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Abstract. The concept of locality in quantum physics leads to mathematical structures
in which the basic object is an operator algebra with a net of distinguished subalgebras
(the "local" subalgebras). Such nets provide a classification of the states of this algebra in
equivalence classes determined by local or asymptotic properties. The corresponding
equivalence relations are natural generalizations of the (more stringent) standard quasi-
equivalence relation (they are also useful for classifying states by their properties with
respect to automorphism groups). After discussing general nets from this point of view we
investigate in the last section more specialized nets (funnels of von Neumann algebras)
with special emphasis on their locally normal states.

Introduction

In the algebraic approach to Quantum Field Theory or Statistical
Mechanics one deals with a C* -algebra 91 with a distinguished collection
of subalgebras 5Iα. The physical significance of the index α is usually to
specify a region in Minkowski space (resp. Euclidean space). Then 9Iα is
the algebra generated by the physical operations (or observables) which
can be performed in the specified region. The collection {9Iα} provides
a "net" for 21 in the sense of Definition 2 below and for many purposes we
may assume that it is a "funnel" (see Definition 7).

Parallel to observables and operations we have to consider the
physical states. In the mathematical frame they are given by positive
linear forms (expectation functionals) over the algebra. The set of these
forms is denoted by 91*+. One may take the attitude that each ω e 9 I * +

corresponds to a physical state, but that no actual experimental arrange-
ment can prepare a state precisely. Rather an experiment specifies a
weak neighborhood in the space of positive linear forms. This is the point

* The research in this paper was supported in part by the N.S.F. and the Ministere de
ΓEducation Nationale.
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of view adopted in [1]. It results if one assumes that 91 contains all
observables and that no further knowledge about a state is available
beyond the information obtained from the measurement of a finite
number of observables. A consequence of this point of view is that one
can treat all experimentally relevant questions by using a very restricted
set of states, namely the vector states of one faithful representation of 9Ϊ
because such a set is weakly dense in 9Ϊ*+. Moreover, the choice of this
representation is arbitrary. Another possible point of view [2] is to
assume that the "physical states" are a distinguished subset £f C 9ί*+

so that the theory specifies (91, S?) rather than 91 alone. The two points
of view are reconciled if one acknowledges that in each case an idealiza-
tion is made and that the idealizations have to be judged by their con-
venience rather than by fundamental principles. In the first point of view
the idealization consists in the choice of the algebra 91. This specifies
precisely what is supposed to be observable. In practice the precise
choice of the local subalgebras 9Iα may be a matter of dispute. For
example, in the non-relativistic many body problem of a single type of
Fermi particle, interpreting the index α to specify a finite region V in
3-dimensional Euclidean space at a time t and writing 91 (V, t) instead of
9tα, the simplest choice for 9I(V, t) would be to take the smallest
C*-algebra containing all creation- and destruction operators for a
particle whose wave function at time t has support in V. This should first
be considered as defining a collection of concrete operator algebras,
denoted by C(V, ί), in Fock space. Each C(V, t\ as a C*-algebra, is iso-
morphic to the Clifford algebra over a separable Hubert space. If we
regard the collection of all these C(V, t) as a net of C*-algebras (keeping
their mutual relations in so far as they are independent of the realization
in Fock space) then we encounter the following two problems.

First, this algebraic structure allows many states which are not
physically realizable in realistic systems, namely states which describe
an actual infinity of particles within a finite volume V. A "physical state"
should be "locally normal" [3] with respect to the Fock representation,
i.e. the restrictions of all physical states to one local subalgebra lie in
one quasi-equivalence class. This allows us to choose as the local algebra
9l(V, t) instead of C(V, t) its weak closure JK(V91) in the Fock represen-
tation or any other C*-algebra in Fock space whose weak closure
coincides with JK(V91). We can use this freedom to return to the first
mentioned point of view by building up the local algebra 9ί(V, t) from
the relatively compact operators in J((V'91) with V'C V.

Secondly, there is the problem of the relation between the algebras
associated with different times. The dynamical law, formulated for
instance by the Heisenberg equations of motion for the creation opera-
tors, means that a local observable at time t should be expressible also in
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terms of the observables at an arbitrary other time. One may therefore
hope that one can (by a proper choice of the local algebras 2l(V, ή) define
a "kinematical algebra"

U) (i)
V

in such a way that
2l, (2)

i.e. that the kinematical algebra at an arbitrary time is already the full
algebra mentioned at the beginning of this section. In that case the group
of time translations will be a subgroup of the automorphisms of 3ί (i.e.
time translations will be represented by automorphisms of 21). If we
choose 9ί(V, t) = C(V, t) then for a system of non-interacting particles
and also for sufficiently "mild interactions" Eqs. (1), (2) will be true.
They cease to be true, however, in the case of most practical interest,
where the interaction is given by a velocity independent 2-ρarticle
potential. One might be inclined to put 2I(V, t) = JK(V, t) in that case.
It has been pointed out to us by Araki that such a choice can only make
matters worse. A very simple argument shows that with this choice of
9ϊ(V, t) Eq. (2) does not even hold for the non-interacting particle system.
It is at present unknown whether a suitable choice for 91 (V, t) can be
found for which Eqs. (1), (2) hold in a sufficiently general class of inter-
actions. This question will, however, not be studied here.

The objective of the present paper is to study different ways of
classifying states of 51 into equivalence classes. We shall assume that
we are dealing with a distinguished subset e9

?c9ί*+ of states. The
various definitions of "equivalence" will be related to various properties
with respect to a net of subalgebras {9Iα}.

The last section of the paper, dealing with "funnels" of von Neumann
algebras, can be read independently of the earlier sections (except for the
definition of nets of subalgebras). In particular it makes no use of the
concepts of relative equivalence and containment.

§ 1. Relative Equivalence and Relative Containment
of Representations of a C*-Algebra

In this section we describe a generalization of the notions of quasi-
equivalence and quasi-containment of representations (or states) of a
C*-algebra1. This will provide a unified language for dealing with the
type of situations mentioned in the Introduction and discussed in
Section 2 below. After a statement of definitions and notation, we list

1 We refer to [4] the reader interested in the corresponding relative central decom-
positions of states.
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results without giving the proofs which can easily be adapted from
known arguments ([5], Chapter I, [6], Chapter 5).

Let 21 be a C*-algebra with double dual (von Neumann enveloping
algebra) 21**. We first remind the reader that one can define quasi-
equivalence (quasi-containment) of representations of 21 by using as
follows the center 2£ of 2Ϊ**: if, with π a representation of 21, we denote
by π its ultraweakly continuous extension to 21**, by K% the generating
projector of the kernel of π; and if we set S°π = I - K°π (so that K°, S°π e 2£\
%i is quasi-equivalent to (quasi-contained in) π 2 if and only if S^ = S®2

(Sjj ^ S£2). In this way quasi-equivalence classes of representations of
21 are set into a one-to-one correspondance with projectors of S£, Further-
more, with M an arbitrary set of representations of 21 and ρ = φ π,

πeM

one has S°ρ = V S° 2 ; and the minimal projectors of 3£ correspond to
πeM

the quasi-equivalence classes of primary (factor) representations of 21.
Our generalization will now consist on the one hand in replacing 21** by
the closure [SP]* of 2Ϊ in the weak topology of operators determined by
some faithful representation (having Sf as its set of normal positive linear
forms); and on the other in taking instead of 2£ an arbitrary von Neumann
subalgebra 3£^ of the center of [5^]*. We first introduce some terminology
and notation.

