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Abstract. We construct a Hilbert space 3tf, spanned by vectors \&), where (9
is a bounded measurable set in ¥lv (v = dimension of space), and interpret |0) as
a state where all points x ζ Θ are occupied by an incompressible fluid, and x (J Θ
unoccupied. MP is generated by applying unitary "filling operators" U(0) to a cyclic
vector \φ), the completely unoccupied state. The operators U((P) generate a com-
mutative c*-algebra, of which the hermitian elements are interpreted as the observ-
ables of the theory.

All the oo-divisible representations of the symmetric group of order 2 are found.
We give a generalization to a theory with any number of particle types.

A Continuum Analogue of the Lattice Gas

A configuration of a lattice gas is defined, in one dimension, by
a sequence of noughts and ones. More generally, [1], in v dimensions, if
there are n types of particle, a configuration is given by a map from
7JV to (0, 1, . . ., n). In this paper we show how to realize the configuration
space of a system describing a gas in a continuum, where it is assumed
that each point is either occupied or unoccupied.

1. Continuous Tensor Products

In their general analysis of complete Boolean algebras of factors,
ARAKI and WOODS [2] define a continuous tensor product of a family of
Hilbert spaces J f x relative to a vector field Ωx, to be exp / (3^x θ Ωx) dxf

θ

that is, the Fock space over the direct integral of the spaces perpendic-
ular to Ωx. Their analysis shows that any complete Boolean algebra of
factors can be embedded in such a space. GUICHAKDET [3] has given
a definition of continuous tensor products of Banach spaces, and a ten-
tative definition of products of Hilbert spaces. There is no obvious reason
why the scalar product he defines on the tensor product should be posi-
tive-definite in general. But he is able to prove positive definiteness for
an example, in which the base-space is compact, by using the Fock space
idea. Independently, ΐ>. DUBIN and the author [4] working from physical
considerations, arrived at a model with indefinite metric, indicating that
continuous tensor products do not always exist. Further examples
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satisfying the positivity were given in [5—9]. The connection between
the various formalisms is given by a suitable modification [8] of the
Araki-Woods embedding theorem: any continuous tensor product in the
sense of [3] or [5] can be embedded in a Fock space (see also [9]).

In this paper the analogue of this for finite groups is given. The
resulting local theory may be regarded as the continuum version of the
classical lattice gas. For the symmetric group S2, all infinitely divisible
representations are found.

Let G be a finite group with the Borel structure induced by the
discrete topology; let e denote the identity element of G. Let U be
a cyclic unitary representation of G in a Hubert space 3tf, with cyclic
vector oj. Let ~£(¥lv, G) be the set of measurable functions / from Rv

to G(v = 1,2 or 3 say), such that to each / there exists a compact set
K C^v such that / (x) = e if x is outside K. The smallest compact set
with this property is called the support of f; it is always a measurable
set. <J^(¥ZV, G) becomes a group under pointwise multiplication: fg{x)
— f (x) g (x). The set of x such that / (x) takes a given value in G is a meas-
urable set, so the function (ω, U(J(x)) ω) is a measurable function.
Suppose that (ω, U(g) ω) φ 0 for all g, and choose a branch of
log(ω, U(f(x)) ω), for each / ζ Jί(¥lv, G), such that

log(ω, U(f-Hx)g(x))ω)=0

if x (f supp/ \j supp(/. We furnish [^#(RV, G)] (the free complex vector
space generated by the set ^#(R V , G)) with the sesquilinear form,
defined on uT(Rv, G), by

</, g) = exp / dx log(ω, £/(/-* g(x)) ω) (1)

and from there by linearity in g and anti-linearity in /. Since the support
of Z"1 g is compact, and U(e) = 1, the integral in (1) is always over
a compact region.

