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Abstract. We deduce an integral equation for the infinite volume correlation
functions of a class of lattice systems and we apply it to find results on the analyti-
city in the interaction potentials of the pressure and of the correlation functions
and on the ergodicity of the equilibrium states in the gaseous phase. By similar
methods we prove some cluster properties for the correlation functions in the
gaseous phase.

§ 1. Introduetion and Notations

In this paper we study the infinite volume correlation functions of
a class of classical systems of particles on a v-dimensional lattice Z”, and,
at high temperature and small activity (gaseous phase), we prove their
existence, their analiticity in the interaction potentials and find a cluster
property for them, generalizing to the case of many body potentials the
results and the technics of references [1, 2, 4] in the case of two body
interactions (for further results in the two body case, see [3—6]). We also
study the relation of our results with the work of RUELLE [7] about the
ergodicity of the equilibrium states establishing that at any tem-
perature and sufficiently small activity the equilibrium state is effectively
a pure phase.

We assume that at each lattice point there can be either 0 or 1 par-
ticle and suppose that the particles interact through symmetric, trans-
lationally invariant, many body potentials D@ (x,, ..., x;), where
D® (zy, ..., x), k=1,2,... is a function defined only for different
arguments. We shall regard these potentials as a function on the finite
substets of Z* defined as @ (X) = O® (xy, ..., ;) if X = {ay,..., .} is
a finite subset (configuration) of Z*. We put @ (0) = 0.

The potential energy of a finite configuration X will then be given by

Ug(X) = X D(8). (1)

scx
We shall consider only potentials @ such that:

(@] = 2 |P(S)] <+ 0, 2)
ocs
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where O is the origin of the lattice; we remark that the norm defined
by (2) is different (in fact larger) than the norm introduced in [8].

It follows easily that, if N (X) denotes the number of points of X, we
have the following stability relation:

[Us(X)| = N(X) 2] - 3)

The set # of interactions @ satisfying (2) is a real Banach space in the
norm defined by (2). It will be useful to consider also the complex Banach
space #° of the complex potentials @ satisfying (2).

We call #’ the subspace of ¢ defined as

B = {DECR: DY =0}, )

and if @ € #¢ we can write @ = (PM, @) with @D ¢ C and @’ ¢ B'. We
observe that — @® has the interpretation of chemical potential and, if
B = (kT)"1,z=e PP is the activity. We also remark that if @’ ¢ #’then
1

|Ud>’ (X)I = 9

In what follows we shall put, for convenience, § = 1.
The grand partition function for our system, when it is enclosed in
a finite region A CZ” and its particles interact through a potential

D = (OO, V') ¢ B, is:

|2 N (X)) - (5)

Zy (@) = X e VoD, (6)
Yca
and the finite volume correlation functions relative to A are defined, in
the case Z,(®D) + 0 (in particular if @ is real), as
0oa(X)=2Z4(@)t Y e Ve it Xc4
IDX; Yc4a (7)
004(X) =0 it Xad.
It is also useful to introduce the “‘averaged’” finite volume correlation
functions:
Opa(X) = /Z; N ) oga(X + a) . (8)
aeczvy
We shall say that 4 — oo if A is a cube centered at the origin and the
sides of /1 tend to co.

§ 2. Definitions and Inequalities

In this section we give some definitions and prove two auxiliary
propositions of technical character which will be useful in the sequel.

In what follows we make the convention that a sum running over
a void set of indices is zero.