Let 21*+ be the set of positive linear forms over 21. A subset of 2t*+

will be called a folium7* whenever £f is (i) closed under convex com-
binations (ii) closed in the norm-topology of linear forms (iii) such that
for each φeίf and Λe%φA = φ(A* A) e 9*. The normal positive forms
of any representation π of 21 form a folium which we denote by 5^π.
Conversely any folium ίf is of the form £fπ for some representation π
which we can take to be the direct sum π = (J) πφ of all cyclic represen-

tations πφ determined by the elements φe & Given two representations
π x and π 2 of 21 π x is quasi-equivalent to (quasi-contained in) π 2 iff
^m =y?π2^πi £^π 2 ) This establishes & one-to-one order-preserving
correspondence between the folia of 21*+ and the quasi-equivalence
classes of representations of 2ί. (With φ a state of 21 we note that the
normal folium £f of the representation πφ generated by φ is the smallest
folium containing φ)

Let now ίf be a folium in 21* \ with v = ® πφ> so that 3? = ^ .

We assume that ίf is w*-dense in 21*+, so that τ? is a faithful represen-
tation 4; and identify A e 2ί with τ?(A) acting on the representation space

2 Y denotes the union of projectors.
3 Our folia correspond to the norm-closed invariant faces of [7, 8].
4 By Theorem (2.2) of [2] this is equivalent to the assumption that Sf is a full folium,

i.e. that A ^ 0 if φ(A) ^ 0 for all φ in $f.
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^τy of v , thus considering 91 as a concrete C*-algebra acting on Jfτ^.
The linear hull \_6Γ\ of Sf is a Banach subspace of the strong dual 91* of
91, consisting of all the linear forms of 9ί continuous in the ultraweak
topology of operators on 2tfτs/> (or the weak topology of 91 with respect
to [5^]). The norm dual [ ί ^ ] * of the Banach space [5^], then coincides
with the weak closure, v(9l)", of 91 acting on Jg^, since \£f\ is the set of
ultra weakly continuous linear forms (the predual) of v(9l)". Therefore
[Sf]* = v ( 9 ί ) " is a von Neumann algebra, the strong and w*-toρologies
of [5^]* as a dual space coinciding respectively with the norm and ultra-
weak topology of operators. (In the particular case when !f consists of
all positive forms of 9Ϊ, Sf = 91*+, v *s t n e universal representation τ
of 91 and [5^]* = 91**, the von Neumann enveloping algebra of 91.) Let
01 y be the set of representations π of 9ί quasi-contained in τ^ (i.e. such
that yπ Q £f\ As a generalization of the universal property of 9Ϊ**, we
have that each representation π e M'#, (each state φe£f) uniquely extends
to a normal representation π (state φ) of [ ί ^ ] * ; moreover π ( [ ^ ] * ) is the
weak closure of the concrete C*-algebra π(9I); and πφ = πψ. Denoting
by 2£y the center of the von Neumann algebra [5^]*, we are now in a
position to give

Definition 1. Let 3£γ be an arbitrary von Neumann subalgebra of 2£y.
With π e 0ty>, we denote by Kπ the generating projector in 2tγ of the kernel
of π I JΓ1? the restriction of π to 3£γ and by Sπ — I — Kn the complementary
projector of Kπ in ί£x (called the ^-carrier of π) 5. With π 1 ? π 2 in &#>, we
say that

(i) πx is ^-contained in π 2 (πx of π2) whenever Sπι S Sπ2 (or Kπi ^ KπJ9

(ii) πx and π2 ore 3L\-equivalent (π1~π2) whenever Sπι = Sπ2 (or
Kπί = KπJ,

(iii) π± and π2 are ^-disjoint (πx 6 π2) whenever SπiSπ2 = 0 (or
KπivKπ2 = I).

Further πeMy is called ^-primary whenever π ^ π implies π ^ π
for all πx e0ty (or else if Sπ is a minimal projector of 3CJ.

For states of 91, 3εγ -containment, (-equivalence, -dίsjointness, -primarί-
ness) are defined as the same circumstances for the associated represen-
tations.

We have thus defined an ordering α: of 0t^ and associated equiv-
alence ~, which reduce to quasi-containment and quasi-equivalence
in the case Sf = 91*+ and 2£γ — JΓ6. We note that the above definitions
are invariant under addition of a null representation as a direct summand

5 With K°n the generating projector of the kernel of π in [ ^ ] * and S£ = / - K°n we note
that Kπ is the greatest projector of 2£γ smaller than Kj> and Sπ the smallest projector of
&x greater than S%.

6 Or in the case of a general 9* and 2£γ = &y, to the usual notion of quasi-containment
and equivalence restricted to representations in 0ty.
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to the representations under consideration. In this respect our generalized
disjointness and primariness notions differ slightly from the usual ones
in the case of degenerate representations: for Sf = 21*+ and J ^ = Jf,
^-disjoin tness of π± and π 2 in our sense means that the essential parts 7

of πt and π 2 are disjoint in the usual sense; and analogously π will be
2£-primary in our sense if and only if it is the direct sum of a null represen-
tation and a primary representation defined as usual. For essential
representations all our generalized notions merge exactly into the usual.
ones in the case cŜ  = 9l* + and 2ίγ = «2f. Obviously, two 3£γ -primary
representations are either ^-equivalent or SE^-disjoint. The following
statements are listed without proofs, since most of them are straight-
forward generalizations of known facts in the theory of quasi-equiv-
alence of representations.

(a) Let π = 0 π v with πve&y, vel: then πe&#> and π = φ τ v
veί veί

Furthermore Kπ = f] Kπv and Sπ = V Sπv. In particular for π1,π1e3tSf,
v e/ vel

Kπi®π2

 = KπίKπ2 and Sπi@π2 = Sπi + SU2 — SπιSπ2.

Combining this with the preceding definition we have that:

(b) There is a one-to-one correspondence between ^-equivalence
classes of representations in 31 #> and projectors in 3?x; whereby ^-con-
tainment, ^-disjointness, ^-primariness and direct sums of (classes of)
representations go over respectively into containment, orthogonality,
minimality and union of projectors. The ^-equivalence classes of represen-
tations thus build a Boolean algebra.

We next state properties of the ^-carriers connected with the
representations themselves:

(c) Let π e dly. Then π(Sπ) is the essential projector of π (the smallest
projector E acting on the Hilbert space of π such that Eπ(A) = π(A),
AeW).

(d) Let πt be a subrepresentation of πe 31 y. Then π± e &#> and πx α: π.
Furthermore π(Sπι) is the smallest projector in π(β^) containing the
essential projector of πv

(e) Let π e 31 #, and let S be a projector in 2£γ% Defining ρ(A) = π(SA),
A e 21, one obtains a subrepresentation ρ of π with Sρ = SSπ (in particular
Sρ = S if S^SJ. Moreover πiSSJ and π(Sπ-SS1t) are the greatest

7 With π a representation of $1 on the Hilbert space 3tf we recall that a subrepresenta-
tion of π is a representation %x of 5ί on tf of the form πx{A) = Pn(A), A e 2ί, with P a pro-
jector acting on 3tf which commutes with π(3l). A representation π is called essential (non
degenerate) if it has no null subrepresentation. The essential part ofπ is the subrepresentation
πx of the foregoing form with P the greatest projector such that % is essential (P is then
called the essential projector and Pjf the essential subspace of π).



Nets of C*-Algebras 87

projectors determining essential subrepresentations of π respectively
^-contained in and ̂ -disjoint from the ^-equivalence class of represen-
tations determined by S.

As immediate corollaries we have that
(f) With π1,π2e S&p one has π1 cf π2 if and only if πί is ^-equivalent

to a subrepresentation of π2.

(g) With πί,π2e^^ and assuming πx essential, πx is uniquely de-
composed into a direct sum π[φπf( of a subrepresentation π[^-contained
in π 2 (determined by the central projector π1(S7C2)y) and a subrepresentation
π'[ disjoint from π 2 .

The next two properties are relative to mutual relationships of sub-
representations of the same representation:

(h) Let πuπ2eStse and consider π = π 1 © π 2 . Then π± and π 2 are
^-disjoint if and only if the essential projector of πx belongs to π(β^).