We say the tensor product (g) U exists (for a particular definition of
X

logarithm) if (1) is positive semi-definite. In this case, (,) defines a
canonical Hubert space, denoted (g) 3tf?, by the separation and com-

X

pletion of [ey#(Rv, G)] with respect to the semi-norm defined by (,). We
denote by Ω = (g) ω, or |0), the vector corresponding to the identity E

of ~#(RV, G); E is the map E{x) = eξ;G for all xζU\ One gets
a representation of the group Jί (R", G) by unitary operators on (x) ffl

X

as follows (the analogue of the construction of representations of the
current algebra, see [5]). For each fixed /, the group multiplication
ψ -> tpf in ̂ #(R", G) is a scalar-product preserving map of ^ ( R " , G) to
^£(¥iv, G). I t can therefore be extended to a unitary operator π(f) on
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(g) Jf7, i.e., a map TT : ̂ #(IR% (?) -> Aut /(g) «#Λ. We can define the local
a; \ a /

c*-algebras of the theory as follows: let Θc 1R" be a bounded open set;
the set of operators {π(f)\ supp/c$} generate a c*-algebra denoted
,s/(0) the quasi-local algebra stf is defined to be the c*-algebra generated
by all the j/(φ). If ΘtC "Rv, we define srf (Θ^ to be the c*-algebra gen-
erated by s/(Φ), ΘC®X

The von Neumann algebras s/(Φ)tf = J?(0) generated by the s/{Φ)
give rise to a structure very similar to that studied by ARAKT and
WOODS [2], except that in general, they are not factors, and that the
so-called "duality theorem", 31 (Θ)' = & (1R" - Φ)9 does not necessarily hold.
To see this, consider G — 82. Then Jί{JRv, G) is abelian and so is each
02 (Θ). This means that 3t(Φ) are not factors. The fact that 31 {Φ)'
Φ &(Ψlv — Φ) is also easy to see. In spite of this, an embedding theorem,
similar to that of ARAKI and WOODS, can be demonstrated (see [8]).

If U (g) ω takes n + 1 distinct values as g runs over G, we may inter-
pret (g) Jf, or rather the total set {π(/) |0>; / 6 ̂ ( I R " , G)} as the space

of configurations, in which each point can be in one of n -f 1 states ω
denotes the empty state and the other n vectors could denote n different
particle types; the vector |0) denotes the state of no particles; it is
a cyclic vector for s#.

2. Infinitely Divisible Group Representations

Definition. We say a group representation U, with cyclic vector
co ζJ^, is infinitely divisible if, to any positive integer q, there is a repre-
sentation, denoted U1^, on a Hubert space Jt1^ with cyclic vector co1^,

q factors /

such that U is equivalent to U1^ ® <g) t/Vs ^as a representation of
q factors \

G, the diagonal subgroup of G X G X X G) restricted to the cyclic
subspace generated from ω1^ ® (8) ω1^ by the action of the group.
In this equivalence, ω and ω1^ <g> <g> ω1^ are to correspond. This con-
cept was introduced in [8] the point is the following theorem.

Theorem 1. There exists a choice of logarithm making (1) positive semi-
definite if and only if U is infinitely divisible.

Proof. If U is infinitely divisible, and q is given, we may write

(ω, ϋ(g) ω) = (ω1/*, UV«(g) ωV*y

where f,g-> (cυ1/^ U1tq{f~1g) ω1^) is a semi-definite form on G. We may
therefore define a branch of the g'th root of (ω, U(g) ω) by (ω, U(g) ω) 1^
= (co1/5, Uyq(g) ω1/e), and still get a positive semi-definite form on G.
If r = pjq is any rational, raising this equation to the power p shows
that (ω, U(g) ω)r is positive semi-definite, and by continuhVy, (co, U(g) ω)τ,
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τ > 0, may be defined so that it is positive semi-definite, i.e.,

Now consider the bilinear form (1) on ^#(R", G). The function
(ω, U^g^g^x)) ω) takes only a finite number of values for each i, j , and
the set of x, such that it takes a given value, is measurable. Thus for
fixed i,j, 1R" is divided into a finite number of measurable sets, at most
n, on each of which (ω, Uig^g^ (x)) ω) is constant. Thus, as i = 1, 2,... N
and j = 1, 2, . . . N, we may split 1R" into at most nN* measurable sets
Vλ say. We pick a point xλ ζ Vλ, and choose the branch of the logarithm
in (1) so that

dx log(ω(f^ (xλ) f,(xλ)) ω)

(Λvhere τλ is the volume of Vλ). For each λ, (ω, U(ffι(xλ) fj(Xj)) ω)λ is
positive semi-definite, so the product over λ is too. This proves that
(x) U exists.