Given a finite set X ¢ Z”, we call X® the set obtained by substraction
from X of one of its points z;, for instance its first point in the lexico-
graphic order.
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If XN Y =0wedefine VP ¢ He

UPX)= Y &), 9)
2 eTCcX

We(X, Y)= 2 ®(TVUY), (10)
G elCcX

L(X, V)= X ®Tus)= X WelX,8), (11)
T ETCX 0==SCY
04 SCY '

KX, T)= Y X I (e "a®s) - 1), (12)

n=1 {818 i=1
UiSi=1

the last summation runs over all » = 1 and over all the subsets (con-
taining » elements) {S; ... S,} of the set of non empty subsets of T and

such that U;S; = 7. In what follows we shall always give this sense to
the symbol 3}

n=z1 {S.. n)
/,b,

We remark that L,, and K, are independent of @M, ie. I4= Ig
and K4 = Kg. We have

UP(X) =00 + UP(X), (13)
U (X)) = |2 (14)
1WalX, D) < @] at X fixed (15)
YN =
e“’rb(le):( + 2 KalX, T)), (16)
=y

We now prove
Proposition 1. Let @ ¢ #¢, then for any X fixed we have

Ko(X, T) = exp (¢ —1) 1. a7)
TP =0

In fact, since |Wq (X, S)| < |D'] (sec (15)) we have

e~ Vo8 _ 1| = 3 l¢’ll L Wa(X, 9)], (18)
then we can write the following chain of inequalities which proves (17):
let X be a fixed set:

KX, D= XX X e et
T:TAX =0 T, TNX =0 n=1 {»51 n) i=1

U;S; =

e; 1:__1 non
—i=—) I |W(X,S;
{MZS,?( 1] )Ml (X, 85)]

IA
xi\}[\q

e‘@'\;_l no N

j=1

IA
s
Sy

X =90 S,L;Sn/\Xmo(
0 Spt 9



(5]
~
B
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and using (15):
S X e A =ep e 1) -1,
0,

Now let 4, 6, 6" >
at x € Z". Define

hs,5,, = sup P Ko (X, )| (XH&'(T) - X;.+a(T)) )
XCSa0) T;TAX =0

where x,(7) =1 if 7C8,(0) and y,(7) = 0 otherwise. Then
Proposition 2. The following limit exusts:

¢’ > & and let S,(x) be the cube of side p centered

I By, =0, (19)

and holds uniformly in ,and 0 < 6" — § = + co.
In fact:

hs,or,2 = sup 2 Ko (X, T)| (1 = y20s(T))
XCSa200) T, TNX =0

and using (12) and (18) we get
N RN S N gl SR Cm

XCSA0) T TNX =0 n=1 {5...8,} j=1
UZSi—I'

(L= prs(T) = sup e
XCSa0) n=1 S; TS24 6(0) SasSeMX =0 SniSp X =6
Sy %0 Sp 40 S0

1 e ?l 1 )n ﬁ W, (X,8) = su
. <X, = P
(n — 1)! ( kel j_1[ ? 2 XCS2(0) S:€82+6(0)

L P L R

I We (X, 8)| Z' @ W = 1P

o o _
(exp (7 = 1) g

where
2= X [T
ENDS
Y €85 ()
and, since [@’| <+ co, we have ﬁlim 1@'|ls = 0, which gives the

desired result.

§ 3. The Equations for the Correlation Functions
From (9), (11) and (1) it follows that if X N\ ¥ =

Up(X U Y)=UPX) + Up(XO U Y) + [,(X, 1), (20)
hence using (17) and (16) we find, at X/ fixed, and supposing
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ZA(Q) AF 0:
004 (X) =Z (D)1 2 e~ UPX) ¢ UpXD U X) p—Ig(X, )
YAX =0
1
= 7, (D)1 Z e UP(X) g~ Up(XD U T) (1 + 3 Ku(X, T))
b A \ 7CcY
YC/
= e=Ug @M (@d)A X(l)) — 004 (X) + 2 K,(X, R) (21)

RAT =0

“(004(XM U R) = 094 (X U R)).
Now we introduce the space & of complex functions ¢ on the non empty
finite subsets of Z* such that

lezsgp{w(X)[<+oo, (22)

in this norm & becomes a complex Banach space. Since, for / finite,
00 4(X), if defined, is different from zero only on a finite number of sets X
we can regard the function X — g4,4(X) as a vector g4, € & for all
@ ¢ #° such that Z (D) = 0.

