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Abstract. We investigate the ground states of infinite quantum lattice systems.
It is shown in particular that a positive energy operator is associated with these
states.

1. Infroduction

In a series of recent papers! a new approach has been developped for
the study of the equilibrium states of infinite systems in statistical
mechanics®. Classical and quantum lattice systems, and classical con-
tinuous systems of particles with hard cores have been considered; their
equilibrium states at temperature 7'+ 0 have been investigated. The
present note describes the zero temperature states, i.e. the ground states,
of the same systems.

Many of the results which we shall present have proofs similar to and
simpler than already published proofs for the case 7' = 0. We shall omit
these proofs, and present therefore a list of theorems mostly without
proofs. It will be remarked however that our results about the ground
state are not special cases of results for 7' = 0, and that some of them
have in fact no obvious counterpart at 7' == 0.

2. Infinite Volume Limit for the Ground State

It will be convenient to work with quantum lattice systems, but the
results obtained in this section extend to classical lattice gases and
classical continuous systems of particles with hard cores (see Footnote 1).

We let o be a complex Hilbert space with finite dimension and 57,
a copy of 5 at each point x of the “lattice” Z*. For finite A C Z?, let

zca

1 See RoBinsonN and RUELLE [8], GArLAvoTTI and MiracLE [2], RUELLE [10],
Laxrorp and RoBinsoN [5], RoBinsox [7], GALLAvoTTI and MIRACLE [3], LAN-
FORD and ROBINSON [6]. A general treatment is also given in a forthcoming book [11].

2 Some of the ideas involved appear already in RUELLE [9] and FisHER [1].
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and let 2 , be the algebra of all bounded operators on # (A). HANA'=0
we identify A, with a subalgebra of A4, 4 by 4 >4 ® 1, and let A
be the norm completion of the union of all 21 4. If @ € Z7, there is a natural
isomorphism ', — #,,,, hence a natural isomorphism #(A)
— (A + a); there is thus a natural isomorphism A, — 2, , for each
A and an automorphism 7, of the C*-algebra 2 extending all of these.
The 7, give a representation of Z* in aut 2.

We define now an interaction @ as a function of finite subsets of Z”
such that

(a) ©(9) =0,

(b) D (X) is a self-adjoint element of A,

() DX + a) =7, P(X),

lo(X)]

(d) D] ZXZa:o N X) <+ oo,
With respect to the norm given by (d) the interactions form a real Banach
space B. The Hamiltonian H ,(P) corresponding to the finite region
A C 2 is defined by

H (D) - ng D (X) .

We let HY (D) be the lowest eigenvalue of H,(®) and
E (@) = N(A)~ HY(P) .
It is readily seen that E ,(.) is concave on B and, if @, ¥ € B,
|B4(@) — E4(P)| < |- V. (1)

Theorem 1. If A — oo in the sense of Vax Hove?, the following limit
exists for every @ € B

lim (@) = B(®).

The proof may be obtained by standard arguments (see [2] or [11]).
Remark. If we define

P4(D)= N(A)log Tryp 4y exp[— H,(D)],
P(@)= lim P,(D),
then
zl'imo [- TP(T-1®)] = E(D).

This follows from the continuity of 7' P (7! @) in @ uniformly in 7', A.
Before stating further results, we introduce a number of definitions.

3 We say that A tends to infinity in the sense of Vax Hove (and we write
A — o0) if, for every finite X 2%, N(A)~* N (A) tends to zero; here N (A) is the
number of points € Z” such that v + X { 4, (x + X)N\ A == 0.
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For each @ € B welet V4 be the subset of the dual B* of B constituted
by those elements « such that, for all ¥ ¢ B,
E@+ W) < E®) + a(P). @)
The set Vg4 is convex and weakly closed in B*. Since SE (D) = E (S D)
for f = 0, (2) implies that for all ¥
EY) = o(P) (3)

hence V,C V. From (1) and (3) we get || < 1, therefore (by Alaoglu-
Bourbaki) V4 is weakly compact. Let D C B be the set of those @ such
that Vg is reduced to a point a?, i.e. such that the graph of E(.) has
a unique tangent plane at (@, E (®)). It is known that D is a Baire set?
and therefore dense in B.