(k) Let π l 5 π 2 e01 ̂  be subrepresentations of' πe0ly>; and let Fu F2 be
the smallest projectors of π(β^) dominating the respective essential pro-
jectors of πί and π2 (so that Fί = π(Sπi) and F2 = π(Sπ2) by (d)). We have
the following equivalences: πίcfπ2<=>Fί ^ F2; πt

 rγn2oF1 = F2; πx ό π 2

<^FX F2 = 0.

We next characterize ^-primariness of a representation or a state:

(1) π e f y is ^-primary if and only if π(β£^) reduces to the multiples
of the unit operator on the essential subspace of π (iff π(S\) is one-dimen-
sional).

(m) Let φe^ with πφ the corresponding representation of 9ί acting
on the Hilbert space 34? with cyclic vector Ω such that φ{A) — (Ω, πφ(Λ)Ω),

The following are equivalent:
(i) φ is ^-primary

(ii) for each AeSHandZe^i φ(AZ) = φ(A)φ(Z);
(iii) for each Ae\_&γ and ZeSx φ(AZ) = φ(A) φ(Z);
(iv) π^(^Ί) reduces to the multiples of the identity operator I
(v) ΊΓφ{Z) = φ(Z) o / for all Ze^;

(vi) π̂ (<2Γi) is one-dimensional;
(vii) the restriction of φ to 2£^ is pure.

The next three properties state relationships between our J^-primari-
ness and 3£1 -disjointness notions and the usual ones:

(n) // %γ e0tcf> is quasi-contained in π2eM^, πx is ^-contained in
π2. In particular πt ~π2 implies πί^π2.

(o) If πe01 y (φ eif) is primary, it is ^-primary.
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(p) Two essential representations πΐ,π2e &#> (two states φl9φ2e ίf)
which are Ά\-disjoint are disjoint8.

We finally give an interpretation of the foregoing notions in terms
of the "^-folia of representations":

(q) Let π e ^ . The sets

Mx = {ψe ^ there is a φe^ with ψ(A) = φ{SπA\ A e91} ,

M2 = {ψe &; ψ(SπA) = ψ(A)9 AeW},

M3=

define the same subset Σπ of Sf called the ^-folium of π. One has φeΣπ

oπφof π. For πl9 π2 e91#> we have the equivalences πt ~ π2oΣπi = ΣK2;

π^π2oΣπι ς ΣK2; πγ6 π2oΣπιnΣπ2 = {0}. With π v e ^ , v e l , Γ 0 π v

is the norm-closed convex hull of the union of all Σπv,veL

§ 2. Applications to Nets of Subalgebras and Groups of Automorphisms

A. Local and Asymptotic Properties Relative to a Net of Subalgebras

The general context of this sub-sections is that of a "net of local sub-
algebras" defined in the following way:

Definition 2. Let SΆbea C*-algebra. A net ofSΆ is a collection & = {9Iα}
of C*-subalgebras of 91 (the "local subalgebras") with the following
properties

(i) to all pairs 2tα, %e^ there is%e^ with Sl.uSl^ Q %;
(ii) the unit of 91, if it exists, is contained in all 9ία e 3F; if 9Ϊ has no

unit, every approximate unit of each 9ία e 3F is an approximate unit ofS&9;
(iii) the union (J 9ία of all 9ίχ is norm-dense in 91 1 0 .

8 More generally if ^ and &2

 a r e γ o n Neumann subalgebras of &y with &x ^
we have for πί,π2,πe My and φ e Sf, with evident notation:

(n') %^%2^>π^π2.
(o1) If π(φ) is ^-primary, it is ^-primary.
ip') ^ i ό %2-=>%x^%2.
9 We note that this property entails that each essential representation of 21 is essential

in restriction to all 2Iα s J^: and that a state of 21 furnishes by restriction a state of 2ία for
all 2 I α e # :

10 Given two nets & = {2ΪJ and ^ = {21̂ } of % we write #" ^ ^ whenever, to eajth
5Iα e ^, there is a ^ e ^ with 2lα g %.
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Given a C*-algebra 91 with a full folium £f of positive forms and a net
^ we next define two von Neumann algebras 2£x and JΓC of the center of
[ ^ ] * , each of which determines as above a notion of equivalence and
containment of representations of 91. The indexes Z and c stand for
"local" and "commutant", as the so obtained notions are respectively
related to properties holding "within" the local subalgebras and on their
relative commutants.

Definition 3. Let 91 be a C*-algebra equipped with a full folium £f of
positive forms and with a net 3F. Retaining the identification 91 = v(9ί) and
taking commutants and bicommutants in the representation τ#>, we denote

- by 2£χ the von Neumann algebra generated by the central supports
relative to 9Γ of all elements of the centers 9 ί£n9ζ of all 9ζ';

- by 2SC the intersection of all 9lf, 9Iα e ^ where 9Ϊ£ = 9i;n9I is the
relative commutant of 9ία in 91.

We denote accordingly by ~,c>c,ό; and by ~9<x.,& the respective
relative equivalence, relative containment and relative disjoίntness of
representations given in Definition 1 where one takes 2£1 = 3£ι; and

We note that for each 9Iα e ^ 9ία £ 9I£' and 9ί< Q 91, so that 9If Q 9i;
(whence Slf ς 9Γ by (iii) of Definition 2) and 9I£" Q 9Γ = [ ^ ] * . Thus
<2?c belongs as implied above to the center 2£y of [£f~\*.

The local nature of 2SX is shown by

Proposition 1. Let π l 5 π 2 e ^ and assume π1cjcπ2. Then for each
9Iα G SF the restriction πγ \ 9Iα of %γ to 9ία is quasi-contained in π2 \ 9Iα. In
particular, if nίyπ2, πx | 9ϊα and π 2 | 9ία are quasi-equivalent for all

Proof Consider π e M$> with ultraweakly continuous extension π to
and denote by K^ and Xπ the respective generating projectors of

Kerπ and K e r π | Zx. For 9I α eJ 2 r and any L e 2 l £ n S i ; with central
support CL we have (since CL e 2£x and J^^ e 2£^) the equivalences:

X . Q = CLoπ{CL) = 0 o K 2 C L = CLoK°πL = L^>π(L) = 0.

Therefore if π l 9 π 2 e ^ ^ are such that ^ < ^ ^ 2 , whence the implication
KK2CL = CL=>KπιCL = CL for Le 9l^n9I^ we have also the implication
π2(L) = 0=>π!(L) = 0 for L e 9i; ;n9i; i.e. the inclusion K e r ^ | 9 1 ^ 9 1 ;
2 Kerπ 2 | W±nWa9 or equivalently K e r ^ | 9ί^ 2 Kerπ 2 | 91 .̂ In order to
complete our proof we will now pass from there to the inclusion Ker πt 19Iα

2 Kerπ 2 | 9Iα, where π± \ 9Iα and π 2 | 9ϊα are the respective ultraweakly
continuous extensions of %γ \ 9lα and π 2 | 9ϊα to the von Neumann algebra
{¥ I 9IJ*, if I 9ία denoting the set of restrictions of the states of Sf to

1 1 The symbols ~, oc, 6 will be reserved for the usual quasi-equivalence, quasi-
containment and disjointness of representations of $t.
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9Iα (this will imply our result - see footnote after Definition 1). Now the
restriction τy\ 2Iα of τ? to 2Iα extends uniquely to a ultraweakly co-
tinuous representation of \£f | 9IJ* whose image is the weak closure
9ί^ of τ>(2ϊα). Furthermore, since the normal states of τ? | 9Iα comprise
ίf I 9Iα, this extension is faithful, so that we may identify \βf | 2IJ*
with 91^ as a von Neumann algebra; whereby πγ | 9Iα and π 2 | 9Iα are
respectively identified with the restrictions of πx and π 2 to Sζ'; whence
our result.