Let us define on & the operator ¢ as follows: let ¢ € &

Hap) (0= 47 () + 3 Ka(X9) (p(9) = ¢(X U 5)
i ON(X) =1
(ap) (0= ¢ "FO (X0~ ¢(X) 1 5 Ko(X, 9) 23
(X0 U S) — Q(}( US) it N(X) =1
1Jherll’;'oposition 3. V& cHe, (23) defines a continuous operator on &.
In fact from (13), (17) and (22) we find, if z = e— 2%

[A o] < 2 2] exp(e® —1). (24)
Let us define the operator y, on & as
(xa®) (X) = x4(X) @(X) g@c&, (25)

where y,(X)=0if XA and y,(X)=1if X 4. We denote with o
the vector « € & defined as
a(X)=1 if NX)=1LaX)=0 if NIX)>1 (26)
then the following theorem holds.
Theorem 1. Let @ € Z¢, and let A be a finite region:
t) If Z4(D) =0 the correlation functions o4, verify the following
equation

0o4 =2 Ya&% + 2uH 0001 - (27)
w) If | A | <1 we have Z,(®) = 0 and
Opa=2(1 — x4 o) T ya%, (28)

logal = |2| (1 = |4 g))~2. (29)
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iii) If | A 5 < 1 then the equation
0 =20+ A oo (30)
has a unique solution oy € &, this solution is translationally invariant and
lim 004 (X) = gs(X) Y XCZ. (31)

w) If | g < 1 then we have also gy 4 € & and

(Goal £ [E (L= |Hul)t. VACZ (32)
1im g, 4(X) = ga(X). (33)

Remark. We observe that Eq. (27) do not reduce to the well known
Kirkwood-Salzburg equations [1, 10] even in the case when only two-
body interactions are present.

Part i) follows from (21), (23), (25), (26). To prove that Z (D) =0
if |4 o] < 1 suppose Z,(D) = 0, then if we consider the functions

RA(D(X) == 2 (5——‘U‘b(‘YU ) if X CA
IYNX=0;Yca

R p(X)=0 if Xdqa,

we find easily that the functions R4 € & defined by X - R 44(X) verify
the following equation:
Biop= st oB40,

and since | | < 1 this implies R, g = 0, but B, 4(A) = e Vo 0;
the other statements of part (ii) follows directly from (i). The first
statement of iii) is clear; to prove (31) we use proposition 2 (formula (19))
and apply the same argument as ref. [1] (theorem 1, proof). The first
statement of iv) follows from (29) and the definition (8) of g4 4; to prove
(33) we note that because of the uniformity of (19) we may take 4 to be
a funetion A(9) of d and from the argument used in ref. [1] to prove (31)
it follows that

loa.4(X) — o (X)| <& VX80 (0) (34)

if A = 8;)+4s(0) and ¢ is sufficiently great. Now let A — co and choose
A(0) = 6%, then the volume of S, +s(0) is asymptotically equal, as
A — oo, to the volume of §; 5 (0). These facts imply that, fixed X, except
for a surface effect in a, g4 4 (X + a) will be equal within ¢ to (X + a)
= p¢(X), while the importance of the surface effect in the expression of
0p4 Wwill result, as a consequence of (29), in a term of the order of

(V(Si01+5(0) — V(S50 (0)/V (S1 (6 (0)) == 0 .
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§ 4. Continuity and Analiticity Properties of 4y

In this section we derive some auxiliary results on the analiticity of
the dependence of the operator /' on @. We shall use these results in
the next section to derive the promised analiticity properties of pressure
and correlation functions.

