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Abstract. In all representations of the canonical commutation relations, there is a
common, invariant domain of essential self-adjointness for quantum fields and conjugate
momenta.

1. Introduction

Let U(s), Vi (t) be one-parameter continuous unitary groups on a
separable Hilbert space X, satisfying the relations:

Uls) Vi(t) = €= V() Uls) ,
LU(s), Ui(0)] = 0 = [Vi(s), Vi()]

forallk,I=1,2,...and s, t € R. Such a structure is called a representation
of the Weyl relations. In this paper we prove the following theorem
(whose consequences for Quantum Field Theory are discussed in § 5).

Theorem 1.1. Let ({U,(s), Vi(t)}¥=1, X) be a representation of the
Weyl relations ; denote by p, the generator of U,(s), by q, the generator
of Vi(t). Then there exists a Banach space, T, of sequences of real numbers
and a domain D, dense in X, such that for all {¢,}¥-{ €71,

1) Y adw, Y. cipy are well-defined and essentially self-adjoint on D,

k=1 k=1

2) ), aaDCD, Y cpDCD.
k=1 K=1

1.1)

3) If {chs' S{adie, and @ €D, then

o) o0 oo}

Y Gap— Y @ and Y ipe@ > Y, CDi®-
k=1 k=1 k=1 k=1
We remark that if we were concerned with only a finite number of
q, and p,, the conclusions of the theorem would follow from well-known
work of L.Gdrding on representations of Lie groups. For the Fock
representation the theorem was proven by J. Cook [2]. In our proof we
use heavily the classification of all representations achieved by Garding
and Wightman [4]; it is briefly described in § 2.
The proof of the theorem is contained in § 3 and §4. In § 3 we con-
struct a dense set of vectors D, C X. The construction is done so that for
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y e Dy, one has precise estimates on the growth of ||(p7 + g7 +1)w| as
k—oo. We then show that Y c,qi, Y ¢,p, are well-defined symmetric
operators on Dy, if {¢,}¥-; €7, a sequence space depending on the esti-
mates. In §4 we enlarge D; to a domain D by allowing certain infinite
linear combinations of vectors in D;. Using the estimate

ol

N N
[1 qk,.w“ < 2VENMEATT (i, + g, + 1) 2w
i=1 i=1
we show that each e D is an analytic vector for ), ¢.q, and Y, ¢,ps.
k=1 k=1
thus proving essential self-adjointness. Invariance and continuity follow
trivially from the construction.

Anticipating the notation introduced in §2 we remark here that the
test sequence space t depends only on the Garding-Wightman measure
u, not on the reducibility of the representation or the fibre maps C(i).
Also, there will be many nuclear spaces and Hilbert spaces (with stronger
topologies) contained in 7 so that in the statement of the theorem
“Banach” may be replaced by “nuclear,” or “Hilbert.”

§ 2. The Garding-Wightman Classification

Let I denote the set of all sequences 7i = (1, n,, ..., n, ...) of non-
negative integers. Let ; be the set of sequences such that n,=j, and
denote by .# the smallest o-algebra containing {I,;}¥;—;. A measure
w(@) on (I®, #) is called quasi-invariant if (i) and p(i+ 6) are equiv-
alent whenever 0 is a sequence of integers with only a finite number of
non-zero entries. Let u be a quasi-invariant measure of mass one and
let v(7i) be a quasi-invariant positive integer-valued function on I* and
let H; be a Hilbert space of dimension v(#i). We denote by L*(I*®, u(#), H;)
the direct integral | Hydu(i). We define operators g, and aj on all

I
vectors f(A) e L*(I”, u(A), H;) satisfying
§ el f@)F du(i) < oo
by the formulas !

d
(@) =V LG i+ 0| LT
@.10)

(@t 1) 0 =Y/ =5 £ —a LE

7i)
where C, (/1) are measurable unitary operators from Hj,,; to Hj satis-
fying C, (i) C,(i + 6,) = C,(i)) C,(7i + ¢,). In the above || f(#)| ; is the norm
of f(#) in H; and §, denotes the sequence with one in the kth place and
zero elsewhere.