The next results are easy generalizations of a theorem of Powers ([9],
Theorem 2.5).

Definition 4. Let φ1 and φ2 be elements of the linear closure \£f\ of £f
and denote by Tpl and φ~2

 tne^r respective ultraweakly continuous extensions
to [«$^]*; ψι and φ2 are called 3£c-equal whenever φx and φ2 coincide in
restriction to 2£c.

Lemma 1. Let φί9 φ2 e \_Sf\ The following are equivalent:
(i) φί and φ2 are 3?c-equal;

(ii) to each ε > 0 there is aS&ae^ with \\φx \ S&c

a-φ2 \ 9i;|| <ε.

Proof. We prove (i)=>(ii). Assume (i) to hold and (ii) to be false. For
each 9Iα e 3F the weak-operator closed set

is non void. We note that 9Iα 2 %β implies QaQQβ; thus (i) of Definition 2
entails that the family {Qa} has the finite intersection property. The weak
compactness of the unit ball of [«9^]* then yields the existence of a Z e ^c

with \φ[(Z) — ψl{Z)\ ^ ε , a contradiction. We now prove the converse
(ϋ)=>(i). Let ε > 0 , assume (ii) and take Z e &c. Since &CQWZ\
Kaplansky's density theorem yields a B e 9Ϊ« with | |5 | | ^ \\Z\\,
\φl(Z) - φ^B)] S ε and \φ2(Z) - φ2(B)\ ^ ε; then

and (i) follows.

Proposition 2. Let φe£f. The following are equivalent:
(i) φ is ££c-primary

(ii) to each A e 91 there is a 9ία e 3F with

Proof Define φl9 φ2 e \Sf\ by φ±{B) = φ{AB) and ψ2{B) -
β G 9ί. By (m) above, (i) means that φί and φ2 are Jfc-equal. But this is
equivalent to (ii) where one takes A/ε instead of A from the previous
Lemma.

Proposition3. Let φuφ2eίf. Then ψι^cφ2 implies ||<Pi|2ϊα
~Ψi I 2Ϊ£II = 2 /or α// 9Iαe J^ Tte converse holds if φt and φ2 are 2£c-
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primary. Two ^-primary states φx and φ2 are ^-equivalent if and only if,
to each ε > 0, there is a 9lα e ^ with H^ | 9Ϊ£ - φ2 \ 9I£|| ^ ε.

Proof. Consider π = πφιφπφ2 acting on Jf = ^ π φ i Θ ^ Φ 2 and denote
by Eu E2 the respective projectors onto J^πφ and ifπ in ^ We know
by (h) above that φx 6 φ2 entails E1 = π{Zγ\ E2 = π(Z2)

2with Zl9 Z2 e 3£C.
For each 9Iα e 2F, Zl9 Z2 e 9l£", Kaplansky's density theorem then asserts
the existence, to each ε>0, of AeWa with | | 4 | | = 1 , iφ^A-Z^
= \φ1(A) — l\^ε and \φ2(Λ + Z2)\ = \φ2(Ά) + 1 | ^ ε; since ε is arbitrary
it follows that \\φ± \ S&\ - φ2 \ 9ίJ|| = 2. If φ1 and φ 2 are ^-primary we
have either φ16 φ2 or ψι~φ2. The latter entails by Lemma 1 the ex-
istence of 9Iα G & for which | | ^ | 2l£ - <p2 I 2Ϊ£II < ε.

Combining the two last propositions with (n) and (o) of Section I we
get the

Corollary J/φ is α primary state of the C*-algebra SΆ and ̂ {={(Άa}) is
a net for 91, then, given A in % there is an 5Iα in 3F such that

\φ(AB)-φ(A)φ(B)\£\\B\\, BeWa.

Moreover, with φ1 and φ2 quasi-equivalent, primary states of 91, for
each positive ε there is an 9lα in 3F such that \\φx \

 <Άc

a-φ2 \ 91 |̂| ̂  ε.

Remark. We note that Lemma 1 and Propositions 2 and 3 hold more
generally replacing 9ξ by jS?β and Jfc by f] &£, with {ifα} a family of sub-

a

algebras of 91 such that (i) to each A e 91 and ε > 0 there is a &a with
|| \_A, B] || ^ ε for each B in the unit ball of i?α (ii) to each pair jSfβ, jSf̂  there
is i?y contained in Jέfαn i^ . The algebra # π (cf. [10], § 2) of Lanford and
Ruelle, which is more genuinely asymptotic in nature than our £?c in
that it excludes superselection operators, comes under the scope of
this remark.

B. Central Subalgebras Related to a Group of Automorphisms

Another structure to which the general notions of Section 1 apply is
that of a C*-algebra 91 together with a weakly dense folium $f of positive
forms and a homomorphism g eG-*ocg of a group G into the group of
σ(9ϊ, [e9

ί?])-continuous automorphisms of 911 2. (We note that each α0 then
possesses a transposed aι

g on \_SΓ\ and a bitransposed α" on [5^]*,
respectively σ([5^], 9ί)-continuous and ultraweakly continuous. Further-
more g-*atg-i and g-^tf* are group homomorphisms, α" is an auto-
morphism of [«^]*; and r α ^ ^ )
for all φe^ and π e Λ^).

1 2 With V and VΓtwo vectors spaces in duality σ(F, V̂ ) denotes the weak topology of
V with respect to W. We note that the automorphisms ocg are σ(% ^])-continuous if and
only if their transposed in 9ί* leave the folium y invariant.
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Definition 5. We denote by 3£G the set of elements of ^^ invariant
under all α", g e G. A representation π e 01 ̂  (state φeSf) is called quasi-
invariant1* whenever the S^-carrier Sπof π (of πφ) belongs to 2£Q; π and
φ are called ergodic whenever they are quasi-invariant and ££G-primary.

It follows from the noted facts that <2?G is a von Neumann subalgebra
of 2£p\ and that π e 3ty is quasi-invariant iff the kernel of π in \βΎ *s

α"-invariant for all g e G; or iff π° otg ~π for all g e G ; or iff £fπ is α'-in-
variant. Ergodicity of π means that the only G-invariant elements of
π(2I)" are the scalar multiples of the unit operator. For 2Ϊ and G separable
one can decompose any quasi-invariant state into ergodic states [4].

Proposition 4. Let π e f / the 2£G-folium Σπ of π is the smallest
of "invariant folium containing 9^π. Let φ, φ' eϊf'.φ' is 3?G-contained in
φ iff it is a norm-limit of convex combinations of states of the form ofg(φ^9

geG, Ae$l; and φ1 and φ2 in £f are ^-disjoint iff φx and α^(φ2)
 a r e

disjoint for all g e G.

Proof Let Sπ and S° be the respective 2£G- and ^ - c a r r i e r of π. The
first assertion follows from the fact that Sπ is the smallest of ̂ invariant
projector of &? larger than Sj, and thus equals \J α"(S2) Further, for

geG

φe^thQ «2ΓG-folium Σπφ of πφ is the smallest α^invariant folium con-
taining φ, and thus coincides with the norm-closure of the convex hull of
states of the form ofg(φ^, ^ e G , A e 21; whence our second assertion
using (q) of § 1. The last assertion is proved as follows: if φί and ^gφ2

are not disjoint for some geG, then

Kφi(QΣπφi) and ^tg(J=a'g(^ψ2)QΣπφ)

have a non vanishing common element; therefore φί and φ2 are not
^.-disjoint. Conversely if φx and ag{φ2) are disjoint for all g e G, so are
ίΛ) a n d tth(ψ2)B f° r a ^ g,hε G and A, Be%. The direct sums

a n < ^ Φ π α £ ( φ 2 ) B , whose respective normal folia coincide with
ΛG h

φι)Λ Φ
ΛeG

Γ π v and Σπφ2, are then disjoint; therefore φx and </)2 are ^-disjoint,
from (q) of § 1.

