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Abstract. The derivative coupling of massless pseudoscalar neutral particles with a
charged spinor field in two-dimensional space-time is reduced to a self-interacting spinor
field and a free pseudoscalar field.

More generally, it is shown that any given local field theory with a conserved vector
current and without massless particles can be extended to a local theory with an additional
pseudoscalar field and with a L^ x ί/j symmetry.

I. Introduction

Our interest in the two-dimensional models to be considered arose
from a desire to clarify in a simple case the structure of a quantum field
theory with a conserved current which does not lead to an ordinary
symmetry. We have in mind such objects as the axial-vector currents
which exist in the S U2 x S U2 invariant Lagrangian models of the
interaction of nucleons with massless pseudoscalar mesons. These
models are greatly simplified if the Lagrangian contains only neutral
mesons which interact with a charged spinor field. This reduces the
symmetry to a I/! x [^structure.

As is well known [1], a typical Lagrangian is then given by

L = ψίγdψ + i/2dvφdvφ — mψe~2lfy5φψ .

The transformations

ψ-+eιuψ, φ-^-φ
and

ψ-^>eίγ5vψ, φ-*φ + v/f

give rise to a conserved vector

= ψyμψ

and a conserved axial vector
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Further, the Lagrangian can be transformed to ordinary ps(pv) coupling
by means of

ψ->eifγ5φψ.
This leads to

L = ψ(ίyd — m)ψ + l/2dvφdvφ + fψy5ydφψ .

The axial transformation does not involve the new spinor field, its
only effect is to change the meson field by an additive constant.

We proceed then to study this Lagrangian in two-dimensional
space-time. Actually, we discuss a more general model by adding a
term

which turns out to be a natural generalization. Two-dimensional space-
time has special features which allow a partial solution of these models.
In fact, they will be reduced to a self-interacting Fermifield and effectively
free mesons. This implies that the conserved axial current has a very
simple structure which differs essentially from that in four-dimensional
space-time.

It will be apparent that the class of two-dimensional models with
these general features is considerably larger than has been indicated
so far.

II. Classical Fields

In this section we discuss the Lagrangian

_ cf2 _
m)ψ + l/2dvφdvφ + fψy5γdφψ-\ -- - — (ψysyvψ)2 (1)

as a classical field theory in two-dimensional space-time.
The conserved currents are

(2)

(3)

The equations of motion :

dμff
iφ=-fdli(ψγ5 fψ) = 2imfψy5Ψ, (4)

(iγd - m) φ + fy5y dφψ + cf2 (ψy5yμψ) y5yμψ = 0 . (5)
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We make use of the antisymmetric tensor

-! J
and note the relations

yV = ̂ v7v (7)
and

Wμ = ψy5yμψ = εμvVv. (8)

The equation dμ Vμ = 0 leads to

d°Wί-d1W° = ΰ. (9)
This suggests

Wμ=dμσ. (10)

Formal integration gives

σ(x)= l/2JέZx1 /ε(x1-x1 /)V0(x°,x1 /). (11)

Eqs. (3) and (10) combine to

Λ" = dμσ + i//^ - l//δμα (12)

where α is a free pseudoscalar field since δMμ = 0.

3*3μα = 0. (13)

It will be shown that

<X = ψίn = Φout - (14)

Associated with α is a free scalar field β given by

dμβ = εμvdva. (15)

For the spinor field we obtain, using (12),

(iγd - m)ιp + fy5γdaψ + (c- I)f2(ψysγμφ) y5yμιp

(ίyd-m)ιp-fydβψ-(c-l)f2(ϊpyμψ)yμιp = 0.

Defining a new spinor field χ by means of

ψ = e-Wχ (17)
leads to

(18)

2 μ ( j

χ is therefore a self-interacting Fermifield. The meson field φ can be
defined in terms of χ (since ψ+ψ = χ+ χ) and the free field α.

φ(x) = α(x)-
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We show now that (19) implies φin = φout = α. For this relation it is
necessary that j(k\ the Fourier transform of j(x) vanishes for k2 = 0.
This follows from (19):

(k02 — k12}
j(k) = const - - -j - - V°(k)

and, since

j(k) = const (/c° - k1) (V° + V 1 ) = const (fe° + k1) (V° - V 1 ) .