X

Conversely, if there is a continuous tensor product, we may choose,
in particular, elements g(x) of Jί (ΪR1*, G) such that g(x) is constant on
Θ C 1R", and equal to e outside Θ. This leads to the positive definiteness
of the form exp / dx log(ω, U (g) ω) = (ω, U(g) OJ)T^ where τ(Θ) is the

x Θ

volume of Θ\ here the branch of (ω, U(g) ω)τ is determined by the choice
of branch of logarithm which, by assumption, may be chosen to make
it positive definite. Choosing Θ such that τ(Θ) = \jq, we see that
(ω, U(g) ω)1lq defines a positive semi-definite function, so

defines an invariant sesqui-linear form on G, and thus, by a well known
construction, it defines a cyclic representation of G, say U1^ with cyclic
vector OJ1^, such that

(ω,

This proves that U is oo-divisible.

3. The Embedding Theorem

It is clear that U, ω is infinitely divisible if and only if (ω, U(g) ω)τ

is a positive semi-definite function on G for all τ > 0. If in addition it
never vanishes we may define F(g) = log(ω, U(g) ω), so eF ^) is a positive
semi-definite function on G. When G = TR this result is well-known; see
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GELFAND and VILENKIN, Generalized Functions, Vol. IV, Theorem 3,

p. 278. In the same way as Theorem 4, p. 279, one can prove that eF(°ϊ
is positive semi-definite if and only if F(g) is a conditionally positive

n n

junction on G, i.e., Σ Σ F(gf1g1J) όtjθclc |Ξ> 0 for all gό ζ G and ock ξ C,
j = i k = i

such that Σ &% = 0. The following theorem is proved in [8]: A function
is conditionally positive if and only if the form

(g, h) = F(g-ih) - J^ίgf-i) - F(h) (2)

defines by linear extension a positive semi-definite form on [6?]. (For
G = 1R, this is proved in [11].)

Now let U be oo divisible on a Hubert space J^} with cyclic vector
ω, and JP (gr) = log(ω, U (g) ώ). Let Jf~ be the separated completed space
of [G] furnished with the form (2). Clearly, (e, e) = 0, so e represents
the zero of Jf\ If GocG is the subgroup such that U(g) ω = e α ω, then
(,) is in fact a semi-definite form on G/Go, which may thus be regarded
as a total set in J^. The set of elements {expg/g £ G/GQ} is not total in
expjf, however, since 6r/6r0 has a finite number of elements and expjf
is infinite dimensional unless C/f is zero. Let ££ C expJf be the subspace
generated by the elements expg. We are then able to identify Jf7 with
Jδf. More exactly, we define the following map V from J f to

(3)

where {g} is the equivalence class in G/Go containing g.
Theorem 2. V can be extended to a unitary map from Jf to Jδf (see [8]).
This is the main embedding theorem; it shows that any oo-divisible

representation can be embedded in a suitable Fock space.
In the same way, the continuous tensor product (x) J f can be em-

X

bedded in the Fock space over / dx Jf. For, the vector U(f) (Θ ω) may
Θ

be represented by the element / ζ^#(lR v, G), and such an / may be
regarded as an element of / J f dx; for f(x) = e outside a compact set,

Θ

and e represents the zero element of Jf\ Thus f(x) defines a square-
integrable vector field in CtiΓ. Let / denote this element of / J/Γ dx. Define

Θ

a map W: ,JP(UV, G) -+ exp fjfdx by W(/) = {exp/<^log(ω, U(f(x))ω)}
®

exp /. The map W is a scalar-product preserving map from ^ ( R v , G),
furnished with the scalar product (1), to exp / JΓ dx it therefore defines