24*
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If we define g, = —=(a,—ay) and p,= -—lz—(ak+a,’f), then their

L
/2
closures are self-adjoint and the groups they generate are a representation
of the Weyl relations. Furthermore, every representation is unitarily
equivalent to one of these; therefore in the proof of the theorem stated
in § 1 we may assume that X = L*(I*°, u(A), H;) and that g, and p, are
given by the formulas (2.1).

§ 3. Construction of the Analytic Vectors

Let u be a quasi-invariant Borel measure of mass one on I®. We
proceed to define a family of measurable sets {I'}7; such that I'C I'*!

and u(I'y 21— % In this construction all sets are obtained by countable

0
processes from sets in .# and are thus measurable. Since I” = | ) I};
j=1

is a disjoint decomposition, 1 =pu(I*)= ) u(l,;. Choose an integer

j=1
1 e, )
o(1,1) such that ) ,u(Ilj)<<%> <~2—>, and define J; {, = -U1 Iijs

Jj>e(1,1) j=

1 1 ®
note that p(Jy ;) =1— <7> <?> Now, Jy.1,= {J Ja,1yn1y,); choose
j=1
IAVARG ‘
0(1,2)2 o(1,1) such that Y’ u(Jy,ynh) = )15 , and define
o(.2) et IN/1Y /1\/1Y
- ); h St =) (=) =(=)(=).
Ju.2) ,-L=)1 (Ju,1yn1,;);note that u(J ,) =1 <2><2> <2><2>
e(1,k)
We proceed inductively, defining J; = () (Jq.x-1)Nk;) Where o(1, k)
j=1
. 1 1Y
> o(1,k—1)is chosen so that Y u(Jy x—1,N 1) g(—) —1.
J> e,k ' 2)\2
1L/E /1Y
Thus u(Jyp) 21— = Y, 5 ) )- We nowset
i=1
I'= ﬂ Jm
k=1

and observe that u(11)=£im U ) = % We have defined a non-

decreasing function on the positive integers, o(1, -).
Having defined I* and o(1, ) we proceed by induction to define I' and

& 1V/1
o(l,*). We choose ¢(I,1) = o(l—1,1) so that ) () < <7> <—2~>
e(t.1) el

Letting J,,,= |J I;; we define J;;, by induction as () (Jyx-1,nk))
j=1 j=1
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where ¢(l, k) is chosen so that

o
and
0 1 k
Z :u(J(l,k—l)mij)—< ) 2>

i>e(lk)

Setting I' = () J,.,, we find that

=1 ' 1 !/ o 1 i
- ()(5()
L)’

:1—

=1
Each of the functions ¢(/, *) is non- decreasmg and (L") = o(l—1,").

The sets I' are increasing and ,u( U 1 >1- < ) for all I, so u(| J1') =

Graphs of 9 (1,K)
Fig. 1
The purpose of this construction is that for a point A= (n, n,, ...,) € I'

we have an upper bound, namely ¢(/, k) on how fast the sequence {n,}%-
can grow.

Definition 3.1. D, = {¢(7i); p(7) € LA(I°, u, Hp), 33 o)) =0 ae.
Joriel'=1°—1'.

Definition 3.2. 7 =< {¢,}7-1; . € R, Y ol o(k, k)12 < oo} .
k=1

We now can state:
Lemma 3.3. D, is dense in L*(I*°, u, H;) and each ype D, is in the

n

domain of any finite linear combination of q,’s; further, if {c;}%-, € T, then
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o0 o0

Y. iy converges. Thus, Y, ¢,q, is a well-defined symmetric operator

k=1 k=1
©

on D,. The same is true of Y, ¢;p;.
k=1
Proof. D, is dense since for any ¢ (7i) € L*(I®, u, Hy), | |9 (7)|3 du(7)—0
It

as [-o0. If p e Dy, then p e D((a,af)/*) which implies y € D(g,). Since
the ¢, commute with each other (i.e. the groups and therefore the spectral
projectors commute) v is in the domain of any finite linear combination
of g,. Since ||p(7)|; =0 a.e. for iieI' for some I,

laxa) )2 = !o(nk + 1) [l @7 du@
= ,51 (me+1) [y (@)1* dp(A)