Hence j(k) = 0 for k2 = 0, unless Vμ in singular there.
To summarize these formal considerations:
We expect that the model given by the Lagrangian (1) implies, as

shown by Eq. (18), non-trivial scattering and production amplitudes for
the spinor particles. The mesons, while described by the non-free field
φ(x), are effectively non-interacting (φin = φ0ut)1

III. Local Quantum Fields

In the following we construct local quantum fields ψ(x) and φ(x)
which correspond to the solution of our formal Lagrangian (1).

Of course, unless c = 1, we have to assume that an operator solution
χ(x) exists for the renormalizable interaction formally given by Eq. (18).
From now on, all operators and constants denote renormalized quantities.

It appears natural to treat the case c = 1 first, since it involves free
fields only.

The Case c = l. Let a free spinor field χ of mass m, a free pseudo-
scalar field α of mass zero and its associated scalar field β be given. For
the definition of mass zero scalar or pseudoscalar fields we follow
Wightman's procedure [3].

The connection between α and β in momentum space reads

1 Γ dk1 L-ikXa(p) + jk*a+(ki)l
I I ί'

(20)

This gives for the equal-time commutator

~ /) - (21)
1 However, their presence leads to an infraparticle situation as discussed by Schroer

[2]. The quantized theory will not contain single particle states for the spinor particles.
Therefore the scattering matrix cannot be defined as usual.

6 Commun. math. Phys., Vol. 14
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It is known [3] that the axial-vector associated with a free spinor field
is indeed the derivative of a local pseudoscalar field:

y 5/χ(x) : = d»σ(x) , (22)

σ(x) = 1/2 f dxίfε(xί - x1') : χ+χ : (x°, x1') . (23)

This is equivalent to Wightman's definition. The locality of σ(x) follows
from (23). However, as noted by Wightman [3], σ(x) is not relatively
local to χ. In fact, we get for the commutator

!>(*), Jt(y)Lo=yo = - l/Σείx1 -y1)χ(y) . (24)

Next, we define

ψ(x)=:e~ifβ(x):χ(x) (25)
and

φ(x) = α(x)-/σ(x). (26)

It is important that ψ and φ are not only local fields but also relatively
local to each other. Namely,

: ] χ(y) - /:<

We note further that ψ(x) satisfies the positive definiteness condition [3].
Therefore, through their Wightman functions, ψ and φ generate a
local theory.

It remains to show that φ and φ satisfy field equations which corre-
spond to the classical relations (4) and (5). Clearly a limiting procedure
is necessary to define the operator products which will occur in these
equations.

As a consequence of Eqs. (22) and (26)

The definition of j(x) in terms of φ is simplified by the fact that

y5χ(χ + ε)} . (27)
ε 2 <0

According to (25)

V?(x + ε)y5v>(x)= :eifβ(x+ε): :t

= \£^-f2/^.eif[β(x+£

This leads to

J(x) = imflim\ε2\f2/4π{ψ(x + ε)y5ψ(x) + \p(x)y5ψ(x + ε ) } . (28)

* We use the notation of Gelfand-Schilow [4].
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To obtain an equation of motion for ψ(x\ we note that (25) implies

(iyd - m)ψ(x) = g(x) = f:ydβ(x)e-ifβ(x):χ(x) (29)

and we use the identity

:3μ/M*~ww:^ (30)

Adding the two expressions with y = x + ε and y = x — ε we obtain in
the limit

g(x) = f/2 Km {yd β(x + ε) ιp(x) + 7 δ)3(x - ε)φ(x)}

and with
= — y5ydu = — y5ydφ + fyV,

. (31)
ε->0

The vector current Vμ = :χyμχ : which occurs in (31) can again be defined
in terms of the interacting fields by an analogous procedure. The result is

γμ=

General Case. If c Φ 1, we make the following assumptions.
1. A local spinor field χ and a local conserved vector current Vμ{χ},

which correspond to the renormalized solution of the formal field
equation

(18')

exist as operator-valued tempered distributions acting in a Hubert
space H equipped with a unique, cyclic vacuum state Φ0. The charge Q,
which is associated with Vμ, satisfies

2. In the charge zero sector, the energy-momentum spectrum
has a lowest mass μ > 0.

We may then define an operator σ(/),/e S* as follows:
Let B be a quasilocal operator and

2 ' ' ' v ' ( }-B$d2x'D*f(x')d'με
μvVv(x')Φ0.
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To show that ||σ( f ) Φ|| < oo, we note first that