Proposition 4. Let @, W € B¢, then there exists a continuous function
defined on all the two-dimensional plane (x, y) — f(z, y) such that

o= Al = (2, [F]) |2 - ¥ . (35)

In fact from (23) we see that /"y can be naturally decomposed in the
product of a multiplication operator by e—Us( and an operator # .
The multiplication operator is norm continuous in @ because of

e " - P! L -
sup ;C“Ug)(X) _ e~(/g,)(‘y)l < £ P (@1‘7""{’“ . 1) = £\l el®]| + ¥l —1

e | — D).
R r ey

(36)
To show the continuity of >y in @ we have thus only to show the
continuity of £ ¢: we have

~

Jif;.p*,%”y,nésu

H Ssup2 X |Ky(X, 8) - Ku(X, )|
X SNX=9p
< 2 sup Y X e We@sd 1)y — [I(em W5 — 1)),
X SNX=02=1{8...8} j=1 i=1
iSi=48
Now we use the fact that if f(z,, ..., 2,) is an entire function of
Z4s - - . 2y € O™ we have
n
[l om) = flron - - 200)| = | X (grad, f) (2 — 290) (37)

1=1

where the gradient is evaluated at a suitable point of the segment joining
(%15« + +» 2) t0 (Zg1: - - -5 Zon) 1-€. at a point of the form

(g + (1 — @) zgg .oz + (L —t)2g0) 0= =13
applying (37) we get:
15 = A
n
< 2 sup 2 2 2 2 H(e~o¢ W@(zY,Sj)—(l"—ix)W'{/(‘Y,7Sj)_ 1)
X SNX=0n=1{S...8) k=1j+k

g =

e WL A=W S (7 (X, §,) — W(X, 8)],

where we have not explicitly written in the o’s the variables on which
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they depend; using (18) the chain of inequalities continues as

2o 5 T 5 3 (remer)
= u “ it
xp,s“'r\x =0 021 {Si.. S} k=1 o + 11?7

i81= 5

- el e H(”Vw(X, Sy)l + |Wg:(X, S]-)) |W<b-—'1/ (X, SL)[]
B

now proceeding as in the proof of proposition 1 we find that this last
quantity is majorized by
21U+ exp (lI+1¥1 _ 1) @ — @], (38)

combining this result with (36) and (24) we get the result (35).

Now we investigate the analiticity of ¢4, ,» in the complex
variable A. Let us define the kernel %%;’i (X, T) as :
9Ky
ow

= X3 HE e - 1) e Ve S,(X, §)

n=1{S1...8) k=1j=Fk
UiSi—‘—T

X, T)
(40)

oA’
and the operator ZLr-on & as:

oV
(5> ¢) (0 = = UP@X) (£ ag) (1)

B ) oY
rnx-o ¥

(41)
(X, T) (g (X0 U T) — (X U T))

then the following proposition holds:
Proposition 5. Let @, ¥ ¢ e

. oXg . . .
i) The operator —37@ is a continuous operator on & and there exists

« real continuous function g: (x,y) — g(z, y) defined on all the plane and
such that
o R
1552 = gl 1. (42)

i) There exists a continuous function L: (x, y) — 1 (x, y) defined on all
the plane and such that

|G — T =Te | <1 qof, 1#)) 1 (43)

hence, in particular, A g,y is entire analytic in ¥ in the sense that
A, 3 B s entire norm analytic in 2, . . ., A, [9].
1

The proof is obtained with the same technics as for propositions 1
and 4.
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§ 5. Pure Phases and Meyer’s Expansion

In order to prove the ergodicity of the equilibrium states when
| 6] < 1 we report the following theorem:
Theorem 2. Let @, ¥ ¢ 4.
1) The limit
lim NA)lg Z,(P)= P(D), (44)

A—>o00

exists and defines a continuous convex function on %.
il) Let us define ag 4 € B* as:

g4 () =0§(?’(X) toa(X) N(X)~t WA, (45)

then if Alim g 0(V) exists for any Vit defines a tangent plane o the graph
of P(-) at D i.e. a linear functional ag ¢ HB* such that
P(@+ W)= P(D) — aa(P) . (46)

iii) If E@—d;ﬂ iso exists for fixed @ and ¥, then for such @ and ¥

the limat /111_1?00 g4 (V) exists and
Jim gy () — SEEEE (47)

iv) A necessary and sufficient condition for the existence of a unique
tangent plane to the graph of P(-) at @ is the existence for all ¥ of
dP(® + AVP)

dA i=0"

This theorem can be proved as in ref. [8] (theorem 2 and remark):
we have only to verify that the proof of the similar results of ref. [8] can be
carried out, without any change, with the norm for the potentials
introduced in (2).

