall now be dem-
onstrated.

Proposition 2.3. If H is a closed subgroup of G, the linear map
L(G)-+L(H) defined by ft->f\H is continuous and, thus, may be extended
to a linear map i?(G)-»J^(Ή). // F is an J£-continuous functional on
L(H), the induced functional F(f) = F(f\H) will be ^-continuous
on L(G).

Proof. Continuity of f-+f\H means that for any ae^[K\ one can
find some jSe#"[G] and constants Cα such that \\f\H\\a^ CJ| f \\β for
all fsL(G). This is certainly achieved by setting β = α and Cα = 1, for
any closed subgroup of H is also a closed subgroup of G, so that #"[//]
Q&\G]. The ^-continuity of F(f) = F(f\H) is an immediate con-
sequence, since the composed map f^f\H*-*F(f\H\ L(G)-+L(H)-+C
is continuous.

3. Properties of Induced Functionals

The question arises, whether one might be able to show that in
certain cases the induced functional F is positive, provided that F is.
In order to obtain an affirmative answer for all F on J^(iί), we have to
impose a condition on H. To see what is involved, we let F for a moment
be a bounded positive functional on I}(H\ so that the reality of F is
implied: F(f*) = F(f). Then a necessary condition for the positivity of
F to hold is that P{f*f) = F(f*f\H) should be a real number. Since F
is arbitrary, this leads to (f*f\H)* = f*f\H, which is true only if the
modular functions for G and H coincide on H. One might think to
escape this consequence replacing the map / >-+f\H by α: L(G)->L(H)
with α(/) (ft) = /(ft) χ(ft)% where χ(h) is the ratio A {h)/δ{h) of the modular
functions Δ and δ for G and H respectively. However, α will not be con-
tinuous, unless χ(h) is bounded on H, and in view of the next lemma we
are back at the original condition.

Lemma 3.1. For any closed subgroup H of G the following statements
are equivalent:

(1) The modular function δ for H is obtained by restricting A to H.
(2) The function χ(h) = A(h)/δ{h) is bounded on H.
(3) There is an invariant Baire measure on G/H.
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Proof. (l)-»(2): This part is obvious.
(2)-»(l): This follows from the fact that χ is a strictly positive character

on H. For, assuming snpχ(h) = c<oo, we have c = sup{χ(hh'):hfeH}
heH

= χ(h)c>0 and hence χ(h) = 1 for all heH.
(3)->(l): For any feL(G) the integral f(x) = $dhf(xh) defines a

H

function feL(G/H). If m is an invariant Baire measure on G/H, then
J(f) = j dm(s)f{s) defines a left invariant integral J on L(G). Thus, J

G/H

is a Haar integral and J{fh) = A{h)J{f) for fh{x)= f{xh~ι). On the
other hand, from the definition of J we have J(fh) = (5(/z) J(/) and hence
J(ft) = <5(fc)for all heH.

(l)->(3): This part is more delicate. In general, an invariant measure
on G/H cannot be found. But there always exist measures which are
quasi-invariant, a result which is due to Mackey [3, L, § 1] for separable
groups and due to Loomis [6, Theorem 3] for the general case. Loomis
also showed that a quasi-invariant measure m on G/H can be found such
that the Radon-Nikodym derivative ρg(s) = (dmjdm) (s) is jointly con-
tinuous in g e G and s e G/H. Note, that the translated measure is defined
by mg{E) = mig'^E) and therefore

QβAs) = Qβ{s)Qtt{g'1s). (3.1)

On L(G) we may define the integral J(f) = j dm(s)f'(s) with
G/H

f'{x)=μhρxh{x)f(xh) (3.2)
H

x being the image of x e G in G/H, on which / ' naturally depends. Now,
an obvious consequence of (3.1) and (3.2) is (fg)' (s) = Qg-ifyf'igs) and
hence

