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Abstract. It will be shown that the weak additivity-property is not only suf-
ficient but also necessary for the derivation of the Reeh-Schlieder theorem.

I. Introduction and Results

Many results in quantum field theory which have been derived so far
are based directly or indirectly on the Reeh-Schlieder theorem [1], The
central role of this theorem makes it worthwhile to give it separate
consideration.

The problem can be formulated as follows. Let si be a v. Neumann-
algebra acting in a Hubert space 2^ and 3$ C^i a sub v. Neumann-
algebra. Do there exists vectors x £ 3? such that £%x = six ? If yes, how
can one characterize such vectors ? This problem will hardly be soluable
in full generality but there exists a class of v. Neumann algebras for
which the answer is partly known. This class is of particular interest for
physics.

Here we have a v. Neumann algebra si together with a ^-parametric
group 0 of normal automorphisms which are implemented by a strongly
continuous unitary representation of G having its spectrum in a proper
closed cone.

We consider G as the additive group of Rn and denote by U(g) its
representation in 3F. A vector x ζ Jtf* is called analytic for if U(g)x has
an analytic extension into a full neighbourhood of the origin in Cn.

Let Jί be any open neighbourhood of the origin in Rn and £% a sub-
algebra of si then we denote by (β,^) the v. Neumann algebra
generated by {U(g) & U(g-1) g ζ^}.

With these notations we get:

1. Theorem (REEH-SCHLIEDER). With si, G and U(g), g ζG as de-
scribed above, assume £% c.si is a sub v. Neumann algebra of si such that

Then for any vector x ζJί? which is analytic for U(g), and for any open
neighbourhood ^V of the origin in G, we have the relation
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A special case of this result was discovered by REEH and SCHLIEDEB, [1],
This general version can be found in [2].

2. Remarks. The known examples of quantum field theory give non-
trivial examples for the Reeh-Schlieder theorem such that the rings
(β, tA

r) are proper subrings of si. But it is essential for the existence of
these examples that the spectrum of U(g), the automorphism-group, is
unbounded. In the case where the spectrum is bounded we get:

2.1 Corollary. Preserving the notations and assumptions of theorem
1., assume in addition that the spectrum of U(g) is bounded. Then

This follows easily from theorem 1 since every vector x ζ ^ is now
analytic for U(g).

A simple reformulation of this last corollary yields an observation
due to R. KADISON [3] namely that the spectrum of the translation group
in local quantum field theory must be unbounded.

2.2 Corollary. Preserve the assumptions and nations of theorem 1.
If for some *V the v. Neumann algebra iβ9 JV*) is a proper subalgebra
of si it follows that the spectrum of U(g) is unbounded.

We are now coming to the converse of,the Reeh-Schlieder theorem:
3. Theorem. Let si, 0 and U(g) g ζG be defined as before. Assume

&Csi is a sub v. Neumann algebra of si. If for any vector x ζ J^ which
is analytic for U(g) the relation

= six holds ,
then we have

{β9 G) = si .

The statement of this theorem deserves the following clarifying.

4. Remark.1 Assume U(g) and V(g) are each continuous representa-
tions of G with spectrum in a proper cone, and that they implement the
same automorphism group of si. Then £%x = six for each analytic
vector of U(g) if and only if £%x = six for each analytic vector of V(g).

This is a pleasant fact which serves to make the conditions of theorem
3. independent of the group representation, and simplifies its proof by
allowing use of the most convenient representation.

5. Example. Theorem 1. and theorem 3. are not exactly the converse
of each other. To show that the strict converse to theorem 3. is not
possible we will construct an example in which [β, G) = si but for which
there exists a vector x analytic for U(g) with

08x Φ six .
1 I am owing this remark to J. IRWIN, private communication.
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Let Z2 be the Hubert space of square summable sequences {#
Define the one parameter unitary U(λ) by

Then U(λ) has semibounded spectrum. Let x0 be the vector {e~n). It is
analytic for U(λ). Let EXo be the projection onto the one dimensional
subspace {μx0} and £% the algebra

® = {μiι + μ2 Eχ} > (μ> μi> μ% 6 c)

It is easy to see, that (^, (9) = ££{ffi) are all bounded operators. But
we have

= j£ββ f̂7 and

and these two spaces are unequal by construction.
Finally we will prove the following results which are closely related

to the Reeh-Schlieder property, (βx — stfx for analytic vectors.) Part (a)
is a generalization of theorem 3., part (b) is another consequence of this
property.

6. Theorem. Let si, G, ϋ(g) and & be as in theorem 3. Let Ec^/he
a projection commuting with all U(g). Denote by {β, E} the v. Neumann
algebra generated by & and E and by U(g)E the restriction of U(g) to
Effi then we have:

a) {{31, E}E, G) = s/B.
b) If the central carrier of E is equal to 1 then {J* w E s/E}" = si.
Special cases of this result have been used in field theory, namely,

when U(g) has invariant vectors and E is the projection onto the sub-
space spanned by these vectors [1, 4].