We now examine the particularly interesting special case in which G
is locally compact amenable and acts on 21 with the following properties:

a) g-*φ(ag(A)) is continuous for all φ e 9* and A e 21;
b) the system {2ί, α} is asymptotically abelian in the following sense:

denoting by 9JΪG the set of invariant means of G, we have, for all 77 e 9JlG,
φ G 9> and A, B e 2ί

1 3 According to Zeller-Meier [11].
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where η(f(g)) = η(f) with / :#->/(#) a bounded continuous function
onG.

Arguing as in ([12], Lemma 1), we can then define, for each η G9MG ?

unique mappings Mη\SΆ-^\_&'~]* and MJ: [<9*] -»2t* by the properties

η{φ(a§(A))} = φ ( M ^ ) = ( M » (4), 4 e 2Ϊ, φ e \βf\ . (1)

These mappings are linear, of norm not exceeding 1, and such that

Γ α< (M^φ) = M<(xg(φ)) = M > , φeSf

\${MnA) = Mη(ag(A)) = MηA AeMg '

Further, Mη has its range in «2Γ̂ , and therefore in JfG.
Assuming the foregoing structure and notation, we make:

Definition 6. We denote by ££M the von Neumann subalgebra of \ίf~\*
generated by all MηA, A e 21, η e SDΪG. A state φe^ is called η-clustering
whenever

η{φ(A aέ(B)) - φ(A) φ(zs(B))} = 0 (3)
or equivalently-

φ(A MηB) = φ(A) φ(MηB) (3a)
for all A, B eVL.

Proposition 5. With φ in ίf, the following are equivalent
(i) φ is ££M-primary,

(ii) φ is η-clustering for all 77 e 9ϊlG.
In particular ££G-prirnary (and especially ergodic) states are η-clustering

for all ηe$flG. If φί9 φ2 e £f are ^-primary, they are 3fM-equivalent if
and only if Mt

ηφ1 = M^φ2 for all η e 9MG.

Proof According to (m) of § 1 φ is ^ΓM-primary iff

φ(AZ) = φ(A) φ(Z), A 6 [ ^ ] * , Z e ^ M . (4)

Now (i)=>(ϋ) since (4)=>(3a). Conversely, assume (3 a) for all A, 2?e2ϊ;
since φ is ultra weakly continuous, we have (4) for all A e \Jf~Y and Z of
the form M ηB, η e 9JϊG, B G 21. Repeated application of this property
yields, for A, Bt e 21, ηt e 2RG, i = 1,2,... n

PJ MmBi ) = φ\A Yl Mη..

By linearity we then have (4) with Z in an ultraweakly dense set of
and thus everywhere in 2£M by density. For JfM-ρrimary states φl9 φ2

^-equivalence means JfM-equality which is the same as equality on
all MηA, A.6 21, η e 9MG, by multiplicativity and ultraweak continuity.
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§ 3. Funnels and Their Locally Normal States

In this section we consider special types of nets, the funnels of Defini-
tion 7 below. These are encountered e.g. as the von Neumann algebras
of local regions in quantum field theory and statistical mechanics. The
specification of a funnel of a C*-algebra provides a natural selection of a
particular subset of states, the locally normal states of Definition 8 below.

Definition 7. A bet ^ = {Jί^ of a C*-algebra (cf Definition 2) is
called a funnel whenever each local algebra Ji^ e J^ is a factor possessing
a representation on a separable Hubert space. 3F is called a Type /-,
Type 7^-, Type 111-funnel if the Jίa are factors of Type I, Type 1^,
Type III... etc. If 3F consists of an ascending sequence {^n}n=ι>2,...> w e

call it a sequential funnel.

We will get a funnel by considering e.g. a C*-algebra acting on a
separable Hilbert space J^ with a net of concrete factors Jί^ on 2tf. Note
that as a consequence of Definition 7 for all ordered pairs Ji^ Q Jfβ in !F
the embedding of' Jί\ in Jiβ is normal. Indeed we know from [13,14, and 15]
that every representation of a factor on a separable Hilbert space is
normal: any representation φ of JKβ on a separable Hilbert space ffl is
thus normal and, since JKβ is a factor, faithful; φ is therefore faithful in
restriction to J(a and normal by the separability of JC whence the normal
character of the embedding Jίa g Jiβ. Note also, that for Type I-factors,
the property of being separably representable is equivalent to countable
decomposability.

Definition 8. We say that a state (a representation; a linear form) of a
C*-algebra 91 with a net 3F of von Neumann rings is locally normal (relative
to £F) whenever it is normal in restriction to all elements.of # ! The set of
positive linear forms of 91 locally normal relative to 2F will be denoted

The two next propositions are valid in a somewhat wider context
than that of funnels:

Proposition 6. Let 91 be a C*-algebra with anet^F— {2IJ of von Neu-
mann algebras such that for all ordered pairs 9Iα £ 91^ of' 3F the embedding
of 9Iα in SΆβ is normal. Then the locally normal positive linear forms of 91
form a folium14. A state of 91 is locally normal iff it generates a locally
normal representation. If φ is a hermίtian locally normal linear form on 9Ϊ
with φ = φ+ — φ~ the (unique) decomposition of φ as the difference of
two positive forms on 9Ϊ such that \\φ\\ = | |φ + || + | |φ~| | , then φ+ and φ~
are locally normal.

1 4 Recall that we defined a folium in Section 1 as a convex set of positive linear forms
closed for the norm of linear forms and containing \pA = φ(A* ° A), A 6 % with every φ.
Note that the assumptions of Proposition 6 are realized if 51 is a C*-algebra acting on a
Hilbert space Jf with the 2lα concrete von Neumann algebras acting on Jf.
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Proof. We first observe the trivial facts that a linear combination of
locally normal linear forms is locally normal; and that every normal state
of a locally normal representation is locally normal (so that a state φ
which generates a locally normal representation πφ is locally normal).
Further the real and imaginary parts of a locally normal linear form are
obviously locally normal.

Let now the linear form φ of 21 be the norm-limit of a sequence {φn}
of locally normal linear forms; its restriction φ | 2ία to an 2Iα e £F is then
the norm-limit of the normal forms φn | 2ία of 2ία and thus normal, there-
fore φ is locally normal. We further consider a locally normal linear form
φ of 2ί with φA = φ(A* A), A e 21, and wish to show that the restriction
ΨA I $ϊα

 t o a nY 2ία e J*' is normal. By (i) and (iii) of Definition 2 to each
ε > 0 we find a B e % with WLβ e &, 2Iα Q <Άβ, and ||i4 - B|| ^ ε; and thus
\\φA — φB\\ ̂  | |φ | | \\A\\ ε(l + ε). This majorization holds a fortiori for the
norm of (φA — φB) | 9Iα; but, since the embedding 2Iα £ 21^ is by assump-
tion normal, (pβ | 2ία is normal as the restriction to 2Iα of the normal form
ΨB I ̂ β °f 5Ϊ/5: ΨA I ̂ ί« i s therefore a norm-limit of normal forms and thus
normal. Having established that Sf? is a folium, we now show that a
locally normal state φ generates a locally normal representation πφ: we
have to check that the restriction πφ \ 2Iα of πφ to each 2Iα e ^ is normal,
i.e. that all the vector states of πφ | 2ία are normal. But the latter are

norm-limits of states of the form φA | 2Iα, A e 21, and we have shown in
the foregoing that ψA is locally normal for all A e 21.

For the proof of the last assertion, we need the following lemma. Its
proof adapts Kjaergard-Pedersen's elegant argument ([16]; Proposi-
tions 1 and 2), for proving uniqueness, to our estimates.