$d2x'D tfWWVMΦo = $d2x'f(x')d'με
μvVv(x')Φ0 = CfΦ0

with f(x) E S, and Cf therefore a quasilocal operator. In fact, due to the
form of the spectrum,

F[p*f\(k)=l/k2f(k)

can be replaced by

f(k) = g(k2)l/k2f(k)

where g(h2) e C°° is real and

g(k2)=l, /c2>2/3μ2,

g(/c2) = 0, /c 2<l/3μ 2.
Hence

/W = ίi-1[g(fc

Secondly, we note that the integral

is strongly convergent. This follows by observing that

(Φ
and the norm

decreases fast for IX^I-KJO due to the quasilocality of B.
It can be shown in a straightforward manner that σ has the following

properties:
a) For each test function f e S , σ ( f ) is defined on a domain D(σ)

of vectors, dense in H. D(σ) is a linear set containing the domain D
formed by all finite linear combinations of vectors obtained by applying
polynomials in the smeared χ,χ and V μ { χ 9 χ } fields to the vacuum state.

Furthermore, D(σ) satisfies

17(0, A) D(σ) C D(σ\ O//) D(σ) C D(σ), O/ (/) D(σ) C D(σ)

where O7 denotes any one of the fields χ, Vμ, σ. The Wightman functions
of χ, χ, Kμ and σ are tempered distributions.

b) σx)/D(σ) is a hermitian field.
c) σ(x)/D(σ) is a pseudoscalar field.
d) dμσ(x)= Wμ(x) = εμvVv(x) on D(σ).
e) [σ(x),χ(y)] = -l/2e(x1-/)χ(y) on D(σ) for (x-3/)2<0.
f) [σ(x), Vμ(yJ] = 0 on D(σ) for (x-y)2<0.
g) [σ(x),σ(y)]=0 on D(σ) for (x-);)2<0.
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It follows then that φ and φ as defined by Eqs. (25) and (26) are local
and relatively local fields.

If the assumption 2 is strengthened to:
2'. The energy-momentum spectrum of the operator field χ has

the structure

0; p2 = m2,p°>0; p2^

it can be proved that D(σ) contains the set DO* of "non-overlapping"
asymptotic states formed from χ,

D(σ)3D*0

κ (ex = in, out),

and that for any two Ψ, Ψ e De

Q*

is a tempered distribution, regarded as a functional of /.
Further, it will be shown in an appendix that for vectors

t2L{(Ψ'ou\ σ(k) y°ut)e-it<*o±ftι) + πδ(k)(Ψ'out, Q Ψoui)}

t2M{(ψ' in, σ(fc) !Pout) β-ί'<*o±*ι> + πe(t)δ(k) (Ψfin, Q Ψout)} -^^^ 0 ,

t2N{(Ψ'in, σ(k) yi»)e-"<*o±*ι> ±π(5(/c)(^'ίn, β«Fίn)} 7 ι̂r^>0

for arbitrary non-negative integers L, M and N.
Finally we add to the assumptions 1 and 2' yet another assumption

concerning asymptotic completeness:
3. The set of all asymptotic states formed from χ is dense in H.

It follows then that the pseudoscalar particles are effectively free, i.e.

<Pin = <Pout = «

in the sense of Schroer [2].
We do not attempt to give a precise form of field equations for the

ψ- and φ-fields. By formal manipulations we can of course obtain
equations which correspond to (4) and (5). Also, we do not discuss the
correct mathematical description of the substitution φ-^>φ + const.

We note finally that the definition of σ(f) given in Eq. (33) and the
subsequent introduction of \p and φ by means of (25), (20) and (26) can
be carried through in cases more general than the self-interacting spinor
field (e.g. χ(x) could be a charged scalar field) which we have studied.

IV. Conclusions

Our results are summarized in the following statement, valid in
two-dimensional space-time:
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If a local field χ with a conserved vector current Vμ{χ} is given whose
energy-momentum spectrum does not contain massless particles, a local
pseudoscalar field σ can be defined by Eq. (33) such that

Then, taking the tensor product [3] of χ with a free pseudoscalar mass-
zero field α, we may define local and relatively local fields ψ and φ by
means of Eqs. (20). (25) and (26). This leads to a local theory which
contains a conserved axial vector. The ps(pv) theory is a simple example
of this situation.