Now we can state the following theorem:

Theorem 3. Let @ € %°, | A 5| < 1; if Hyp C A denotes the largest open
sphere, with radius re, around the origin such that ¥ € Hg implies
[ orwl] <1, and if ag € B°* is defined as

0<<z>(5”)=0,€2Y P (X) 0o (X) N (X)) W, (48)

then

i) the vectors pgiw defined in (30) are norm analytic with respect to
YecHg.

i) Let @ ¢ H# and W ¢ Hy, then if we define ap 4 (V) as in (45) and
P,() as:

1
Py(@+ V)= N(A)"1gZ4(P) - 0f w20, A(F) A2, (49)

the following limat
llim PyD+ V)= P+ V) (50)
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extsts, defines an analytic function of ¥ € Hy, and if ¥ ¢ # N Hy coin-
cides with the thermodynamic pressure defined by (44).
i) If @ €H, >0, || < ry — € then the following formulae hold:

1
P(@®+ V)= P(D) _6[05¢+A'1’(T) da, (51)
[P(@+ V) = [f(D,e) <+ oo (52)
where
(@, e) = P(D)+ (ro — &) sup [em V="V (1 — [Appu])?] .
Wl =rg—e

iv) If we define, for @ ¢ B and ¥y, . . ., ¥V, € B°:

i o k l
AP Wy, W)= 5o P (@ + Y zs”) (53)

i=1

Z1='"=2=0
then AF(:) is a k-linear symmetric continuous form on %° and
K [(D, €)
LI g (54

v) If we put o (V)= AD P, ..., W), the following “Meyer’ ex-
pansion holds for ¥ € Hy:

AD (P, .. W] =

v b (F)

P(@+Y¥)=P(D) -} — (55)

!
P

and the series is absolutely convergent.
vi) If @ € # we have

% (V) = P (P) (56)
and the restriction to B of ag € B* defines a tangent plane to the graph
of P(:) at @ and this plane is the unique tangent plane at D. Then the
equilibrium state at the potential D is a pure thermodynamic phase
(ergodic state) [7].

Part i) follows from the formula (remember that z — e~ %”):
Qorw=e "1 = A g ),
valid when [ 41| <1 and from the norm analiticity of # g, in ¥
(see Proposition 5).

To prove part ii) we observe that, as a consequence of (32), (33)
we have

Ahlnoo apa(P)=ap(¥) YV CH°,
furthermore as a consequence of i) ogy;w(¥) is continuous and as
a consequence of (32)
oo saw,a (P) = [ e 202N (L — | 5y 0]) 2 P

57
o ()] = | =245 (1 | g3 P, 0
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then applying (44) and the dominated convergence theorem we get (50)
and (51). From i) it follows that ap4;w (W) is analytic in ¥ € Hy and
uniformly bounded when ¥ varies in any closed sphere contained in
Hyand 0 < 1 < 1, this implies the analiticity of P(® + ¥) in ¥ € Hy.

The unproved part of iii) follows from (51) and (57). Part iv) can be
proven as follows: let z;, . . ., 2z, € C and

— & ;

led < /v”llyn

~1,2,.. .k (58)

then }'z,¥,; € Hy and we can write
i

3’~P(Q51— Z’zT)i

N i=1
02y ...0% 2= =zp=10
( >y v) i
T dhy Ay (59)
where the integrals are over circles of the A;-planes of radii -—%I ;’i(lc

and center at zero. Now (54) and the symmetry property follow from
this integral expression and from (52). The linearity property follows

&
from the analiticity in z;, ..., z; of P(@ + X % SUZ) around zero and
i

from the formula (obtained from (51)):