< (e k) +1) llwl>.
Thus for M, N = |,
N

Z Crqr Y

k=M

N

led llawwll = ) leid Iaead) 2yl
M k=M

lewl (@1, k) + 1)1

=~

1A
Il M =z

IA
~
M=

= 0
S

fiA

Y e (olk, k) +1)12 -0
k=M

as M, N —oo. Therefore Y c¢,q, is well-defined and symmetric on D,
(since it is the strong limit of symmetric operators). The proof for Y ¢,p;

) k=1
is the same.

§ 4. Proof of the Theorem

The theorem is a result of the following sequence of lemmas. We
denote by (a7 )" any m-fold product of g, and a.

Lemma 4.1. Let y € D then
zm

Proof. The proof is a straightforward calculation. Let s¥ and s; be
respectively the number of af, and the number of g, in the product
(agym. Let 6, = s} —s; and let 6 be the sequence of integers which for

mi

N

2
11 (aaf)
i=1

2

N
1T @™y
i=1
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all i has §,, in the k;th position and has zeros elsewhere. Then

[ (@)™w “J(ﬂ ﬂ n)> lw(i = o)7 du(i — 9)
I»

i = i=1j=

J(l—[ I Ot(n+5)> (@) d i)

i=1j=
IOO

where oi(fl) is a function on I satisfying 0 < «i(Ai) < ny, +1+s;. Thus,
GA+0) S (m, + 145+ 0,) S +1+sF <n +1+m,
s0, m
11 %@+ 6) < mi(n,, +1)™
ji=1

Therefore,

N
[T @)™
i=1

= U J 11 (e, + 1™ 1w (@)1 dpuit)

]

(2 m'>

Definition 4.2. We denote by D the set of vectors of the form 2y,

"l:

2

where e D, and 2 is a polynomial of fields Z Cois Z depiy {e)e=1,
k=1 K=1

{d, )7~ € ©. Different occurrences of the fields in the polynomial may have

different test sequences.

Lemmad.3. ) c¢,q,and Y, ¢p, are essentially self-adjoint on D.
k=1 k=1

Proof. Let 2 = H<Z d,;,_qk'). If peD, then |y|z=0 ae. for
kim1
eI for some I. Thus

12yl = Z km(ﬂ \d, )

ky,. i

_H i,

§ Z ) n ld’ Imm/22m/2

,,,,,

m
n (a ak 1/2

(by Lemma 4.1).

m
11 (@) ?y
i=1

J [T (i, +1) [p@)1IF du(i)

< lvyl? ﬂ (ol k) +1)

i=1
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so we have " .
12w <m™22"2 || Y l—_[ ldi| (o(L k) + 1)*

kiseons km i=1

= mm22m2 || ] ( Yoldi ) (e k) + 1)1/2).

i=1\k,=1
Since {d; }¥ -, €1, the right-hand side is finite and Py e L*(I*, u, Hy).
m N
If we let oy =[] Y di.qp, then pyeD, gy— Py and an estimate

i=1k=1
©

similar to the one above shows that Y ¢, (@y — ¢,)—0 as N, M — co.
k=1

Thus, 2y is in the domain of the closure of ) ¢,q,. Clearly the same
k=1

proof works if some of the ) dj g, are replaced by > dj p,, or if 2 is

k,=1 k=1
©

a finite linear combination of such terms. Since any power of Y ¢.q;
k=1
applied to 2y is again a vector of the same form, Zy is contained in the

0

domain of any power of the closure of ) c¢,q,. Finally,

(5o

=1

§<v+m)%<v+"”<§ led (el s>+1)“2>v‘ d (o(L )+ 1)!72

0 v

Thus ),

v=0

general 2. Thus each ¢ = 2y in D is an analytic vector for ). c¢,q, so by

s=1

< qus> ﬂw“ < oo and the same proof holds for more
s=1

v!