Let I be the set of translationally invariant states on 2, i.e. of those
states ¢ such that, for all @ €2*, 4 €A

o(r,A) =0(4).

Given a state o on 2, for each finite X C Z* there is a uniquely defined
density matrix ¢(X) such that

The family (¢(X)) determines ¢. To each @ € B we associate 44 € A by

o(X)
4. — y 2&X)
? X‘%:) N (X)
then |44 < ||@|. To every ¢ € I there corresponds an element wa of B*
wo (D)= 0(4g) =XZ; N(X) 2 Tryx)0(X) D(X) . (4)
>

Let ¢% be the orthogonal projection corresponding to the eigenvalue
HY% (D) of H, (D), divided by the multiplicity of this eigenvalue®. The
“expectation value in the ground state of H,(®D)” for a (finite) region
X C 2? is defined by a matrix ¢4 (X) in £ (X) such that

Tr H(AX) 0'3 if X C A
@ -
“AX”"% i Xqd.

Averaging over lattice translations we define also
) = N 5 ot (X).
z
Notice that, if ¥ € B,

XZO Z\T(.‘X)~1 TI“;@(X) 62 (X) W(X) = N(A)—l Tr‘;f(A) O'ﬁHA('}I) .
El

4 T.e. D contains a countable intersection of dense open sets in B.

5 Alternatively, one could define aﬁ as the projection on any eigenvector of
H 4(®) corresponding to the eigenvalue HY (®); this would not change the results
described below.
23a
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Using also
NM)END + V) = TrypaycQ Hy(D + W)
= N(A) E (D) + Tryp 4y % H,(¥)
we find
E P+ V)= Ef(D)+ X N(X) ' Tryx db(X) PX) .

X350
Theorem 2. (a) If @ € D, then the following limit exists
Alim 6%(X) = 0?(X)

and the o®(X) are the density mairices associated with a state 6® €I and
wo® = «?.
(b) For all ® € B
E(®) = ;lg o(dg)

and of @ € D, then E (D) = o?(44).

(¢) The mapping w : I — B* defined by (4) vs an affine homeomorphism
of I onto V8. In particular, if @ € D, then o® is an extremal point of I
(Z*-ergodic state).

The proofs of (a) and (b) follow from standard arguments?. To prove
(c), notice first that, since w is affine and (weakly) continuous, wl is
convex and compact. By (b), wI C V,. Furthermore, (b) shows that every
closed half-space in B* (with the weak topology) which contains all
wo?® (with @ ¢ D) contains also ¥, hence wI > V,. Therefore wl = V.
Since w is continuous, and injective by (4), @ is a homeomorphism 3.

It is possible in a number of cases to determine explicitly the ground
state corresponding to an interaction @. By looking at examples of
continuous one-dimensional systems of particles with hard cores, the
reader will convince himself that E (@) is not in general a piecewise
analytic function of the chemical potential.

Remarks. (a) Let @ € B, from any sequence (4,) tending to infinity,
one can extract a subsequence (/,) such that

lim 6ﬁa (X) =0(X)
where the g (X) are the density matrices associated with a state o € =1 V.
¢ This result may be derived from the analysis given in [6]. Conversely, it
implies that if « ¢ B* satisfies «(.) < P(.), then o € wl.
? See for instance [11]. Notice in fact that, once we know that E(®) < o(4¢)

for all o € I, @ € B, it suffices to prove (b) for @ ¢ D (because D is dense in B and
llo] = 1). Assuming @ ¢ D, (b) follows thus from

o(dg) = lim ¥ N(X) Tee(a) 75(X) S(X)

= lim N(A)7 Tror (a) o2 H, (D) = Jim N () HY (@) = B(®).