J(/ 9 )= J dm(s)ρg-1(s)f'(gS)= j dmg-1(s)f'(gs)= f dm(s)f'(g) = J(f),
GjH GJH G/H

proving that J is a Haar integral on L(G). From the transformation
properties of J under right translation we obtain A(h) = ρh(e)δ(h\ i.e.
ρh(e) = l according to our hypothesis Δ(h) = δ(h). Then ρxh(x) = ρx(x),
showing that ρx{x) is a function of x only. Setting dm(x) = dm(x) ρx(x)
and f(x) = J dhf{xh\ we obtain J(f) = ] dm(s)f(s). The fact that J is

H G/H

a left invariant Haar integral means that m is an invariant measure on
G/H. This completes the proof of the lemma.

A subgroup H of G shall be called admissible, if H is closed and if at
least one (and so all three) of the conditions stated in Lemma 3.1 is ful-
filled. Note, that any finite or compact subgroup of G is admissible. More-
over, any unimodular subgroup of G is admissible, if G itself is uni-
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modular. The invariant measure on G/H is unique up to a positive
scaling factor for any admissible subgroup H of G. After a normalization
for dg and dh has been adopted, we may fix this factor as to obtain
ί dg f(g) = J dx J dhf(xh) everywhere on L(G) and we shall then say
G G/H H

that d x is the invariant measure on G/H.
For admissible subgroups the positivity of induced functionals may

be given a simple proof, verifying that χ = 1 is not only necessary but also
sufficient. But in order to obtain a slightly more powerful statement we
state a lemma, which will allow us to resort to smoothing techniques.

Lemma 3.2. // H is a closed subgroup of G, the set

DH(G)=\f:f(g)= [dhf^gfyf^h-1), Λ G L ( G ) , f2eL(H)

I H
is dense in

The proof of this lemma is rather straightforward and will not be
reproduced.

Proposition 3.3. // H is an admissible subgroup of G and dx the
invariant measure on G/H, then (jx\H)* (jx\H) depends on x only and

f*f\H= ί dx(fx\H)*(fx\H)
G/H

for all feL(G). If F is an ̂ -continuous positive functional on L(H\ the
induced functional F on L(G) is positive and satisfies

Hf*f)= ί dxF((fx\H)*(fx\H))
G/H

forallfeL(G\

Proof Since \dgf(g)= j dx \dhf{xh) holds for all /eL(G), we
G G/H H

have

')= I dx\dhfx{h)fx(hK)
G G/H H

in particular, which proves the first part of the proposition. Now, for
any feL(G) and any if-continuous positive F the composed map
x^fx^fx\H^F(fx\Hf(fx\H\ G^L{G)->L{H)-^C is continuous
and has compact support in G/H. Hence, the integral

\dxF{{fx\H)*{fx\H))
G/H

exists and is nonnegative. We still have to show that it coincides with
F(f* f\H). According to Lemma3.2 it suffices to assume that / is in
DH{G\ for F is ^-continuous. Then f(g)=^dhf1(gh)f2(h~1) with

8 Commun. math. Phys., Vol. 16
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fxeL{G\ f2eL(H), and fx\H = (flx\H)f2, so that with the aid of
Fubini's theorem

f dxF({fx\H)*{fx\H)) = ί dxFf2([flx\H)*(flx\H))
G/H G/H

= J dx$dhF(f2*J2)(flx\H)*(flx\H)(h)
G/H H

fj J dx(flx\H)*(flx\H)(h)
G/H

where (1.4) and (1.5) are employed. This completes the proof.
If F is an jSf-continuous positive functional on L{H\ the preceding

proposition guarantees the existence of a continuous unitary representa-
tion Up of G on fflp = (L(G)pf. We shall say that the representation Up is
induced by F. The connection with the theory of Frobenius and Mackey
shall be established in the next section.