a theorem of Nelson [5], ) c,q, is essentially self-adjoint on D. The

0 s=1

same proof works for ) ¢,p,.

s=1
Lemma 4.4. If {¢J7-1€17, Y adqi:D—>D and if {ci-, 5 {ci}v-1
k=1
then Z Crqy converges strongly to Z cxqr on D. The same statements
k=1 k=1

0

hold for Y c,py.

k=1
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o0

Proof. By its definition D is invariant under ) c¢,q, and ) ¢p;.
k=1 k=1
Suppose {ci}i-y > {eifi=1, 2 =[] < > di,‘]k,>, and pe Dy, [ypllz=0ae.
. i=1 \K, =1
for iie I'. Then,

(Z c:qs_ z csqs>glp

s =1 s=1

£ ()l

S, ka,..0, km

m

s [

lIA

m

< Y —c (o, s)+ 1) H (o(L k) + 1)/?

sykis.., km =

A

<ﬂ Y i) el k) +1 ”2> i e — el e(l, 5) +1)1/2 -0

i=1k,=1
as n— 00 since

Z IC;‘_CS[ (Q(S7 S)+1)1/2*’0 as n—0oo.
=1

We remark that Lemma 4 and the Trotter-Kato Theorem imply

that the maps w
{Ck}?cozl_’exl)<it > cqu>

k=1

{Ck}fq"eXp(it z CkPk>

k=1

are continuous from 7 to the unitary operators with the strong topology.
The spaces

H ={{0k}‘i¢°=1; Hewi=1l? = i led* k2K, k)<00}, (4.1)
k=1

N'= {{Ck}‘le; [{ci}ll? = OZO: le* k"o (k, k) < oo for all n} (4.2)
k=1

are respectively Hilbert and Nuclear spaces (with stronger topologies)
contained in 7.

§ 5. Consequences for Quantum Field Theory

Suppose that one has constructed quantum fields ¢(f, t), n(g, t) whose
exponentials satisfy
exp(ip(f, 1)) exp (in(g, 1)) G5.1)
=exp (=1 f(x)g(x)dx)explin(g, 1)) exp(io(f, 1)
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for f anf g in some test function space T. In order to use the structure of
the Gdrding-Wightman representations one must choose an ortho-
normal basis {f,} of T and define g, = ¢(f,, t), p, = n(f,, t). This proce-
dure is presently unpopular and is considered at best inelegant. The
difficulties are illustrated by the fact that for different choice of bases
one can get different Garding-Wightman representations. However, the
real question is not elegance, but how much information about ¢(f, t)
and n(g, t) is lost by passing to a basis, proving theorems about {¢(f,, t),
n(f,, t)} and then attempting to recover ¢(f, t) and n(g, t). In our opinion
this is very much an open question. To illustrate this we will show how
the theorem proved in this paper may be used to find Gdrding domains
for certain basis independent representations.

We consider first the approach of Gelfand and Vilenkin [3]. Let
F(R™) denote Schwartz space (real) and let V(-), U(-) be continuous
maps of & (R™) into the unitary operators (strong topology) on some
separable Hilbert space X satisfying: V(f) V(g)=V(f+g), U(f)U(g)
=U(f+g), and

U(f) V(g) =exp(i(f,9) V(/) Ulg) - (5:2)

For each f, g e #(R™) the continuity and linearity conditions imply that
U(tf) and V(tg) are continuous one-parameter groups whose generators
we denote by n(f) and ¢(g). Let {f,}¥-, be an orthonormal basis (in
terms of the LZ(R'”) inner product) such that each fe.%(R™) can be

expressed f = Z ¢ fi where {c}¥-, €S, the rapidly decreasing se-

quences, and all such sums are in &(R™) (for example, one could use
products of Hermite functions). Define U, (t) = U(tf,), Vi(t) = V(tf),
then {U,(1), V,(?)} is a representation of the Weyl relations (1.1), g, = ¢(f3),

pi = n(g,). Therefore the conclusions of Theorem 1.1 hold for all ) ¢ gy,

k=1
©

Y i With {¢ 7=, € A (see (4.2) for definition of .47). By the linearity

k=1

0f¢()9 N N
kZI Chdy = (P< Z Ckfk)

k=1

exp(i g: cqu> = V(i ckfk>.