Lemma 2. If φ is a continuous linear form of norm 1 on the C*-algebra
21 and φ = φ+ — φ~ with φ+ and φ~ positive and \\φ\\ = \\φ+\\ + ||<p~||,
then, if \\φ^ -φ-0-φ\\^z^land \\\φ% \\ + \\φ~0 \\ - \\φ\\\ £ε, with φ% and
ΨQ positive, it follows that | |φj — φ+ \\ ^ 6ε^ and \\φ^ — φ~ \\ ^ 6ε^.

Proof. Since φ = φ+ —φ~, φ is hermitian; and we can find a self-
adjoint A in 21 such that - / ^ A ^ / and 1 ̂  φ(A) + ε. Let B be {(I - A);
so that / - B is | ( J + ̂ ) Note that 0 ̂  β ^ 7 and:

By the same token,
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Since 0 ̂  B S I, φt (B) ̂  h a n d Ψo (I~B)ύ ffi (along with φ+ (B) ^ | ε ,
φ~(/- B) ̂ ε ) . Thus, with C in the unit ball of 31, since

II Φo - Φ ό - φ l l = II Φo ~Ψ+ -(Φo - φ ~ ) l l ̂ « }

| = \(φ+

0 - φ+) (BC) + (φ+

0 -φ+) ((I-B)C)\

£ \φ+

0 (BC)\ + \φ+ (BC)\ + |(φo ~ Φ") ((/~B)C)| + ε

^ ε + φ+ (B)*φS (C* J5Q* + φ+ (Bfφ+ {C*BCf

+ φ-0(I-BfφΌ(C*(I-B)Cf

+ φ-{I-Bfφ-(C*{I-B)Cf

By the same argument, \\φ^ — φ~ || ^ 6ε% completing our proof.
Remark. Lemma 2 establishes that φ-+φ+ and φ^>φ~ are norm con-

tinuous mappings. Kjaergard-Pedersen remarks to us that the same
argument, with minor modifications, also proves that these mappings
are w*-continuous on restriction to spheres of constant norm - slightly
more, that if | | φ j -> \\φ\\ then φ* and φ~ tend to φ+ and φ~, respectively,
in the w*-topology. (Some condition on norms is required for w*-con-
vergence, for with {xn} an orthonormal set, ωXu Xn tends to 0 on the algebra
of all bounded operators in the w*-topology, while \\ωXιtXJ\ = 1 for all n;
so that not both ωXuXβ) (= \\ω+

XuXn\\) and ωxuXn(I) (= llω^JI) tend to 0.)
Proof of end of Proposition 6. We wish to show that φ+ | 9Iα and

φ~ \($ta are normal. Choose A in 21 such that —I^A^I and
\l—φ{A)\^%ε. (We may assume ||<p|| = 1.) Find 21̂  containing 2ϊα and B
in S&β such that -I^B^I and | | , 4 - £ | | ^ ε . Then | φ ( 5 ) - l | ^ ε ;
so that

1 - ε ^ \\φ I Sί̂ l ̂  | |φ + | βl̂ H + | |φ" | Wp\\ £ \\φ + \\ + | |φΊI = llφll = 1

Thus
IIIΦΊ^II + IIΦΊ^II-IIΦI^III^^

and

\\φ+\Wβ-φ-\Vίp-φ\VLβ\\=0.

From Lemma 2,

\\Ψ+ I Mα-Φί I 8ϊβll ^ llφ+ I ^ - Φ ^ l l ̂ 6ε-,

where

Φ I ̂  = Φί - Ψi w i t h HΦ I ̂ 1 1 = IIΦ? II + \\<Pβ II

From ([6], 12.3.3 and 4), φ^ is normal. Since 2ϊα is normally imbedded in
91̂ , φ+

β I 9ία is normal. Thus φ + | 9Iα (and φ" | 2Iα) is a normal limit of
normal forms.
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In the next proposition, we introduce a topology which singles out
the locally normal states as the corresponding continuous states. This
allows us, in particular, to state conditions (fulfilled by the sequential
funnels) which guarantee the abundance of locally normal states.

Proposition 7. With the assumptions of Proposition 6; denoting by
91^ the union of all 9tα e #"; and by ^ the locally convex topology on
91^ which is the inductive limit of the ultraweak topologies $~a on the
9Iα G 3F\ then the locally normal states (linear forms) of 91 consists of the
norm-continuous extensions of the states (linear forms) of 9Ϊ^ continuous
for &~p. If in addition 91 consists of an ascending sequence of von Neumann
algebras, ^ > is Hausdorff, the set of locally normal states is *-weakly
dense in the set of all states of 91; and each normal state of any 9If e 3* can
be extended to a locally normal state of 91.

We note that in the latter case the set 5 ^ of locally normal positive
linear forms of 91 will thus be of the type of the set if considered in the
beginning of Section 1 and can therefore be used for the constructs
presented there.

Proof. We first observe that, due to (iii) of Definition 2, taking the
restrictions to 91^ of the states (bounded linear forms) of 91 yields a
one-to-one mapping of the latter onto the bounded states (bounded
linear forms) of 91 &. Since the locally normal states (linear forms) of
9ίj^15 are automatically bounded, we can thus identify the locally normal
states (linear forms) of 91 with those of 91^, from which they are obtained
by norm-continuous extension.

We recall that one gets a complete system of neighbourhoods of zero
for y^ by taking the balanced convex sets V of 9Ϊ^ which intersect each
9Iα e & along a neighbourhood of zero for ^"α ([17], § 3,15) (those V are
automatically absorbing for 9ί^). From this, it follows immediately that
the ^r-continuous linear forms on 91^ are those whose restriction to
each 9Iα e SF is ^-continuous, in other terms the locally normal linear
forms of 91^. If we now add the assumption that the net !F is an increasing
sequence {9ϊJ}J=1>2j , we can assert ([17], §3,16) that ^ > is Hausdorff
(note that the assumed normal character of the embeddings (HjQS(ίj+1

entails that the ultraweak topology ^ of 9ί, is the restriction of «̂ J + 1 on
2I/+1 ([18], Chapter I, § 4,3)). Further, since 91, (in &) is closed in 9Ϊ J + 1

([18], loc. cit.), 9I7- is a ^>-closed linear subspace of 91^ from the Hahn-
Banach theorem, each normal linear functional on S&. is the restriction
of one on 9ί which is locally normal.

Since the locally normal states of 9ί form a folium (Proposition 6),
and the vector states of a faithful representation of a C*-algebra have
convex hull which is w* -dense in the set of all states of that algebra

1 5 Obviously defined as those normal in restriction to all 5Iα e &.

7 Coramun. math. Phys., Vol. 16
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([6], 3.4.4); to establish that the locally normal states of 91 are w*-dense
in the set of all states of 91, it will suffice to show that the direct sum τ of
the representations of 91 arising from all locally normal states of 91 is
faithful. If τ{A) = 0, with A in 9tJ5 each locally normal state (and, from
Proposition 6, each locally normal form) of 91 vanishes on A. Since SΓ^ is
Hausdorff, A = 0. Thus τ is faithful, hence isometric, on each 91,-. By norm-
density of 91^ in 91 and norm-continuity of τ, τ is isometric, hence faithful,
on 91.

If ρ is a normal state of 91,-, there is a T of trace-class on Hτ (with
O ^ T ^ I ) such that ρ(A) = Trace[Tτ(4)], for A in 9Ϊ,. Then
B -* Trace [_Tτ(BJ] defines a locally normal state extension of ρ to 91.

Propositions. Let 9ί be a C*-algebra with a sequential funnel
# - = {Jfj}j=lt2t^m. Then

(i) a state ρ of 91 is locally normal (relative to ϊF) if and only if the
representation it generates is separable;

(ii) each automorphism a of 91 maps each locally normal state ρ of SΆ
into a locally normal state ρ°α.