E—1
8P<@ + X z¥, 4 zl'lﬁ.)
i=1

FP ]zk=0:: - Oﬂq)+k2—1z‘_ w, (S-Uk) > (60)
i=1

k—1
apP ((D + Xz 4 Zka) i

i

which shows that 32
2

this last formulaz, =z, = -+ =2, _; =0 we p’rove (66) ; the remaining part
of iv) follows from part iv) of theorem 2 and from the fact that, knowing
that at @ there is a unique tangent plane to the graph of P(-), we can
apply the results of ref. [7] (theorem 4, part iii)) to guarantee that at
D, the equilibrium state of the system is a pure thermodynamic phase:
we have only to remark that the potentials of & satisfy also condition
(1.2) of the paper referred to.

OIS lincar in ;. If we set in

Remark. We obtain a physical interpretation of the results of theo-
rem 3 reintroducing the inverse temperature § and observing from (24)
that, for fixed f, if the activity z is small, we have | A 5,] < 1.
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§ 6. Cluster Properties of Correlation Functions

Suppose that the graph of P(-) has a unique tangent plane corre-
sponding to @ € 4, then the infinite volume correlation functions g4 are
uniquely determined and define a tangent functional to the graph of P (:).

We can then define the cluster (truncated) functions g% by means of
the relations (where 7(X)=01if X == 0,7(0) =1):

05(0) =0
LX) =1+ L X 1T o3(x) (61)
n=1 {X, n} =1
Ui X<
ZN(X) = N (X
(for the meaning of the summation symbols see section 2).

In this section we shall prove that at fixed temperature and suffi-
ciently small activity the following cluster property holds:

2 [eB(X)| < + 0. (62)
0ex
N (X)fixed
This result will be a consequence of theorem 4 which will be proved with
the same technics as in reference [4]. In order to formulate this theorem
we consider the finite configurations X which we allow to possess multi-
plicities. If X is such a configuration we denote X the set of points
occupied by the particles of X: hence a configuration X is determined
by giving X and the multiplicity of every point of X. We denote N (X)
the number of particles of the configuration X. The reason for the intro-
duction of these “unphysical” configurations will become clear when we
shall introduce the operator D,,.
Let K be the space of all the configurations just defined, and let &
be the space of complex functions f on K such that for each n
sup [f(X)] = [fln < + oo (63)
N(X)=n

Now we define some operations on or between elements of %#. Let
@1, ¢ € F, we define the product ¢, - ¢, € F as

(g1 @) (X) = 2 P1(Y) @a(X]Y) = (@2 1) (X) (64)

where X/Y is the conﬁguratlon obtained from X by substracting the
points of Y (taking multiplicity into account).

Let ¢ ¢ 7, where # = {p € F : p(§) = 0}, then we define the ex-
ponential "¢ of ¢ as a mapping between %, and %, where F,
={@ €F : p(0) = 1} defined, putting ¢°(X) = 7(X), as:

(Fg) (X Z‘PX) XLy 3 HeX). (65

n=21{X;...X}i=1
UiX5=x\
;N (X)) = N@Q)
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It is easily verified that this mapping is defined on all of #, and is
one-to-one and onto .

Now we define a scalar product between elements of # and certain
functions y 4 defined for regions /1 C Z” (not necessarily finite) as y 4 (X) =1
it XcAdand g (X) =0if X (d:1let D, = {p € F: Y |p(X)]| < - oo},

Xc4a

then if ¢ ¢ 2, we define:

Qs @) = 2 p(X) =2 7a(X) p(X) . (66)
Xca X
If @y, @, €D 4 then @, - @, €24 and
s P @2 = {2 Qo s P2 - (67)
Finally we define a mapping Dy F — Z as:
Dxg) (Y)= X U Y) (68)

where X U Y denotes, here as well as in the remaining of this section,
the configuration obtained from Y by adjoining to it the configuration X
taking into account the multiplicities.

