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Abstract. The postulate is made that across a given hypersurface N the metric
and its first derivatives are continuous. This postulate is used to derive conditions
which must be satisfied by discontinuities in the Riemann tensor across N. These
conditions imply that the conformal tensor jump is uniquely determined by the
stress-energy tensor discontinuity if N is non-null (and to within an additive term
of type Null if N is lightlike). Alternatively, [<7α^y<5] and [R] determine

1 _

if N is non-null. These relationships between the conformal tensor and stress-
energy tensor jumps are given explicitly in terms of a three-dimensional complex
representation of the antisymmetric tensors. Application of these results to perfect-
fluid discontinuities is made: [Oα0y($] is of type D across a fluid-vacuum boundary
and across an internal, non-null shock front. [C^βγβ] is of type I (non-degenerate)
in general across fluid interfaces across which no matter flows, except for special
cases.

I. Introduction

The satisfaction of conditions on the stress-energy tensor alone is

necessary to ensure that a discontinuity across a hypersurface be accept-

able [1], and much work has been done to study such conditions [2].

The rest of the Riemann tensor — the Conformal, or Weyl tensor —

therefore must have its discontinuities determined by the jump in Tμv.

This fact has been known for interior-exterior junctions, and has ap-

peared in the works of COCKE [3] and of ESTABROOK and WAHLQUIST [4].

Here we will make explicit the algebraic form of the jump in Gxβ

γδ as

given by a discontinuity in Tμv.

In Section I I we will discuss the relationship between second-

derivative metric jumps and Riemann tensor discontinuities. Section I I I

will develop the language of three-dimensional complex vectors which

will be used in the discussion of jumps in the Riemann tensor in Section
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IV. There it is shown that the discontinuity of Cxβ

γδ across N is uniquely
given by the jump in the stress-energy tensor Tμv, provided certain con-
ditions are satisfied by [Tμv] (in the case of N non-null). Conversely, the
jump in Aμv is uniquely given by {GOίβ

γδ'\ and [R] if the Weyl tensor
jump satisfies certain conditions. Section V discusses certain matter-
filled models, and Section VI is a summary and conclusion.

Our sign conventions are that gμv is of signature (—h + + ) ; the
Kiemann tensor is given by

2va;[βγ] = vσR-ΰίβγ

and the Bicci and reduced Ricci tensors are

•K'μv = -tl μav > ̂ μv = = •**μv ^^9μv *

II. Discontinuities in the Second Derivatives of the Metric

We choose coordinates on either side of the hypersurface N so that
the jumps [nμ], [gμv], [gμVtOί] all vanish1. That this choice can always be
made has already been shown [1]. One consequence is that [5] [gμViKβ]
obeys

ϊffμp.aβ] = ^μv^nβ .
The jump [gμv,κβ] can be transformed away by a coordinate trans-

formation if and only if it has the form

ϊffμ*,ocβl = 2 h μ n v ) n Λ n β , or mμv = 2fiμnv) .

The proof takes two parts: First, note that if [gμv,κβ] has this form and
if N is given by the equation x1 = 0, then the transformation

& = af - ~ (a*)ψ (»i) for x1 > 0, i φ l

χi* = χμ for x1 ^ 0

does eliminate \gμVtΛβ] in the xμ coordinates.
The second part of the proof uses the expression of Rxβγδ ύi terms

of the derivatives of gμv. If we write mμv as

mμv = 2fonp) + Hμv

then the f(μnv) term does not contribute to [BUβγδ]:

[BΛβyδ] = 2n[xHβ] [γnδ] . (2.1)

In the case of nx null, choose a null vector px such that panσ= 1,
p<*pa = 0. The above expression for [Rotβγδ] is used to find

[RaβyδΊ (K - P*nσ) (δ\ - pvnτ) = -γHστ nβnδ . (2.2)

1 The notation [nμ] = 0 indicates that N has the same definition in terms of
the coordinates on either side of N. The notation [/] for a function defined in
a neighborhood of N indicates the difference in the limits of / on the two sides of N.
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In the case of nx non-null, mμv may be uniquely decomposed as

mμv = 2f{μnv) + Ήuv) Ήμσn
a = 0 .