Θ
a unitary map from (g) Jf to exp / J f dx. This is our version of the

x Θ
Araki-Woods embedding theorem. In our case there is no obvious reason
why the map should be onto.
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4. Some Examples

Let G be a finite group of order N, and furnish [G] with the bilinear
f o r m (0ig,) = »<,+ (l-δii)coaθ (4)

This is positive definite if 0 < θ ̂  π/2, and never vanishes if 0 < θ < π/2.
Furnished with this form, [G] becomes a Hubert space of dimension N.
Since (4) is invariant under the left action of G on G, the map gi ι—> ggί

induces a unitary representation U(g) of G on [G], which is equivalent
to the regular representation (since the ideal structure does not depend
on any particular bilinear forms having been chosen). Any g ζ G is a cyclic
vector, say co, of the regular representation.

The matrix (gif gj)1^ (real branch chosen) is also positive definite on
[G], since l1^ = 1 and (GOBΘ)1^ = cosα for some real α. Therefore for
each θ < πβ the representation (U, ω) is oo-divisible, and (ω, U(g) ω)
Φ θ , g € G .

The symmetric Sn possesses many oo-divisible representations of
dimension n. For, if \j},j= 1, . . .,n denote n symbols, with scalar

P r o d u c t (i, j) = δi3- + (1 - δid) cosθ

we may define a unitary representation of Sn by

ϋ(π) \i) = \π(i)) for all πζ8n.

It is worthwhile computing the scalar product (2) which defines the
space J f of the embedding theorem, for these two examples. We find:
<e, β> = <β, g) = 0; <gr, A> = - log cosθ ^ φ g ; <gr, gr> = - 2 log cosθ,
g Φ β . This is a positive semi-definite form, as required by (2). In a
similar way, one verifies that the form (,) in the second example, is
positive semi-definite on Sn.

In the particular case G = S2, these two representations coincide. In
fact, we can easily find all infinitely divisible representations of S2. Any
cyclic representation has dimension <g 2 and is defined by a form (,) on
G, invariant under left multiplication. The identity representation is
always oo-divisible. The necessary and sufficient condition on the form
(,) is that (2) be positive semi-definite. If g Φ e, we have (g, e) = 0 and

(9> 9) = - l°g(£Λ e) - log(g, e) = - 2 log(gr, e) ̂  0 .
Therefore, (,) leads to an oo-divisible representation if and only if (g, e)
is real and 0 ^ (g, e) ̂  1. These are just those forms discussed above,
with (β, g) = cosθ. In this example, we may label a total set of vectors
in (X) 3tf by a bounded measurable set E of occupied states, with

(E1, Eo) = exp / dx log (^ (#), £2 (x)) ,
with

gj(x) = e, xζEj

Φ β otherwise .
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Then

(Λ(O> 9i(p)) , X^E1\JE^-Έ1ΓΛ E2

— 1 otherwise .

This gives the scalar product

Our analysis guarantees that this furnishes the linear space generated by
measurable sets with a positive semi-definite form. The corresponding
Hubert space is separable for there exists a countable set of measurable
sets Ei such that given E and ε > 0, there exists an i such that E{

approximates E :τ(E — E{) < ε and r{Ei — E) < ε. The corresponding
set of vectors \E^) form a total set.

The translation operator Ta in ¥iv acts in a natural way on
^£(¥lv, G): Taf(x) = f(x + a). The scalar product (1) is invariant under
this action, so each Ta defines a unitary operator in (x) ffl \ the Ta realize

X

the group 1RV. The action of Ta is continuous on (g) 3>(?. The unitary
X

operators U(E) defined by U(E) \Eτ) =-\E \j E1 - E r\ E1} generate
a commutative quasi-local algebra as E runs over bounded sets. The
cluster property, (E, Ta E

1) ->(E\0) φ\Eτ) as \a\ -> σo, also holds. We
thus have all the ingredients of a continuum theory of a gas with a
maximum density. Similarly, a continuous product of Sn+1 leads to
a gas of n different particles. The c*-algebras are not commutative in
that case, but are obviously asymptotically abelian.
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