We find the following relations

Dy(pr @) = 1" Dxpa+ @2 Dy it NX)=1, (69)
Dyl'p= Dyg)I'p) if NX)=1, VgcF,, (70)

n
DyI'p= ( 2 X H(DXi(p)>‘F(p it X+0, YepcF,. (11)
N1 {X;...Xp)i=1
Ui X;=X
2N (X =N (X)

Now to formulate the main theorem of this section we need only the
expression of the cluster functions relative to finite regions 4. Let @ ¢ #
be such that the graph of P () admits a unique tangent plane at @. Then
let pg be the correlation functions, since 0 = p4(X) =< 1 and p4(0) = 1,
we can regard g, as an element of F, if we put p4(X) = 0 when X + X.
We define the truncated functions as an element of %, through the
relation:

00 =T'0%. (72)

Similar definitions are set for the finite volume correlation functions
04 (in particular pg 4 = 1'0% 4).
Now let ¢4 € %, be defined as:

goX)=cUo® if X=X and ¢,(X)=0if X+X. (73)
It is easy to verify that, if ¢!+ Dy @q €D, then:

B DX _—
0o 4(X) = % = (> 93 Dx @oy - (74)

If we define @f ¢ #, such that ¢, = I"ph and if we suppose that
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Dyohc¢2,V X, N(X) = 1 we find, using (71), (74)
004(X) = 1(X)+ X b {ta Dx,98) » (75)

n=1 {Xl...:Yn}
SN =N @D
which shows (alwaysif ¢zl - Dy ¢y € Zand Dy ¢f €7,V X, N(X) = 1)
064 (X) = (ya Dxot)y i NX)=1. (76)

Now the following theorem holds:
Theorem 4. If @ ¢ B and c(P) = 2z l¥lexp (el ?l — 1) < 1 we have

D, 2 e Dxge(M] S ze(@rinr i N) =nz= 1. (T7)

i) Dygh €Zp VX, NX)= 1

iii) %, which is uniquely defined as a consequence of (24) and theorem 1,
is given by the expresssion:

05(X) = {xz Dx g%y YX,NX)=1. (78)

iv) The following cluster property is valid:

Xy <y @
oéx' l0a(X)]| = 2 T = @)
NX)=m

(79)

Remark. (79) is stronger than the promised (62) since in (79) we con-
sider also configurations with multiplicity.

To prove this theorem we remark that iii) follows from ii) and i),
and ii) will be proved if we prove it for N (X) =1 and in this case ii)
follows from (70) and i). Hence we have only to prove i) and iv). Let us
prove i): taking into account the explicit form (73) of ¢4 and using the
same technics as in the preceding sections we can prove the following
equations which we write using the notations of sections 1, 2: if N (X)
=1, N(Y)= 0 and, if we put Ax(Y) = (¢3! Dy pe) (Y), ¥y = Y[{z},
O, (Y)=1if 2, € Yand O, (Y)=0if 2, ¢ ¥, we get

Ax(Y) = e~ U5 @D [Axm( Y) -0, (Y)Ax(Y,)

8
© Kol D) o 011) = Ay s (/1) 05,7 =0
T['{i)-——f)

where K4(X, T) and e~ U$X) are to be taken equal to zero if 7 = T
or X + X.
Now we define

I,=  sup X x(). (81)
NX)+NY)=m Y
N(X)%l,l\x;(l’);() N (X)), N(Y) fixed
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We find using (17), (79) and the fact that A4(Y) = 1(Y):
I,<zel (21, + (exp(el?l—1) - 1)21, ;] m=2 (82)
which, taking into account that I; = z gives
I, < zc(@)ym-1.
To prove iv) we proceed as follows:

2 lesXl= X 1Y 3 eh({0uTuY)

ocx T n=0 Y;N(Y)=n
N(X)=m N(T)=m—1
= 2 e} v TuY)
nz0 T;N(T)=m—1 Y;NX)=n
U m-+n—1
< AR
nz0 S;N(ES)=m+n—1

i\

I

mA4n—1 mitn—1 _ , (D)L
,lg()( W) e = 2 G

where we have used the formula D{O}q)g = @gt- Dy g and (77).
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