In this case we find

Hβδ = - 2(n°nσ)-1 [Rβδ - j ^ ^ ^ 1 nβnδ] . (2.3)

Eqs. (2.2) and (2.3) say that if and only if Hμv is non-zero there will
be non-zero components in [Rxβγδ~\> whether nx is null or non-null.
Since R^βγδ is a tensor, [Rxβγδ] is affected only by coordinate trans-
formations whose first derivatives are discontinuous across N. But such
a coordinate transformation cannot preserve the vanishing of [gμv] and
[ffμvt<χ] in the case that gμv has no symmetries. (We will not go into the
case of symmetric gμv.) In general, therefore, [gμv,xβ] is removable if and
only if [Raβγδ] vanishes.

Eq. (2.3) anticipates some of the results of Section IV, since the right
side is given by the jump in the stress-energy tensor. Note that in turn
[Tμv] is given by

so that
(2.4)

In Section IV, the result that [Tμv] gives [Rxβγδ] will be spelled out in
greater detail.

III. Three-Dimensional Complex Vectors

To discuss the algebra of RXβγδ, we will use for convenience a repre-
sentation of the antisymmetric two-tensors given by three -component
complex vectors γt in a space (73 [6]. On C3 the metric aiό (usually taken
as constant) is reducible by a coordinate transformation to di3-, but we
will not assume that aij — δi3- to raise or lower three-dimensional indices.
A complex vector yt corresponds to a (complex) self-dual, antisymmetric
two-tensor F+

μv. The operation of taking a dual, denoted *, converts an
antisymmetric tensor Fμv to

\la P Fστ E Fστ

(εμvaτ is defined so that £0i23 = 1) Note that Eμvaτ is a pure imaginary
tensor. Thus the * applied twice cancels itself, and a self-dual tensor is
necessarily complex. The three independent self-dual tensors γ*β
22 Commun. math. Phys., Vol. 9
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(i = 1, 2, 3) are chosen so that2

vrviμ, = - *«« (3.i)

Thus a self-dual tensor F+

μv corresponds to the vector /$ by:

U = - T γrF+μv F+μv = γtμrp ,

With this notation, we may express the duals of the Riemann tensor.
There are two applications of *:

We separate Bκβγδ as follows:

The explicit forms oί Saβγs and Taβγ$ are:

Oα

ŷ<5 is the conformal (or Weyl) tensor and is traceless; the traceless
Ricci tensor &μv has been defined before. Thus we have

B*βyδ = G%δ + 2&*iydnδ} Λ-— %δ

In C3, SCiβ

γδ and Γα^y(5 correspond to a symmetric matrix with real
trace and a hermitean matrix respectively:

We will also use the notation

4* = St§-±8αii=±γt tγj»0ltβvt.

We will use several relations among the y^, including

Viα*Yiσβ = - *uδαβ ~ iEiuγ 'β

E Y u α = det(α^ )
2 An explicit representation of the γf β may be given in a tetrad system in which

the metric components are gκβ = ηκβ. One such representation, in which αi} = δ{j is:

γχ01 = - γl* = - 1, y i 23 = _ y i 32 = __ A a Π other

γ2

02 = — y 2

2 0 = — 1, y 2

3 1 = — y 2

1 3 = — *!• components
y8θ3 == _ y330 = - 1, y312 = _ y ^ l = ~ ij ZβΓO .
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which is equivalent to putting an orientation on 0 3. We will also use
other easily provable relations such as the symmetry of γiσ

Λγjσβ a n d

The case of a perfect fluid results in a relatively simple form for T{j:

TH = T 7'" 7iβo (» + P) vP «* , (3-3)

where w is the energy density and p the pressure. This Ttj is non-

degenerate as is seen in a comoving orthonormal tetrad with the expres-

sions of Footnote 8, where T{j = -g- (w + p) δi;f.