4. The Canonical System of Imprimitivity

Proposition 3.3 provides a key to the structure of induced represen-
tations. Although one reads off immediately the direct integral decom-
position for jΊfp, we shall not make use of the von Neumann direct
integral theory for Hubert spaces and operator algebras on them, but
rather give a direct proof for the existence of a projection-valued Borel
measure £-»P(£) on the Borel subsets E (or equally well on all meas-
urable subsets) of G/H satisfying P(θ) = 0, P(G/H) = I9 and P(E1nE2)
= P{Eγ) P(E2) so that the P(E) form a σ Boolean algebra of projections.

Proposition 4.1. Under the conditions of Proposition 3.3 there is a
projection-valued measure P in Jtfp, defined on the Borel subsets E C G/H,
such that

\\P(E)fp\\2 = $dxF((fx\H)*(fx\H))
E

and Up(g) P(E) = P(gE) Up(g). Furthermore, P(E)fp = fp if the support
of f is contained in σ~ί(E), where σ: G-+G/H is the canonical surjectίon.

Proof For any Borel subset E C G/H the bilinear functional

ΦE(Γ,f)=Sd*F({fϊ\H)*(fx\H)) (4.1)
E

is positive and satisfies \ΦE(f\f)\ S II/FII II/FII? a s c a n be inferred from
Proposition 3.3 and from 0 ^ ΦE{f,f) ^f(f*f) = \\fp\\2 by way of
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polarisation. Hence, by Riesz' representation theorem there is a bounded
and positive linear operator P(E) on Jίfp such that ΦE(f',f) = (fp,P{E)fp)
and E^P(E) becomes an operator-valued measure on G/H with
P(0) = O. If there exists some fsL(G\ whose support is contained in
σ'^EX then (4.1) and Proposition 3.3 show that </>, P(E)fp) = (fpjp)
for all / 'eL(G). Thus, P(E)fp = fp in this case and P(G/H) = I in
particular. By the same argument P(E)fp = 0 if the support of / is con-
tained in the complement σ~1(E)c = σ " 1 ^ ) of σ " 1 ^ ) in G. Vectors of the
first kind are orthogonal to those of the second kind and the linear
combinations of them form a dense subset of J^fp. Therefore, P(E) is a
projection. Since P(E)fp may be approximated by functions having
support in σ~1(E), we have

<P(E1)fy,P(E2)fβ>= J d
EinE2

and thus

Finally,

ifp, Ufa)P(E)ff> = </>, P(E)fp> = IdxF((fgx\H)*(fx\H))
E

= f dxF((fx\H)*(fg-ίχ\H)) = (fp,P(gE)
gE

by change of variables using the invariance of dx. This completes the
proof.

The algebra of projections P(E) is called the canonical system of
imprimίtίvity associated with F9 and Mackey showed that its existence
together with the transformation property V(g) P(E) = P(gE) V(g)
characterizes an induced representation V. If V is induced by F, i.e.
V = Up, we may as well say that V is induced by L, symbolically V = UL,
where L is the representation h^UF(h) of H. We have thus learned that
the induction of representations in Mackey s sense is intimately connected
with the dual of the map f->f\H, L(G)-+L(H\ at least in the case where
there is an invariant measure on G/H.

In order to see more closely the relation to Mackey's way of con-
struction, we may pass to functions on G that take values in J^F = {L{H)F)

Λ

by way of setting

? = (fx\H)F

for any / e L(G). Then / is measurable on G (it is even continuous) and

(1) /(xft-1)=ί7F(/ ί)/(x), heH,

(2) J dx\f(x)\2 = \\M\2
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Mackey now proceeds to define the induced representation by
f)() = f(j9~lχ) which in view of (2) proves to be unitarily equiv-

alent to Up.
One of the basic theorems says that, if a representation g •-» V(g)

of G admits a system of imprimitivity based on G/H, then V is unitarily
equivalent to UL where L is some representation of H. In this context,
Loomis [6] had the happy idea of introducing the function φE(g)
= (P(E)ξ, V(g)ξ}, if there is some cyclic vector ξ9 and he showed that
UL may be constructed from this function alone. One may ask, what
φE(g) is in our context. To establish the connection we set V=UF and
ξ=ff and then we obtain

where

φ(g,*) = F((fx\H)*(fβ-lχ\H)).