8 This proof shows in fact that I is the closed convex hull of {¢?: @ € D}.
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(b) Let ¢® be a T =1 equilibrium state corresponding to @ [i.e.
p? €1 and P(® + V) = P(D) — 9%(4y) for all ¥ ¢ B]. If @ ¢ D, then

lim o77?=¢%.
-0

(c) Let B, be the space of finite range interactions, i.e. of those @ ¢ B
such that @ (X) = 0 except for finitely many X 3 0. Let also B, be any
Banach space such that B, B; B, the norm |-|; of B, is larger than
the norm || of B and B, is dense in B;. Then, D N B, is a Baire set
in @, and Theorem 2 remains true with B, B* replaced by B,, BF and
Dby DN,

3. Time Evolution

In this section we use in an essential manner the quantum nature of
our lattice system, and the results obtained have no interesting counter-
part for classical systems.

Following Remark (c) of Section 2, we introduce a Banach space B,
with

19l = 3 |90 exp(¥ (X) - 1) .

The following result then holds.
Theorem 39, If @ ¢B,, A has a one-parameter growp of automorphisms
7: R — aut U such that, 1f A €,

7,4 = hm AHAD) 4 o1t H (P

A—> oo

uniformly on compact t-intervals; here A tends to infinity in the sense that
it eventually contains any finite subset of Z*. If A ¢ AUy, X finite, the func-
tion t — T, A extends to a function A (z) analytic in the strip

{z: [Tmz| < (2] D],)~"}

with values in A; for |z| < (2 |D|;)~! we have the convergent expansion

2@”

n=0 {X cz’ X.CZ

3 [D(X), [ [P(Xy), 4] - ]]}

We can now formulate our main result
Theorem 4. Let @ ¢ B, and g € w0~ V.
(a) The state o is invariant under time evolution .e., forall A €A, t ¢ R,

o(T;4)=0o(4).
(b) The Gel’fand-Segal construction applied to o yields a Hilbert space

9, a representation 7w of A in H, a normalized vector Q €9 cyclic with
respect to 7t (U) and a strongly continuous one-parameter group t — U (t) of

® This is a slightly strengthened version (see [11]) of a theorem due to RoBINSON
[7], see also [4], [12].
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unitary operators in ) such that for all A ¢ AU,
o(4) = (@, n(4) 2),
T nA)U(-t)==n(@4),

THR=2.
Let @ be the unbounded self-adjoint operator such that

U(t) = i@t
then the spectrum of @ is contained in {q:q = 0}.

We prove only the last statement and we assume first that @ € D so

that ¢ = ¢®. Let 4, B ¢2y. In view of Theorem 2 (a) and Theorem 3

we have, uniformly on compact intervals of ¢ when /A — oo in the sense
of Vax Hovg,

()'(»(-B)‘= N ftA)
= lim N1 Y  Trypuy odr,B¥etZa® ¢, 4 ¢~ tH4@)
A—ro0 z.x+XCA
= lim N(A)=* 3 Try 097, B* exp[it(H (D) — HY(P)] 7, 4.
A—>o0 z:z+XCA

Therefore, if @ is a smooth function with compact support,
((B) 2, p(Q) n(4) Q)
= Alim Nyt 3 Tryoofit,B* ¢ [H (D) — HY(D)] 7,4 .

z:z+XC4
In particular, if the support of ¢ is contained in {g:q < 0}, then
@ (@) = 0, proving that the spectrum of @ is contained in {g: ¢ = 0}. The
extension of this result to all @ € B, and o € w1V, can be obtained by
a technique described in [6].

Remark. In view of Theorem 4, the ground state expectation values
have a number of properties in common with the vacuum expectation
values in relativistic quantum field theory. In particular, the function
f(&, - .., &) defined by

f(tl’t2~ tl) v ':tn_ tn—l) =O‘(A0'f¢1A1 o 'ft,,An)

is the boundary value of a function F({,, . .., {,) analytic in

1?1 {¢::Tm¢, > 0}
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