IV. Discontinuities in the Biemann Tensor

We now return to the study of discontinuities across a hypersurface
N. As in Section II , we choose coordinates so that [nμ] = [gμv] = [gμVt0C]
— 0; also the γiμv are continuous. The Riemann tensor may have a non-
zero jump across N, but the discontinuity in the Riemann tensor is
limited because of Eq. (2.1). Eq. (2.1) directly implies that

[B*"W]nd = 0. (4.1)

Moreover, the converse theorem is true: If Eq. (4.1) holds, then there
is an HΛβ such that [Raβγδ\ may be expressed as in Eq. (2.1). The proof
is as follows: Eq. (4.1) implies that

for some Aa^σ. This expression and the symmetry of *J?*aigy<5 implies,
again using Eq. (4.1),

This form for [*B**βy*] readily impUes Eq. (2.1). (The result that Eq.
(4.1) implies Eq. (2.1) holds whether nκ is null or not.)

Note that we have avoided the use of the Bianchi identities

R*"Pvσ

;a = 0 (4.2)

in obtaining Eq. (4.1). If Eq. (4.2) is interpreted in the sense of distribu-
tions, Eq. (4.1) may be derived by integral methods. We have not made
this assumption, however, feeling that the logical procedure is the
opposite: Derive Eq. (4.1) from the assumption of admissible coordinates3

and then interpret Eq. (4.2) as saying that there are no surface masses
on N.

3 Jump conditions have been derived by use of admissible coordinates by, for
example [7].
22*
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We return to the study of Eq. (4.1) and write it in the self-left-dual
form

βd β = 0 .

The γfP are applied to yield

[Si,]nd y*« + y [S]nδ γf« = [TiT]nδ φ*« . (4.3)

So far we have not required that nx be non-null. We now make this
stipulation, and we will retain this requirement through the rest of this
paper, unless otherwise stated.

Multiply Eq. (4.3) by γkβ<xn
β to yield, with the use of Eq. (3.2):

[Sik] + -J- [S]aik = - [T4J] (n°nσ)-i γ»*ykβΛrιPnδ . (4.4)

Eq. (4.4) contains all the information in Eq. (4.3) as may be seen by
substitution. Eq. (4.4) is the basic equation which gives the relationships
among the discontinuities of the algebraic parts of the Riemann tensor.

Eq (4.4) does show that the jump in the conformal tensor (represented
by [Si:}]) is given by the jump in the stress-energy tensor (which deter-
mines [8] and [Tij]) as was indicated by Eq. (2.3). In fact, the jump in
8ij9 including the jump in 8 itself, is given by [ϊtμv].

However, the stress-energy tensor itself cannot have an arbitrary
discontinuity across N. The analog of Eq. (2.4) in C3 notation is

γiσβγjoδ [TiT]nβ + [8]nδ = 0 (4.5)

when the fact that Ttj is hermitean is used. This equation separates into
two parts. The first allows [8] to be determined from [T^]:

[8] = - (Λ<Λσ)-i y**βγiσδ[TiT]nβffi . (4.6)

The second part is three conditions on [Ttj]:

7iσβγjo6 [%] nβE\ = 0, E\ = δδ

u - (n*nσ)-in*na . (4.7)

Eq. (4.7) may be derived directly from Eq. (4.4) when it is noticed
that the left side is symmetric in (ik). The condition that the right side
also be symmetric is exactly equivalent to Eq. (4.7).

In summary, it has been shown that the jump in the Riemann
tensor across a non-null hypersurface JV" is determined once the jump in
&μv is known. Moreover, any 3 x 3 hermitean matrix function on N, Pφ
may represent a jump in Bμv across N (that is, Pβ = [T{j]) provided
Eq. (4.7) is satisfied. Of course Eq. (2.4) is very useful itself, rather than
computing [R] from Eq. (4.6).