5. Functional Characterization of Relativistic Particles

Let G be the two-sheeted covering group of the Poincare group.
Throughout this section we shall adopt the notations and conventions
from the Introduction.

Proposition 5.1. Let m be real and 2s a non-negative integer. Then

F(f)= \dx I duέmx°a2sf{x,u) (8.1)
R4 SU2

is an ££- continuous positive functional on L(G) and the canonical represen-
tation UF of G on J4fF is irreducible for mφO.

It is customary to interpret UF as the representation pertinent to a
relativistic particle of mass m and spin s.

Proof We observe the structure F(f) = F1(f\H\ where H denotes
the admissible subgroup {(x, u): x e R4, u eSU2} of G; Fί is defined on
I}(H). Since F1 is positive and bounded in the L1 norm of L1, F is <£?-con-
tinuous and positive on L(G). Finally, the irreducibility of UF follows
from a theorem by Mackey [3, L, Theorem 14.2] on semidirect products
involving an abelian normal subgroup. Applied here, this theorem states
that UF is irreducible, if the inducing representation UFι is irreducible
when restricted to SU2. Indeed, the condition is satisfied, for φ(u) — α 2 s is
elementary. For a slightly more general result in connection with this
theorem the reader is referred to [7, Theorem 3.12] and [8, Section 6]
for a review.
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We turn now to a description of zero mass particles. Let A be the
subgroup of SL(29 C) formed by the elements

zeC

and let dz = dx dy for z = x + iy. Then dδ = -=— dθ dz is a Haar measure
2π

on zl, H = {(x, <5): xe JR4, δe A} is an admissible subgroup of G, and
χ(x, δ) = ei<x°-χ*+2λθ) is a character on H for A = 0, + | , ± 1,.... It is
known that this character of H (that is to say the one-dimensional
representation of H) induces the zero mass representations of G that one
usually associates with particles [10]. The parameter λ is then called the
helicity. Let Fί be the functional Ft{φ) = \dh χ(h) φ(h) on l}{H) and let

H

F be the functional on L(G) induced by F1:

ί J dx f dΘ jdzeiix°-χ* + 2λΘ)f(x,δ). (8.2)

4

2π
J f j

R 4 o c

Then F is positive and J^f-continuous and UF is irreducible. In the follow-
ing we shall write Uλ instead of UF.

Since there is no mass parameter in the functional F in (8.2), the
representation UF of the Poincare group may be extended to include
dilatations. These dilatations do not arise from automorphisms of G but
reflect a certain invariance property of F:F{f'*f) = F(f*f), /'(x,α)

= r" 5/(r" 1x,αρ),ρ = ί _ J . Therefore, U(r)fF=fF extends to a

linear isometry U(r):3tff

F^>J#'F9 which in fact is unitary since U'1^)
= t/(r - 1) = U(r)*. Then r -> U(r) is a representation of the multiplicative
group of the positive reals.

There is still another class of irreducible representations of the
Poincare group, which admit a momentum operator with spectrum on
the forward light cone. They belong to the class Ό+(Ξ) in Wigner's
notation [9, Section 7B]. However, no one ever succeeded to attribute
a physical meaning to them. So, we shall not discuss these representations
here in detail, but for the interested reader we write down a functional
describing them:

Fk(f)= f dxSdδJto-**>J0(k\z\)f(x,δ) δ = ( _

They depend on the parameter k> 0, which appears in the argument of
the zeroth order Bessel function. The relation to Wigner's 3 is k2 = Ξ.
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6. On the Limit m-+0

It has been often argued that the representations with m > 0 approach
the physical zero mass representations as the mass tends to zero [11-14].
The results so far seem to be in a rather preliminary stage, since they are
based in part on unspecified assumptions. In order to tackle this problem
one cannot avoid mentioning the topology to be used on the set of
representations, matrix elements, states and so on, that one wants to
consider. By merely looking at the functional F in (8.1), which has a well
defined limit as m—•() one learns that the problem may be rather involved,
since the limiting functional dos not describe zero mass particles at all.
The reason, why the quoted authors never obtained this limit, is that
they kept the three-momentum at a fixed finite value, whereas one can
find wave functions depending on m > 0 such that \p\/m never exceeds a
given positive constant on the support.