II. Proofs

Since our notation here is slightly more general then that of ref. [2]
we will also include a

Proof of Theorem 1. Let x ζ & be analytic for U(g) then U(g)x is
analytic in some complex neighbourhood <Jί of the origin. Since now G
is an abelian group. U (g + gλ) x is also analytic in the same neighbourhood
~# for arbitrary gx ζ G. Hence U (g) x is analytic in a tube {g Jm g £ ^'}
where Λ* is some convex neighbourhood of the origin. On the other hand,
since the spectrum U(g) is contained in some proper convex cone ^, it
follows that U (g) is the boundary value (in the strong operator topology)
of an analytic operator-valued function, holomorphic in the tube
{g «/"m g ζ if'} where ΐί' denotes the dual-cone of ^\ Suppose y is ortho-
gonal to (β, Jί) x. Taking arbitrary B{ ξ SS9 i = 1, 2, . . ., r and writing
B{g) = ϋ(g) Bϋig-1) this means

fa Bx{gi) B2(gz) . . . Br(gr) x) = 0 for q^JΓ , i = 1, 2, . . ., r (*)
19*
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On the other hand

(y, BM . . . Br(gr) x) = (y, U{gx) B1U(gz - gx) . . . BrU(- gr) x)

is the boundary value of an analytic function holomorphic in the tube,

fo,. . .,qr;Snqx eV,Sm(gz - 9 ι ) £V',.. .,Sm(gr - gr^) W

Since <Jf' is an open neighbourhood of the origin the tube is not empty
and, (*) must vanish identically for all gi ζ G (by analytic continuation).
This implies y is orthogonal to (β, G) x = stfx which proves the theorem.
Now the

Proof of corollary 2.1. Since U(g) has bounded spectrum, every vector
x ζ ffl is analytic for U(g). Hence for every x ζJti? the projector onto
(β9 JV) x is an element of j / ' . Since these projectors generate (β, JV)'
follows (J>, jrγ = jf or (β, Jί) = J3/.

Proof of Remark 4. We first prove this remark assuming the represen-
tations W and V commute with one another. Then W(g) = U(g) V (g~x)
is also a continuous representation of G. Assume £%x = jtfx for all x
analytic for U, and consider a vector, y, analytic for V. For all pro-
jectors E, associated to bounded subsets of the spectrum of W(g) one
has Ey is analytic for U. (This is easily seen by writing

U(g)Ey= W(g)EV(g)y

and noting that W(g) E is an analytic operator valued function of g.)

Hence it follows that 3&Ey = stfEy and since the W(g)
= E stfy. Now there are such projectors E in each strong neighbourhood
of 1, hence £%y = stfy.

According to the results of [5], we may write U(g) = U^g) Uz(g)
and 7for) = V^g) Vz(g) with ϋ^g), VM ζ^ and ϋ,(g), Vt{g) £s/'.
Since V and Vl9 V1 and Ul9 and Uλ and U commute with one another,
remark 4 is established by the considerations of the proceeding paragraph.

Proof of Theorem 3. Since the spectrum of U (g) is contained in some
proper closed cone we have, according to [5], that for any v. Neumann
algebra 3t which is invariant under U(g), i.e. U(g) 01Ό (g~x) = ̂  V g ζθ,
U (g) defines an inner automorphism of M. In particular we can assume
U(g) ζ stf. Now (β, G) is also an invariant algebra. Hence we can write
U(9) = tfifa) U2(g) with U^g) £ {β9 G) and U^g) ζ («, Q)' π sf. LetE
be any spectral projection of U2{g)9 then E commutes with U(g) and
(βy G). Let x ζ Jf be analytic for U{g). Then it follows that Ex is also
analytic for U(g).
Thus we obtain
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Since the set of vectors {Ex; x analytic} is dense in E£?, this equation
implies E3F is invariant under si, or E ζ si'. Thus U2 (g) £ si' r\ si = 8
and U^g) A U^g-1) = U{g) A Ufa-1) for all A ζ si. In other words, we
may assume U(g) ζ [β, G).

Now take E ζ [β, G^)' and x analytic. Ex must again be analytic,
and the identical argument establishes that E £ si', or equivalently
(J*, QYcsi'- We know that (J>, G) c*i, hence (J*, G) = si.

Proof of Theorem 6. Let E ζ si commute with all U(g) and x ζE Jf
be analytic for U(g). If we denote by F ζsi' the projection onto six

then we find EsiEx = JE?ĵ a? = EFJP. Since α? is analytic for U(g) we
get ^i^Jf = EsiEx = E^ExcE{^,E}ExcEsiEx = EFM>. Hence
we have for any vector x ζE Jtf* which is analytic for U(g), s/Ex
= {&, E}Ex and hence by theorem 3 ({&, E}E, G) = siE. This proves
statement a). Denote by 2 the v. Neumann algebra generated by £% and
EsiE then Q)Έ = siE hence &E = siE. Since E has central support 1 in
si follows that the map si' -> siE is one to one. Hence for each operator
T £ S)' there exists a unique # £ j ^ ' such that E T = ES ov (T - S) E = 0.

Since SΓ and /8 are both in &', (T - #) J ' ^ ^ r = 0. Since the vectors
x ξ E3f which are analytic for U(g) are dense in
= f̂7, where the last relation follows from the assumption that E has
central support 1. Hence T — 8 = 0 and ίZ7 £ ja '̂. This implies si' Z)2'
and since on the other hand 3i C &i follows Q) = si. This proves the
theorem.
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