As a side comment we mention a useful expression for [$^] in terms
of the jump in Tμv and the jump in the scalar curvature R:

T W"*)-1 Yi*τY*βo
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One direct consequence of Eq. (4.4) is a restriction on the algebraic
properties of [8iS], The restriction

ISΆ [8'A = [T*j] [T'Έ] (4.9)

arises because Tβ is hermitean. This fairly simple result will help illus-
trate the results of the next section.

We may also derive an equation which is the converse of Eq. (4.4).
Instead of expressing [Si:j] in terms of [J\f ] as we did in Eq. (4.4), we
express [T€j] in terms of [8^]. To do so multiply Eq. (4.3) by γlzβΛn

β

and use the complex conjugate of Eq. (3.2) to yield an equation which,
like Eq. (4.4), is equivalent to Eq. (4.3):

[TiT] = - (n"w*)-i [8i]c] nδγ**«γjβocnβ . (4.10)

However, just as the symmetry of 8{ $ is equivalent to the restriction
Eq. (4.7) on \T^\ so the hermitean property of [ϊ^j] results in a restric-
tion on [&ij]. The fact that Ttj is hermitean may be used to show that

[Sik] γ«»nay*\nδ = [SiJc] f°*naγ*δvnδ .

When the tensor Si0> is interpreted as a conformal tensor, this result
becomes

[C*w]nσnτ = 0 . (4.11)

Eq. (4.11) holds whether nx is non-null or null, as can be verified directly
from Eq. (2.1).

Thus, we have two alternative ways of looking at jump conditions
across N. The first starts with a jump in T{j which satisfies certain con-
ditions and uses Eq. (4.4) to compute the change in the conformal tensor
and scalar curvature. The second specifies the conformal tensor and
scalar curvature jumps and computes the change in the traceless Kicci
tensor.

The two viewpoints actually use similar "amounts" of information.
In the first viewpoint, the nine components of [ϊtμv] must satisfy the
three conditions of Eq. (4.7) (three conditions because fσH

σ

κ is auto-
matically perpendicular to nx). The six remaining functions on N give
the full information about changes in the Riemann tensor across N. In
the second viewpoint, the ten components of [Cxβγδ] are to be given.
Since the left side of Eq. (4.11) is automatically orthogonal to nμ and is
tracefree, five conditions result. The five functions left plus the single
function representing [E] form the six necessary pieces of information.
In Section II we showed that a symmetric tensor Hβδ, orthogonal to wfi,
determines the jump in Bxβγδ. Such an Hβδ has six independent com-
ponents, equivalent to the six pieces of information in either viewpoint
one or viewpoint two of this section.
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To conclude this section, we will mention to what extent [$^ ] is
determined in case N is null. In that event, Eq. (4.4) and (4.10) are
inappropriate. Instead, these same two equations become conditions on

j γγβ = 0; [S^^y^^n, = 0 .

These equations imply that

U^γ^njβ, with t,n° = 0

fi being a unique null 3-direction. Eq. (4.3) then determines [$^ ] (if [8]
and [T{j] are given) up to an additive null tensor of the form Aftfj.
Alternatively, Eq. (4.3) determines [T4j] (if [#^ ] is given) up to an
additive term of the form j

V Examples: Discontinuities in Fluid-Filled Models

To illustrate the above remarks, let us compute the algebraic charac-
ter of the jump in the conformal tensor across a hypersurface of dis-
continuity in a fluid-filled model. Before treating the most general case,
we first look at the situation when N separates a fluid-filled region from
a vacuum region:

[Tμv] = - T~μv = - (w- + p~) u-μu~v - p~gμv.

As usual we assume that coordinates have been chosen so that

Iffμv] = \9μv,Δ = l>«] = 0 .