Let us look for some mathematical tools to describe the situation.
On the set G of irreducible representations, the so-called dual of G, there
is a natural topology, which, however, turns out to be non-Hausdorff for
the Poincare and many other groups. This property of the topology
arises, since representations are identified if they are unitarily equivalent,
i.e. since one passes to a quotient space. It is for this reason that we resort
to the set S(G) of states on I}(G)5 rather than to equivalence classes
thereof. For S(G) is a subset of both L°°(G), the dual of ti(G\ and L{G)\
the dual of L(G), it carries two w*-topologies which, however, coincide.

Let us now consider the following unbounded functional on L(G)\

Fι(f)= \dx J dua2sf(x,u\ u = ( *
R4 SU2 \P

ίeiΘ

R4 ' ' \0

The first one is obtained from

Fm(f)= \dx J dueimx°a2sf(x,u)
R4 SU2

for m = 0 and gives rise to a reducible representation Uγ of SL(2, C) on
3tf[ lifted to G. The second one is a finite convex combination of functionals
of the form (8.3) and gives rise to a reducible representation Uu of G on
Jfπ, which is unitarily equivalent to the direct sum Us® Us^ί ©_• 0 LLS.
Though Uι and Un are neither unitarily equivalent nor even similar, they
are limits of UFm in a certain sense:

Proposition 6.1. Let ρ be a density matrix on $Ί (resp. J^j). Then the
associated state ωρ(f) = trace ρπFι(f) (resp. trace ρπFu(f)) on I}(G) can

5 A state is a positive functional of unit norm.
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be approximated in the w*-topology of L°(G) by states of the form
n

ω(f) = Σ Fm(fί*ffi) w ^ fi> ->fnEL(G\ if the mass m is allowed to be
i = l

arbitrarily small but not vanishing.

In order to prove this assertion we need two preparing lemmas.

Lemma 6.2. Let F be a positive functional on L(G) and x e fflF arbi-
trary. Then x can be approximated by vectors fF with feL(G) and

*"(/*/)= WI2

Proof. Any neighbourhood 91 of x in J^F contains a basic neighbour-
hood 9Iε = {y E 2tfF : ||x - y\\ < ε} with suitable ε > 0. Since L{G)F is dense
in Jtfp, we may find some/e L(G\ such that || fF — x\\ < f and/F + 0. Now,
/ ( / * / ) - - . ||χ|| f GL(G) satisfies F{f*f) = \\x\\2 and

Thus, fF belongs to 91.

Lemma 6.3. Let F be an ^-continuous positive functional on L(G).
Let ρ be a density operator on fflF and let the state ωρ on 1} (G) be defined
by ωρ(f) = trace ρπF(f). Then ωρ may be approximated by states of the

form ω(f)= £ F(ft* fβ with fl9 ...JneL(G).
i = l

Proof. For ρ may be uniformly approximated by finite rank operators,
n

it suffices to assume that ωρ takes the form ωρ(f) = £ <xί9 πF(f)x>>
n ί = ί

with xu ...,xneJ4?F and £ ||χ.||2 = l. Let 9Ϊ be a neighbourhood of
i = l

ωρ in S(G). One may find some ε>0 and φί9 ...,φkeI}(G\ such that

is contained in 91. According to Lemma 9.2 we may find / l 9 ...,/„e L(G)

such that F{ft*fύ = \\Xi\\\ i = 1,..., n and \\fiF-Xi\\ < ~ V F o r t h i s

2yn
choice we obtain

|<xf, πF(φv)Xiy - </iF, πF(φv)fiF}\

S \<Xi ~ fiF, πF(φv)Xi>| + |</ i F, πF(φv) (xf - / iF)>|
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Thus, if