Since {c;}h-; % {c;}¥-1, we have by Theorem 1.1 that Y c,q,— Y. ¢4y
k=1 k=1
strongly on D, a domain of essential self-adjointness for all of them. By

N s}
the Trotter-Kato theorem exp(i > cqu>—>exp<i > cqu>. Since the

k=1 k=1

and therefore
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0

N
topology of " is stronger than that of S, Y ¢fi% Y ¢ fy, so

k=1 k=1
N 0 ) 0
V( Y ckfk>—> V( Y. ckfk>, which implies Y ¢.q, = q)(Z ckfk). Let
k=1 k=1 k=1 k=1
Tz{ Y oS oo € /V’} with the natural topology. Therefore, we
k=1

have proven (by Theorem 1.1)

Theorem 5.1. Let V(:), U(-) be a Gelfand-Vilenkin representation
(5.2). Then there exists a nuclear space T C & (R™) (with stronger topology)
such that there is a common dense invariant domain of essential self-
adjointness for all the generators of the groups V(tf), Ultg), f,geT.

It is an attractive conjecture that the basis { f;}5-; can be chosen so
that T =% (R"™).

We now consider the approach of I. Segal [6]. A Weyl system is a
map W(-) from a complex Hilbert space H to the unitary operators on
a Hilbert space X satisfying:

a) for every z and z' in H,

W(z) W(z') = exp [% igm(z, z’)J WEz+z2),

b) forevery z e H, W(tz)is weakly continuous at zero as a function of ¢.

From condition b) it follows that W(z)=exp(i¥(z )), where ¥(z)
is a self-adjoint operator on X and that the map z— W(z) is continuous
from finite dimensional subsets of H to the unitary operators with the
strong topology. It does not follow that z— W(z) is globally continuous,
i.e. continuous from H to the unitary operators on X. Let {z}¥-, be an
orthonormal basis for H and define

Vi(t) = Wltzy), Udt)= Wltiz,).

Then {U(t), Vi ()} is a Garding-Wightman representation, g, = ¥(z,),
= Y(iz)). From Theorem 1.1: there exists a Hilbert space H (see 4.1)

for definition) of sequences so that if {¢,}¥_, € H#; Z Cries Z CrDr
k=1

make sense on X. Let T={Z oz o € C, Y |y 2 k2 o(k, k)<oo} with
k=1

o0
the natural inner product and define forz= ) o,z,€ T

W'(z) = exp [%z i (Ze(y)) fm(ock)] exp[ i @e(ak)qu

k=1

'exp[ i fm(ock)pk] .

k=1
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W'(z) is a globally continuous Weyl system over T which agrees with

W(z) on finite linear combinations of the basis elements z,. The open

question is, to what extent do W(z) and W'(z) differ for ze T. Chaiken [1]
N

has shown that if the operators < W( > oz, ), N arb.; are irreducible,
k=1

then W(z) = exp(iA(z)) W’(z) where 4 is an everywhere defined (in general

discontinuous) linear functional on T In this case the generators of

W(z) differ from the generators of W’(z) by constant multiples of the

identity which affect none of the conditions of Theorem 1.1 except the

continuity statement 3). We therefore have

Theorem 5.2. Let (W(-), H) be a Weyl system on X such that for some
N

orthonormal basis {z,}¥-1, {W(Z CrZy } is irreducible. Then there
K=1

exists a sub-Hilbert space T C H such that

a) there is a common dense invariant domain of essential self-adjoint-
ness for all the generators of W(tz), ze T

b) W(z) differs from a globally continuous Weyl system over T by a
complex (possibly discontinuous) character of T

B. Simon has pointed out that since the fields which generate W(z)
and W'(z) differ by a constant multiple of the identity, their truncated
vacuum expectation values will be the same. Therefore both systems
will have the same scattering theory.
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