We apply the condition of Eq. (2.4) to find, assuming w~ Φ 0,

V-^nσu-a = 0; p~ = 0. (5.1)

These are the only conditions which need be satisfied when a fluid bounds
a vacuum. We may derive Eqs. (5.1) from the Gz Eq. (4.7) also. When
the jump in B computed from Eq. (4.6) is interpreted as [w — 3p], and
if [w] is assumed non-zero, we again obtain that F~ = p~ = 0.

Once the necessary conditions have been satisfied we compute the
jump in the conformal tensor by using Eq. (4.4). Since V~ = 0, nx is
spacelike, and we may normalize it: nσnσ— + 1. Eq. (4.8) yields the
result :

[&*] = T3-«™<* - ^υrX-iX-*', X~, ^ yrvrΛna . (5.2)

Because X"i is unit, X"ΛX"i = X^X-jot* = 1, we see that [§ik] is
indeed traceless.

Eq. (5.2) shows that in the case of a fluid bordering on a vacuum the
jump in Sig is algebraically of type D. This type of conformal tensor is
characterized by the fact that all type D tensors Si3- satisfy a second
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order equation of the form

($*, - λδ'j) (&k + 2λδ*k) = 0 .

The [$ij] of Eq. (5.2) does satisfy a second order equation of this form,
with the eigenvalue λ given by

We could have used Eq. (4.9) directly to discover the algebraic
character of [$<$]. In our case, the product [T*j] [Tj%] is simply pro-
portional to δ*k. Eq. (4.9) then becomes the second order equation which
[S*j] satisfies.

A familiar example of this type of discontinuity is that between the
Schwarzschild interior and exterior solutions. The Schwarzschild interior
solution is a conformally flat (O^βγs = 0), static, fluid model. The
Schwarzschild vacuum model, which surrounds the interior solution, is
type D not only on the fluid boundary but also everywhere else.

We now turn to the case of a hypersurface of discontinuity lying
within a fluid. The jump in the stress-energy tensor is

[Tμp] = (w+ + P+) u+

μu+v + p+gμv - (υr + p~) u~μvrv - p~gμv.

To the jump condition, Eq. (2.4), must be appended two additional con-
ditions in order that the jump in fluid parameters be determined. The
first of these conditions is

[ρuP]nμ= 0 (5.3)

which expresses the conservation of particle number density ρ. In inter-
preting Eq. (5.3) and (2.4), the pressure p must be related to ρ and the
specific entropy 8 by the caloric equation of state p = p(ρ, 8). The
second condition is that if fluid crosses the discontinuity, then 8 must
not decrease [8].

There are two classes of fluid discontinuities, Class I, in which there
is no transfer of matter across N, and Class II, in which there is such
transfer.

We define
V+ = u\nP F- s u-μnP

so that Eq. (2.4) is

(w+ + p+) u+μ V+ - (υr + p~)u-μ V- + [p]nμ = 0 . (5.4)

The first class of discontinuities occurs when ρ+ F + = ρ~ F~ = 0. If ρ+

and ρ~ are both non-zero, then F + = F~ = 0. Eq. (5.4) then shows that

[p] = F+ = V- = 0 .

Eq. (5.3) shows that in the only other class of discontinuities F + and F~
are both non-zero. (In the case of a fluid-vacuum jump, Class I, one of
the F's is undefined.)
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For Class I I discontinuities ("shocks") Eqs. (5.3) and (2.4) along with
the caloric equation of state determine the fluid parameters on one side
of N, say the " + " side, in terms of the fluid parameters on the "—"
side as functions of one parameter. This parameter may be taken as the
shock velocity, related to F~~, or the shock strength, say [ρ]/ρ~. Thus,
for example, one finds the Hugoniot curve relating those (p, ρ) states
which can be obtained from a fixed (p~, ρ~) by passing through a shock.
The condition that 8 not decrease as the fluid passes through the shock
then eliminates the possibility of negative shocks [9].