ω(/)= Σ Fift*ffd= Σ <ftF,*F(f)ftF>,
we have ί~1 i=1

ε "
\ωρ(φv)-ω(φv)\<—ΓΣ\\xi\\^ε for v = l,...,fc.

| / W £ = 1

Because „ „

l | ω | | = Σ W / i ) = Σ Il*ill2 = l>
ί=ί i=l

ω is a state contained in 91.
Proo/ o/ Proposition 6.1. Let us turn to FΪ first. According to

Lemma 6.3 it suffices to show that any state ω of the form

ω(/)=Σ W1V./D
ί = ί

can be approximated by states of the form

ωm(f)=ΣUfi*ffi)
i = l

with sufficiently small \m\ > 0. Now we resort to the w*-topology of
n

L{G)'. If feL(G\ then the function / = Σ ftffi has compact support
i = l

and ω w (/) = FTO(/) is continuous in the mass m, so that ω o (/) = ω(/).
Therefore, ω(f) may be approximated by ωm{f) with |m| > 0.

Next we turn to Fn. We assume mφO and define the matrices
k e SL(29 C) and u0eSU2 by

k=

' 1 \* 1
1 + - T - +

m2 I m
\

ιιi + Λ)'--F,
m2I m\I

1 1

Let the matrix c = fcw0 serve to define the automorphism σ(x, α)
= (Λcx,cac~1) which, by construction, depends on the mass, and let

F'm be the functional F^f) = ̂ -Fm(fo σ). Then:

F'm{f) = ̂ L j dx J
m Λ4 SU2

A convenient way to write the Haar integral on <S U2 is

= ^~\άΘ \ dβf(u), α = (ί-
su2
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with dβ = dβx dβ2,β = βί + iβ2. Replacing β by -y- z we obtain

Fm{f) = -^\dχ2\dΘ J dz

/ m \ 2 s

^ 3 R e α - i — I m z

As m tends to zero, the only possible irregularity occurring in this ingegral
stems from the z-integration, which is readily seen to extend to the entire
complex plane as m->0. However, if feL(G\ the z-integration is auto-
matically cut off, as / has compact support. Thus, F'm(f) is a continuous
function of m, yielding F'o = Fu and any state ω of the form

ω(/)=Σ W
i = l

can be approximated by

<(/)= Σ Ufι*ffd= Σ
ί=l

for sufficiently small \m\ > 0, the connection between the ft and the f- is
given by

This completes the proof.
One remark is in order. The representation Uι has no particle inter-

pretation, since any state in it is translationally invariant, yet it appears
as a limit of the nonzero mass representations, which do have a particle
interpretation. Obviously, Όγ describes an infinitely degenerate vacuum
and can also be realized on functions Φσ(v)

(U(x, a)Φ)M = Σ DIAUaJ ΦAΛa-Λ)
σ'

where veR*, OQ-V\-V\-V\ = \, V0>0, and ua>v is Wigner's SU2

matrix

The invariant scalar product is obtained from



122 G. Roepstorff: Unbounded Functionals on a Group Algebra

Frequently one encounters infrared divergencies in theories involving
an indefinite number of zero mass particles. The complication does not
occur if all particles in question have finite rest masses. Suppose, such a
theory has been regularized by admitting positive mass values and some
observable quantity c(m) proves to be continuous in the mass m. Then
one cannot be absolutely sure that c(0) has something to do with a theory
of zero mass particles. It might very well be that one involuntarily arrives
at a theory involving the strange representation Uι or a subrepresentation
thereof, which has to be checked.
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