Proof. We know by [13, 14, and 15] that every representation of a
factor algebra on a separable Hubert space is normal.

Let ρ be a state of 91 generating the representation φQ acting on 3tf
with corresponding cyclic vector χ0. If φρ is separable, so is its restriction
to each Jί 3 e 3F which is thus normal, hence ρ is locally normal. Con-
versely if ρ (and, hence, φρ) is locally normal, φρ\Jij is normal for all
JίjE^; and thus [ φ ρ ( ^ )χ 0 ] is separable for all Ji^^16. Then Jf7 is
separable as the closure of the union of the [(p ρ(J^)χ 0], ^ e # ! The
proof of (i) is complete. Property (ii) then follows from (i) and the fact
that the state ρ ° α generates the representation φρ ° α acting in the same
Hubert space as φρ.

Proposition 9. Let 91 be a C*-algebra with a Type I-funnel
3F = {Jfo}. Denote by ^ α the set of operators compact relative to Jtfa

 1 7 and
by # the C*-algebra generated by all # α . Each locally normal state of 91
restricts to a state φofΉ for which \\φ | # J = 1 for all ^ α ; and each such
state of <$ has a unique state extension to 91 which is locally normal.

Prooj. Let ρ be a locally normal state of 91. Since ρ | Jίa is normal
and since ^ α is ultra weakly dense in Jia, ρ \ Jίa is the unique normal
extension of ρ | # α to Jΐa. As (J Jia is norm dense in 91, ρ is the unique

α

locally normal extension of φ( = ρ \ <€)* With En a sequence of projections
16 [M] denotes the closed subspace generated by the set M.
17 I.e. elements of J?Λ.which are compact operators in the faithful irreducible represen-

tation oϊJίa. Proposition 9 is in fact independent of the assumption that the factors JtΛ are
countably decomposable embeddings of Type I-factors being automatically normal. This
remark holds also for Proposition 11, 12, and 13 below.
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in ^ α tending strongly to J, ρ(EM)->l, since Q\Jta is normal. Thus
llβl*J(=llφl*«ll) = i

Firstly, let φ be a state extension of φ from <€ to 9ί ([6], 1.7.2,2.1.5 (vi),
2.10.1). Then φ | JίΛ is a state extension of φ \ <g. Since || φ \ tfj = 1, such
extension is unique and normal ([6], 2.11.7). Thus φ is a locally normal
extension of φ to 91.

Proposition 10. Let Wbea C*-algebra with a Type 1-funnel & = {Ji^
and assume that each Jia e J* is included in a Mβ e !F in which it has
infinite relative commutant. Then 9ί is simple.

Proof (cf. [19], Theorem 7). If J is a proper two-sided ideal in 9Ϊ the
norm closure of J is proper (since an operator near / is invertible, so
that / is not in the norm closure of J>). We assume that «/ is norm-
closed. As JnJίa, ^ e J * ; is a norm-closed two sided ideal of Jί^ and
JiΛ is a countably decomposable factor of the type /„, J>r\Jia is either
M^ #α, or (0), where (€a is the ideal of operators compact relative to Jίa.
Since / ^ / , / π ^ Φ J ^ . Suppose JnJίa = (€Λ and take Jiβe^ con-
taining Jίa with an infinite relative commutant Λ£= Jic

anJίβ: Jfa is a
type /„ factor and one has Jίβ= Ji^JC ([18], Chapter I, § 8,2,
Corollaire 3). With {£,-} an infinite orthogonal family of projections in
yίζ and C a non-zero operator in # α ; C*C dominates some non-zero
projection £ in ^#α (which must, then, lie in M^. Since Ej commutes with
Ma and is non-zero; {EEj} is an infinite orthogonal family of non-zero
projections in Jίβ dominated by E. Thus E is not finite relative to Jiβ

(recall that Jίβ is of type I, so that each EEj contains some minimal
projection and all minimal projections are equivalent in Jiβ). Hence
C*C, and, therefore, C are not in (€β.

Since CeJ>c\Jlβ\ J> nJiβ = Jίβ\ contradicting the choice of J> as
"proper". Hence Jr\Jίa = (0) for all α; and the representation φ of 31
on 9ί/«/ defined by φ(A) = A + J is an isomorphism on each Jί^ Thus φ
is isometric on each Jia and has a unique isometric isomorphic extension
φ mapping 91 onto 9Ϊ/,/. Thus J = (0); and 91 is simple.

Proposition lΐ.Let 9lO),j = 1,2, fee C*-algebras with respective sequent-
ial Type I-funnels J ^ ω = {Jt{

n

j)}n=,0 1 2 Γwfere ^ = {λlu)}, with Iu)

the unit of 91°^. Let JTn

U) = Ji^nJi'fi, n = 1,2,.... 1/ we assume ίftaί
^Γn

(1) is ^-isomorphic to Jί^2) for all n, 9I(1) and 9I ( 2 ) are isomorphic as
C*-algebras.

Proof With φn an isomorphism of Jί^ onto Λ^(2), tpp defined on
Ax ... ^ , y4Λ6 jς ( 1 ), by φ p ( ^ ... ^ p) = (j^Ui)... φp(^p) extends to an
isomorphism φ p of the von Neumann algebra generated by Λ^(1) ...JV^X\
i.e. ^ 1 } , onto that generated by Λ^2*... J^ ( 2 ), i.e. Jί^\ Since the φp,
p = 1,2,... are extensions of one another and are isometric, they extend
by continuity to an isometric isomorphism of 9ί(1) onto 9ί(2).
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The following propositions (12 and 13) are generalizations of ([9],
Lemma 2.4 and Theorems 2.5, 2.7). We restate Proposition 12 as a
corollary using the language of Section 2. In this same style, Prop-
osition 13 follows from Propositions 2 and 3 there. However, in order to
keep this Section independent of the somewhat heavy apparatus of
Section 1, we will give a self-contained proof. For establishing Prop-
osition 12 we need:

Lemma 3. // Jί is a factor of type I contained in a C*-algebra 2t acting
on the Hilbert space 34? and Jί'r\% together with Jί generate 91" (as a
von Neumann algebra), then Jί'nW = (Jί'nSQ)".

Proof. Since both Jί' and 21" are weak-operator closed, the weak-
operator closure, (Jί'nW)", of Jί'nSΆ is contained in Ji'nW. To
establish the reverse inclusion, suppose E is a minimal projection in Jί.
The mapping T'-*TΈ is an isomorphism of Jί1 onto Jί'E, since Jί is
a factor. We show that the two subsets {Ji'nW)" and Jί'nW oίJί' have
the same image, (Λf'n2I)"£, under this mapping; so that {Ji'nSΆ)"
= Jf'nW. For this, note that ETE is a scalar multiple of E for each
Tin Jί; so that the strongly continuous mapping, S->ESE, carries the
algebra generated (algebraically) by Jί and J#'n2l onto (Ji'ntyE -
hence the strong closure, 2Γ (by assumption), of this algebra into the
strong closure, (Ji'nSΆ)" E, of (ΛT'n 2l)£. In particular (Jf'nW)E is
contained in (hence, coincides with) (Ji'r\tyL)"E, as we wished to show.

Proposition 12. If the C*-algebra 91 acting on the Hilbert space
2tf has a net 3P"= {Ji^ of (concrete) factors of Type I, then 9Γn9Γ

Π
Corollary. If the C*-algebra 91 has a Type I-funnel 3F = {Jίa} and if

we denote by Sf the corresponding set of locally normal positive linear
forms, with [5^]* = v(9I)", # > , 3£x and 3£c as defined in Section ί9 then
2£x reduces to the multiples of the unit, while ££c = 2£p.