The discussion of the thermodynamic properties of fluids is outside
the scope of this paper, and we will merely assume that the fluid pa-
rameters are known on both sides of the shock front.

Class I I can occur only when4

Eq. (5.5) is readily derived from Eq. (2.4) and the condition V+ and F~
both non-zero. Contract Eq. (5.4) with u~μ and again with u+μ and nμ.
In case Eq. (5.5) holds, the resulting equations may be used to show

which is similar to the Eq. (6.8) given by TAUB [9]. Because the shock
wave must travel slower than light, na is spacelike and may be nor-
malized :

nσn
σ = + 1 .

We may then find F~ and V+ in terms of w+, w~~, p+, and p~. The
following relation then holds: u+

μ is uniquely given in terms of u~μ and
nμ if w+, w~, p+

y p~ are known. Explicitly, we find

+ ffar + ir)(M+ + ir-)|ift _ ί M ( M - M ) I1/2

 (f{ m
U μ ~ \ (w+ + p+) (w- + p+) J w μ \ (w+ + p+) (vr + p+) J μ ' [D'Ό)

It may be readily verified that if w+ and p+ satisfy the relation

then [Tμv]nv does vanish, provided u+

μ is determined as in Eq. (5.6).
(We have presumed [p] > 0.)

The computation of [$ij] for discontinuities of Class I with ρ+ and
ρ~ non-zero is straightforward. Because p+ = p~ = p and because
F+ = F~ = 0, [Tμv] is simply a difference of two terms similar to the
[Tμv] which occurs when a fluid borders a vacuum. The jump in 8iS for
a Class I internal discontinuity is therefore the difference of two terms

4 The proof that two forward-pointing timelike unit vectors, u+f* and w~̂ , have
a dot product u+v u~μ less than or equal to — 1 is straightforward.
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of the form of Eq. (5.2). We thus have:

Class I : [$„] = - -TO"

1 1 ( 5 ' 7>
(+ + )X+X+

1
τ -T(ur + p) X-tX-j,

where

The X±

i are unit but not orthogonal:

X+iX+ί = X-iX~i = 1 X+iX-t = - u+au-σ = (1 + Gψ2.

(Of course, in Class I, C2 does not obey Eq. (5.5).)
The algebraic class of [Siό] is type I except for two of the three special

cases defined below. Tensors Siί of type I satisfy a third order equation

Λ + A2 + λ3 = 0; ^ Φ A2 φ λ3 Φ λ1

but no second order equation. I t may be readily verified that the three
eigenvalues of the [Si k] are

There are three special cases of Class I discontinuities, which will be
mentioned here, but not elaborated on. First is the subclass u+

μ = u~~μ9

so that C — 0. In this special subclass we may include the case w+ = p = 0
even though properly speaking u+μ is undefined in the fluid-bordering-
vacuum case. In this subclass there are only two unequal eigenvalues.
[&ij] is Type D and obeys a second-order equation. (The fluid-vacuum
case was treated above the fact that the conformal jump in the more
general case of u+

μ = u~~μ is Type D follows from Eq. (5.7).)
The second special case occurs when w+, w~, p satisfy the relation

[w]2 = 4(w++ p) (ur+ p) C2 with C φ O .

This case corresponds to the limit λ2 -> λ3f but unlike the Type I case is
not diagonalizable. In this special case [$^ ] obeys a third-order equation
with two equal eigenvalues and does not obey any second-order equation.
This fact may be seen by direct computation using Eq. (5.7). This
behavior characterizes a tensor of algebraic Type ///.

The final case of interest occurs when λs vanishes so that

2[w]2 = 9(w+ + p) (w- + p)C2.
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This third case is type / and corresponds to an [SiJc] which is the
difference of two type N tensors.