Another local extension of the χ-theory is of course given by a free
scalar field β and ψ as defined by Eq. (25). If χ is a free spinor field, this
is the well-known derivative coupling of a scalar field [2]. In contrast
to the pseudoscalar case, the scalar extension is not restricted to mass-
zero particles or to two-dimensional space time.
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Appendix

We want to prove that for any non-negative integer L and for !Fout,
ψ'out E βout

t2L{(Ψfou\σ(k)Ψoui)e-it(ko+kl)-πδ(k)(Ψfou\QΨoυi)} -^r+^0

in D'({k\k2<m2}).

Without loss of generality we may assume that Ψoui describes i outgoing
particles and i an tipar tides while Ψ'oui describes ΐ outgoing particles
and f' antiparticles.

We take a test function /eS whose support is contained in
{k/h2 < m2} and form

t 2 L { $ d k f ( k ) [(<F'om, σ(k) Ψoui)

= t2L{$ dx f ( x ; ί, ί) (Ψ'ou\ σ(x) Ψout) - (i - Ί) π/(0) (¥"out, Ψoui)} '

where

/(*; ί, s) = -^-J dkeikxe-itk°-isk>f(k)
2n

is for any fixed, finite ί and s a test function e S whose support is con-
centrated around the point x° = ί, x1 = 5. For t > 0

t2L{$ dx f ( x ; ί, ί) (<P/om, σ(x) Ψoul) - (i - i) π/(0) (?"out, <Fout)}
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can be replaced by

2xd2ί

yd
2lyψ[ΛΎΛ^

( '" Γ

&;</»fo:y;M)(Φo» Ylxa'MJ Π x/rβO><ρ)M*)
(A.3)

X

σ = l τ = l

- (i - Γ) π /(O) (r outβ f0111)

with an error of 0(|ίΓ°°) [5]. Here ψ(ol).(β)(y,y;t,s) is defined by

f ϊ
__ f Σ p(τ)»(τ)+ί Σ p(σ)y(^)1 r

y,y;^s)=-^πrJ ^2ί

non-overlapping,

G = {p/po > 0, \p2 -m2\<c< Min (m2, m2 < m2} .

ί2L {f dx f(x; t, t) (Ψ'ou\ σ(x) Ψout) - (i - Γ)π/(0) (Ψ'out, Ψout)}

[ / »"

Σ Φ0? ΓΊ ^(Xπ)) Π Z^Wβ)) X^ίό)-
(T \ π=l ρ=l

(A.4)

(
Γ i' i

Φ Π y , f i/ ) Π v fiΓ ϊ Π y+

^0? II Λα^l/ίπμ 11 Λ/j'e^/(ρV H A 0 r + i - 0
π=0 ρ=l σ = l

- (i - Γ) π /(O) (rout, <Put) ( + 0(\t\ ~ «).

This is a simple consequence of translation in variance and the spectrum
condition.
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Moreover, we commit only an error of 0(|ί|~°°) if we replace the
commutators

OM> X/tOV)] and [σ(x), χϊτ(y(τ)J]
by

- l/2e(J - ylσ)) χl(y(σ)) and l/2ε(x1 - tfj χ+(j;(τ))

respectively. This is so because the main contributions in x and y(σ)

and in x and y(τ} separate by a space-like distance that increases linearly
in t and because of (e). We observe that the main contributions in x
come from points which lie to the right of the main constributions of all
other variables. Hence

^^
x f(x; 0, ί)v>S);(Λ0>, y; t, t)φθ9 f\ χ^(yf

(n)) f] χβe(y'(β}) (A.5)
π = l

χΠr-+-<? +ι )lW (y -Hi )«0ff=ι /?,• (,+ 1 <,) t=ι «,+ ,-« (,+ 1 τ) Oj

- (i - Γ) π /(O) (?"out, «Pout) + 0(|tΓ ").

According to Hepp [5], the curled bracket itself is of the type

Hence we obtain

Jdkf(k){ί 2 L [(^ o u t , σ(k) Ψoui) e-
it(ko+kί)- πδ(k)(Ψfoui, QΨouί)^} —^ 0

i.e.

t2L[_(Ψfou\σ(k)Ψout)e-it(ko + k^-πδ(k)(Ψfou\QΨou^
in D'({k/k2<m2}).

The other assertions follow in an analogous manner.
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