Proof. Note first that for each Jίa s 3F, every Jl$ e 3F is contained in
a Jiy^Jia. Since Jίa and Ji'ac\Jiy generate Jίy as a von Neumann
algebra; Jίa and ̂ n 9 I generate a von Neumann algebra containing
each Jίβ, i.e. 9F. Applying Lemma2 we have (Jί'anSS)" = Ji'ac\W.
Clearly 91" n 9Γ = f| ^ n 91" so that f) ( ^ n 21)" = 91" n 9Γ. To

obtain the corollary, we note that since Sf consists of locally normal
states of 9Ϊ, τ^ is normal (thus faithful and isometric) in restriction to
each Jlv, Identifying Jίa{Q 9ί) with v(ΛJrj (£τ^(9I)) and 91 with τρ(9I),
9I/n9ί" is identified with 2£p. Moreover 2£x consists of scalars since the
center of each Jί^ consists of scalars (and all its elements have central
support I in 91"). As for 2£c = ( f] Jίc

a" =) f) (^n21)", we have
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just noted that it coincides with all of 2£p. From the fact that 2£c — ££$>,
combined with Propositions 2 and 3 of Section 1, we deduce:

Proposition 13.// the C*-algebra 91 has a Type I-funnel ^ = {Jta},
then

(i) a locally normal state ρ of 91 is primary if and only if to each
Ae91, there is a MΛs3F with

\ρ(AB)-ρ(A)ρ(B)\S\\B\\ (5)

for allBeJil;
(ii) if two locally normal states ρ and τof% generate disjoint represen-

tations, they are such that \ρ\Jtl~τ\J(cJ=2 for all Jί^e^. The con-
verse holds for ρ and τ primary. Two locally normal primary states ρ and
τ of % generate quasi-equivalent representations if and only if, to each
ε > 0, there is a Jl^eS^ with \\ρ \Jίc

a-τ\ MC

Λ\\ S s.

For the direct proof of this proposition, we use:

Lemma 4. // 91 is a C*-algebra acting on the Hίlbert space J4?,^r= {9Iα}
is a net for 91, 91" is a factor, and x0 is a unit vector in 34?; then to each
yejtf and ε > 0, there is a 9Iα e 3F such that

\(y,Axo)-{xo,Axo)(y,xo)\^ε (6)

for all A of unit norm in 9£ (the relative commutant of 9ϊα in 91/

Proof Suppose the contrary. Then there is an ε > 0 and a y e Jf7 such
that, for all 9Iα e ^ the set

Qa = {X G 91^ |(y, Xx0) ~ (x0, **o) ϋ>, *o)l ̂  ε, \\X\\ ^ 1}

is non void. Due to (i) of Definition 2, the Qa have the finite intersection
property; so that, by the weak-operator compactness of the unit ball of
9Γ, all βα have a common element A for which

\(y, Ax0) - (x0, Ax0) (y, xo)| ^ ε.

As A is in 9ξ" for each 9Iα e J^ ̂  is in 9Γ as well as 91". Thus, since 9Γ is a
factor, A = al for some scalar α, and

contradicting the previous inequality.
Taking y= T*x0, Te 3§(3tf)19, in the preceding lemma, we have:

Corollary. With the same assumptions as in Lemma 3 to each ε > 0 and
Te@{je), there is a 9 I α e ^ such that, for all A in the unit ball of 91",

\ωX0(TA) - ωX0(T) ωXo(A)\ ̂  β. (7)
1 9 ^(J^) denotes the set of bounded linear operators on #? and ωxo the vector state

defined by xQ e 3tf.
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When $F is a net of Type I-factors, Proposition 12 can be used to
establish the following partial converse:

Lemma 5. If 21 is a C*-algebra acting on the Hubert space ffl with a
net 3F — {Jί^ of (concrete) factors of Type I; and if x0 is a unit vector
in 34? cyclic for 21 and such that, to each Te (J Mβ and ε > 0, there is a

o , o o o \ J ^ c J < 8 , (8)
then 21" is a factor.

Proof. Suppose P is a central projector in 21"; and 0 Φ P Φ /. Since x0

is cyclic for 21, it is separating for 2Γ - hence for 2Γn2Γ. Thus

Setting (χ0, Px0) (χ0, (/ - P)x0) equal to 5ε, we can choose a self-adjoint
T i n \J Jfβ such that \\(T-P)xo\\ ^ ε /since { (J Mβ\' = 2ίΛ.

JtfiS* \ [jίβS^ J J
From Proposition 12 and the Kaplansky density theorem, given J . e f ;
we can choose a self-adjoint S in the unit ball of Ml such that

J I MC

Λ\\ ̂  \ωτ*Xo,xo(S)- ωXo(T) ωXo(S)\

= |(x0, TSx0) - (x0, Tx0) (x0, Sxo)|

= |(x0, ( Γ - P)Sx0) + (x0, P(S - (/ - P))x0)

+ (xo,(P-T)xo)(xOiSxo)

-(xo,Pxo)(xO9(S-(I-P))xo)

-(xO9Pxo)(xO9(I-F)xo)\

for all Jί^ contradicting (8). Thus W is a factor.
Proof of Proposition 13. Let 91 be a C*-algebra with a net & = {9Iα}

and let ρ be a primary state of 21. Applying the corollary to Lemma 4 to
the concrete C*-algebra φρ(2ί) (with the net {<pρ(2Iα)} and the cyclic
vector xρ), we get the direct statement of (i), Proposition 13 (in fact the
result obtained is somewhat more general - cf. corollary to Propositions 2,
3 of Section 2). For obtaining the converse statement of (i), Proposition 13,
we need the additional assumptions that 3F is a Type I-funnel and ρ a
locally normal state, in which case {φ(2Iα)} is a Type I-funnel for φ(2ϊ)
and Lemma 5 applies to give the result.

Assuming, still, that 3F is a Type I-funnel and that ρ, τ are locally
normal states, the direct sum ψ of the representations they generate
maps 2ϊ onto a C*-algebra tp(2I) acting on a Hubert space Jίf, with ρ and
τ given by ρ = ωx ° ψ, τ = ωy ° ψ, x^yeJίf. In addition, {φ(2Iα) = JQ is
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a Type I-funnel for tp(9I); and the representations induced by ρ and τ are
given by restriction of ψ to the cyclic projections E and F respectively
generated by x and y (under φ(9I))

These representations are disjoint if and only if the central carriers CE

and CF of £ and F are orthogonal. In this case CE — CF is an operator in
the unit ball of the center 2£ of φ(9I)" (coinciding with the intersection of
all Jf*'\ 9ϊα e J^ as we know by Proposition 12). Now

||(ω, - ω,) I S\\ £ ||(ωx - ωy) (CE - CF)\\ = 2

while we have for each 9l α eJ^ using the Kaplansky density theorem,

\\(ωx-ωy)W\\ = life-τ) (8®|| ^ \\(ωx-ωy)\ &\\ .

We see, by comparison, that two disjoint ρ and τ are such that
|| (ρ - τ) I S15H = 2 for all 2Iα e J* the first assertion of (ii), Proposition 13.
For the converse, with ρ and τ primary, if they are not disjoint they are
quasi-equivalent; and ||(ρ — τ) | 3I£|| < 2 for some α will follow from the
proof of the (direct part) of the last statement of the proposition. We
assume that ρ and τ are primary and quasi-equivalent. In this case we
know that ψ(Sΰ)" is a factor; and we can apply Lemma 4 with
x0 = 2~}(x - y\ y = x + y to conclude that to each ε > 0, there is a 9ϊα e &
with

\{x + y, ψ(A) (x - y)) - | (x - y, ψ(A) (x - y)) (x + y, x - y)\

= \ρ(A)-τ(A)\£ε

for all A in the unit ball of Sl£. Conversely, with | | (ρ-τ) | WJ <2 for
some 2Iα in J^ ρ, and τ are not disjoint (from the above). Being primary,
ρ and τ are quasi-equivalent.
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