We now turn to the Class II discontinuities, which correspond to
shock waves moving through fluids. The equations concerning the physi-
cal properties of the fluid itself have been well discussed in the literature
[1, 2, 9]. Here we are concerned with the algebraic form of the jump in
the conformal tensor associated with such a shock front.

Because u+

μ is related to u~μ by Eq. (5.6), the expression for [Sik],
given by Eq. (4.8), becomes

lA*] = - 12" M ai* + T I>] Yi Yk

We have set

so that Yi is unit: Yi Yι = 1. Therefore, in all Class II cases [Silc] is
type D, and the eigenvalues of [A*] depend only on the discontinuity
in the energy density w and not explicitly on the discontinuity in the
pressure p.5

VI. Summary and Conclusion

We have explored the conditions that the assumption of admissible
coordinates places on second-derivative discontinuities across a non-null
hypersurface N in general relativity. We showed that the jump in the
traceless Ricci tensor Άμv may be arbitrarily specified except for the three
conditions represented by Eq. (4.7). The discontinuity in the full Rie-
mann tensor is then uniquely determined from [Hμv] by Eq. (4.4).

A physically more interesting procedure is to specify [Tμv] subject
to the conditions

[Tμv]nv = 0 . (6.1)

If Tμv is required to be of a fluid form on both sides of N, Eq. (6.1) must
be supplemented by Eq. (5.3) and the caloric equation of state. N is
taken as timelike (nμ spacelike) for reasons of causality, and the specific
entropy 8 is required to be non-decreasing by the second law of thermo-
dynamics. The fluid parameters on one side of N are then related to
those on the other side in terms of the shock strength parameter.

Once a [Tμv] and a hypersurface N which are mutually compatible
(in that Eq. (6.1) is satisfied) are found, the conformal tensor jump is
then uniquely determined. If the conformal tensor does represent in

6 According to a student of his, R. BOYER did some work involving computation
of conformal tensor discontinuities across fluid boundaries. R. WILSON tells me that
BOYER proved that the conformal tensor jump across a fluid-vacuum boundary is
type D and that the conformal tensor jump across an internal null hypersurface
in a fluid is type D plus an admixture of type N. This latter situation can occur
only when [p] = [to].
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some sense the "purely gravitational" part of the field, then it is rea-
sonable to expect that it is determined by the matter variables, at least
to this extent.

For discontinuities involving fluid stress-energy tensors, the con-
ditions imposed are well known [1, 2, 9]. The allowable discontinuities
are of two classes: I, in which no matter crosses N, and II, in which there
is matter transfer. We have here computed the jump in the conformal
tensor associated with both classes of jumps.

For Class I boundaries (represented by the boundary between a layer
of oil floating on a layer of water) the jump in Cα/3

y<5 is of type /, non-
degenerate, except for special cases. For external boundaries, in which
the fluid borders on a vacuum, the algebraic type of [Oα0y(5] is Type D,
however. For Class I I discontinuities (represented by a shock wave
moving through a fluid) the jump in the conformal tensor is always of
algebraic Type D.

In conclusion, two points should be raised. The first is that the jump
conditions deal only with the algebraic properties of Tμv and CΛ^γs on
the hypersurface N. When it is required that Tμv or GΛ^vn obey an
algebraic restriction in an open neighborhood of N, further jump con-
ditions must be imposed. This subject will be treated in a subsequent
paper.

The second point is that singular hypersurfaces of infinite density do
find use within general relativity. Since the use of admissible coordinates
results in the jump conditions (4.1), the Bianchi identities Eq. (4.2) may
then be interpreted as indicating that N has no "surface charge".
Conversely, if a surface of point masses is to be described, admissible
coordinates must be dispensed with. In that case the jump conditions
should be derived by approximating the surface layer by a thick sheet
of mass whose thickness approaches zero. The Bianchi identities (4.2)
could in this case be the starting point for the derivation of jump
conditions.
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